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Review: Networking Summary

Protocols allow hetereogeneous networking
Protocols allow operation in the presense of failures

Routing issues: store and forward vs. cut through,
congestion, ...

Standardization key for LAN, WAN

Internetworking protocols used as LAN protocols =>
large overhead for LAN

Integrated circuit revolutionizing networks as well as
processors

Switch is a specialized computer

High bandwidth networks with high overheads
violate of Amdahl’s Law

DAP Spr.'98 ©UCB 2
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Review: Parallel Processing
Intro

* Long term goal of the field: scale number
processors to size of budget, desired performance

» Successes today:

— dense matrix scientific computing (Petrolium,
Automotive, Aeronautics, Pharmaceuticals)

— file server, databases, web search engines
— entertainment/graphics

* Machines today: DELL WORKSTATION 400
— 333 MHz Intel Pentium® Il (in Minitower)

— 128 MB ECC memory, 4GB disk, 12X CD, 19" monitor,
Appian Jeronimo Graphics card, 1yr service

— $3,947; for 2 processor, add $749

DAP Spr.'98 ©UCB 3

Parallel Architecture

» Parallel Architecture extends traditional
computer architecture with acommunication
architecture

— abstractions (HW/SW interface)

— organizational structure to realize abstraction
efficiently

DAP Spr.'98 ©UCB 4
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Parallel Framework for

Communication
* Layers:
— (see Chapter 1, Figure 1-14, page 37 of [CSG96])
— Programming Model:
» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and recieve messages

» Data Parallel: several processors operate on several data
sets simultaneously and then exchange information globally
and simultaneously
(shared or message passing)

— Communication Abstraction:
» Shared address space: e.g., load, store, atomic swap
» Message passing: e.g., send, recieve library calls

» Debate over this topic (ease of programming, large scaling)

=>many hardware designs 1:1 programming model
DAP Spr.'98 ©UCB 5

Shared Address/Memory
Multiprocessor Model

e Communicate via Load and Store
— Oldest and most popular model

» Based on timesharing: processes on multiple
processors vs. sharing single processor

* process: avirtual address space
and 0O 1 thread of control

— Multiple processes can overlap (share), but ALL
threads share a process address space

» Writes to shared address space by one thread
are visible to reads of other threads

— Usual model: share code, private stack, some

shared heap, some private heap
DAP Spr.'98 ©UCB 6
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Example: Small-Scale MP Designs

* Memory: centralized with uniform access time
(“uma”) and bus interconnect,

Processor Processor

Processor

Processor

Oneor

of cache

more levels

One or
more levels
of cache

Oneor
more levels
of cache

Oneor
more levels
of cache

NMain memory

1/0O system

FIGURE 8.1 Basic structure of a centralized shared-memory multiprocessor.

SMP Interconnect

» Processors to Memory AND to I/O

e Bus based: all memory locations equal
access time so SMP = “Symmetric MP”

— Sharing limited BW as add processors, I/O
— (see Chapter 1, Figs 1-18/19, page 42-43 of [CSG96])

» Crossbar: expensive to expand

« Multistage network (less expensive to expand
than crossbar with more BW)

e “Dance Hall” designs: All processors on the
left, all memories on the right

DAP Spr.'98 ©UCB 8
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Large-Scale MP Designs

e Memory: distributed with nonuniform access time (“numa”) and
scalable interconnect (distributed memory)

Memoryr—[ﬂ Memoryr 1/0

[ Interconnection network

|Memory.——[ 1/10 ]lMemory.——[ 1/0 ] |Memory.—

Processor
+ cache

Processor
+ cache

Processo
+ cache

FIGURE 8.2 The basic architecture of a distributed-memory machine consists of
individual nodes containing a processor, some memory, typically some IO, and an
interface to an interconnection network that connects all the nodes.

DAP Spr.'98 ©UCB 9

Shared Address Model
Summary

» Each processor can name every physical
location in the machine

» Each process can name all data it shares with
other processes

« Data transfer via load and store
« Data size: byte, word, ... or cache blocks

* Uses virtual memory to map virtual to local or,
remote physical

* Memory hierarchy model applies: now
communication moves data to local proc. cache
(as load moves data from memory to cache)

— Latency, BW (cache block?),
scalability when communicate? DAP Spr.'98 ©UCB 10
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Message Passing Model

e« Whole computers (CPU, memory, I/O devices)
communicate as explicit I/O operations
— Essentially NUMA but integrated at I/O devices vs.
memory system
e Send specifies local buffer + receiving
process onh remote computer

» Receive specifies sending process on remote
computer + local buffer to place data

— Usually send includes process tag
and receive has rule on tag: match 1, match any

— Synch: when send completes, when buffer free,
when request accepted, receive wait for send
e Send+receive => memory-memory copy,
where each each supplies local address,
AND does pairwise sychronization! DAP Spr98 OUCE 11

Message Passing Model

¢« Send+receive => memory-memory copy, sychronization on
OS even on 1 processor
¢ History of message passing:

- Network topology important because could only send to
immediate neighbour

- Typically synchronous, blocking send & receive

— Later DMA with non-blocking sends, DMA for receive into
buffer until processor does receive, and then data is
transferred to local memory

— Later SW libraries to allow arbitrary communication
« Example: IBM SP-2, RS6000 workstations in racks
- Network Interface Card has Intel 960
— 8X8 Crossbar switch as communication building block
- 40 MByte/sec per link

DAP Spr."98 ©UCB 12
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Communication Models
Shared Memory

— Processors communicate with shared address space
— Easy on small-scale machines
- Advantages:

» Model of choice for uniprocessors, small-scale MPs

» Ease of programming

» Lower latency

» Easier to use hardware controlled caching

Message passing
— Processors have private memories,
communicate via messages
- Advantages:
» Less hardware, easier to design
» Focuses attention on costly non-local operations

Can support either SW model on either HW base

DAP Spr.'98 ©UCB 13

Popular Flynn Categories
(e.g., -RAID level for MPPs)

* SISD (Single Instruction Single Data)

— Uniprocessors

e MISD (Multiple Instruction Single Data)

- 222

e SIMD (Single Instruction Multiple Data)
— Examples: Illiac-1V, CM-2
» Simple programming model
» Low overhead
» Flexibility

» All custom integrated circuits

e MIMD (Multiple Instruction Multiple Data)
— Examples: Sun Enterprise 5000, Cray T3D, SGI Origin
» Flexible

» Use off-the-shelf micros DAP Spr.'98 ©UCB 14
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Data Parallel Model

Operations can be performed in parallel on each
element of a large regular data structure, such as an
array

1 Control Processor broadcast to many PEs (see Ch. 1,
Fig. 1-26, page 51 of [CSG96])

- When computers were large, could amortize the control
portion of many replicated PEs

Condition flag per PE so that can skip
Data distributed in each memory

Early 1980s VLS| => SIMD rebirth:
32 1-bitPEs + memory on a chip was the PE

Data parallel programming languages lay out data to
processor

DAP Spr.'98 ©UCB 15

Data Parallel Model

Vector processors have similar ISAs,
but no data placement restriction

SIMD led to Data Parallel Programming
languages

Advancing VLSI led to single chip FPUs and
whole fast pProcs (SIMD less attractive)

SIMD programming model led to

Single Program Multiple Data (SPMD) model

— All processors execute identical program

Data parallel programming languages still
useful, do communication all at once:
“Bulk Synchronous” phases in which all
communicate after a global barrier

DAP Spr."98 ©UCB 16
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Convergence in Parallel Architecture

« Complete computers connected to scalable
network via communication assist

— (see Ch. 1, Fig. 1-29, page 57 of [CSG96])

« Different programming models place different
requirements on communication assist
— Shared address space: tight integration with

memory to capture memory events that interact
with others + to accept requests from other nodes

— Message passing: send messages quickly and
respond to incoming messages: tag match, allocate
buffer, transfer data, wait for receive posting

— Data Parallel: fast global synchronization

e Hi Perf Fortran shared-memory, data parallel;
Msg. Passing Inter. message passing library;
both work on many machines, different
implementations

DAP Spr.'98 ©UCB 17

Fundamental Issues
e 3 Issues to characterize parallel machines
1) Naming
2) Synchronization
3) Latency and Bandwidth

DAP Spr."98 ©UCB 18
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Fundamental Issue #1: Naming

* Naming: how to solve large problem fast
- what data is shared
— how it is addressed
— what operations can access data
— how processes refer to each other

*» Choice of naming affects code produced by a
compiler; via load where just remember

address or keep track of processor number
and local virtual address for msg. passing

*+ Choice of naming affects replication of data,
via load in cache memory hierarchy or via SW

replication and consistency

DAP Spr.'98 ©UCB 19

Fundamental Issue #1: Naming

« Global physical address space:
any processor can generate, address and
access it in a single operation

— memory can be anywhere:
virtual addr. translation handles it

e Global virtual address space: if the address
space of each process can be configured to
contain all shared data of the parallel program

e Segmented shared address space:
locations are named
<process number, address>
uniformly for all processes of the parallel
program

DAP Spr.'98 ©UCB 20
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Fundamental Issue #2:
Synchronization

e To cooperate, processes must coordinate

« Message passing is implicit coordination with
transmission or arrival of data

* Shared address
=> additional operations to explicitly coordinate:
e.g., write a flag, awaken a thread, interrupt a
processor

DAP Spr.'98 ©UCB 21

Fundamental Issue #3:
Latency and Bandwidth
e Bandwidth

— Need high bandwidth in communication
— Cannot scale, but stay close
— Match limits in network, memory, and processor

— Overhead to communicate is a problem in many machines

e Latency
— Affects performance, since processor may have to wait
— Affects ease of programming, since requires more thought
to overlap communication and computation
 Latency Hiding
— How can a mechanism help hide latency?
— Examples: overlap message send with computation,

prefetch data, switch to other tasks DAP Spr/98 GUCB 22
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Small-Scale—Shared Memory

Caches serve to:

— Increase
bandwidth versus
bus/memory

— Reduce latency of
access

— Valuable for both
private data and
shared data

What about cache

Processor

Processor

Processor Processor

©One or
more levels
of cache

©One or
more levels
of cache

One or
more levels
of cache

©One or
more levels
of cache

Main memory

1/0 system

consistency?

FIGURE 8.1

Basic structure of a cerftralized shared-memory

bain memory

MR S stem

DAP Spr.'98 ©UCB 23

The Problem of Cache Coherency
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What Does Coherency Mean?

* Informally:
— “Any read must return the most recent write”

— Too strict and too difficult to implement

* Better:
— “Any write must eventually be seen by a read”

— All writes are seen in proper order (“serialization”)

e Two rules to ensure this:

— “If P writes x and P1 reads it, P's write will be seen by
P1 if the read and write are sufficiently far apart”

— Writes to a single location are serialized:
seen in one order
» Latest write will be seen
» Otherewise could see writes in illogical order

(could see older value after a newer value) DAP Spr.'98 ©UCB 25

Potential HW Coherency Solutions

Snooping Solution (Snoopy Bus):
— Send all requests for data to all processors

— Processors snoop to see if they have a copy and respond
accordingly

— Requires broadcast, since caching information is at processors
— Works well with bus (natural broadcast medium)

— Dominates for small scale machines (most of the market)

Directory-Based Schemes

— Keep track of what is being shared in one centralized place

Distributed memory => distributed directory for scalability
(avoids bottlenecks)

— Send point-to-point requests to processors via network

Scales better than Snooping

Actually existed BEFORE Snooping-based schem esDAPSpr.98eUCB26
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Basic Snoopy Protocols

e Write Invalidate Protocol:
— Multiple readers, single writer

— Write to shared data: an invalidate is sent to all caches
which snoop and invalidate any copies

- Read Miss:
» Write-through: memory is always up-to-date
» Write-back: snoop in caches to find most recent copy
e Write Broadcast Protocol (typically write through):

— Write to shared data: broadcast on bus, processors snoop,
and update any copies
— Read miss: memory is always up-to-date

e Write serialization: bus serializes requests!

— Bus is single point of arbitration
DAP Spr.'98 ©UCB 27

Basic Snoopy Protocols

 Write Invalidate versus Broadcast:
— Invalidate requires one transaction per write-run
— Invalidate uses spatial locality: one transaction per block

— Broadcast has lower latency between write and read

DAP Spr."98 ©UCB 28
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Snooping Cache Variations

Basic Berkeley ‘ lllinois ‘ MESI
Protocol Protocol Protocol Protocol
Owned Exclusive| Private Dirty Modfied (private,’Memory)
Exclusive.] —Owned Shared | Private Clean eXclusive (private,=Memory)
Shared Shared Shared Shared (shared,=Memory)
Invalid Invalid Invalid Lnvalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
if read sourced from other cache, then Shared
Can write in cache if held private clean or dirty

DAP Spr.'98 ©UCB 29

An Example Snoopy Protocol

e Invalidation protocol, write-back cache
« Each block of memory is in one state:
— Clean in all caches and up-to-date in memory (Shared)
— OR Dirty in exactly one cache (Exclusive)
— OR Not in any caches
« Each cache block is in one state (track these):
— Shared: block can be read

— OR Exclusive : cache has only copy, its writeable, and
dirty

— OR |nvalid : block contains no data
» Read misses: cause all caches to snoop bus

e Writes to clean line are treated as misses DAPSpr930UCB30
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Snoopy-Cache State Machine-|

State machine
for CPU requests
for each

CPU Read hit

CPU Read Shared

Invalid
(read/only)
cache block Place read miss
on bus
CPU|Write
CPU read m CPU Read miss
Write back

Place Write
Miss on bus

Cache Block
State

CPU read hit )

CPU write hit

Exclusive
(read/write

Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Write Miss
Write back cache block
Place write miss on bus 3seucs31

Snoopy-Cache State Machine-Il

State machine
for bus requests

for each Invalid < (read/only)
cache block
« Appendix E 4
gives details of _
Write Back

bus requests

Write miss
for this block

Exclusive
(read/write

Write miss

for this block Shared

Block; (abort
memory access)

Write Back
Block; (abort
memory access)

Read miss
for this block

)

DAP Spr.'98 ©UCB 32
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Snoop Cache: State Machine
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Ext

ensions:

Fourth State:
Ownership

Clean-> dirty,

need invalidate only
(upgrade request),

don’'t read memory
Berkeley Protocol

Clean exclusive state
(no miss for private
data on write)

MESI Protocol

Cache supplies data
when shared state
(no memory access)
Illinois Protocol

DAP Spr.'98 ©UCB 33

Example

P1 P2 Bus Memory
step Sate Addr__|Value |Sate Addr_ |Value [Action |Proc. |Addr Value |Addr |Value
P1: Write 10 to A1
P1: Read Al
P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

Assumes Al and A2 map to same cache block,
initial cache state is invalid

DAP Spr.'98 ©UCB 34
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Example

P1 P2 Bus Memory
step Sate Addr |Value |Sate Addr |Value |Action |Proc. |Addr Value |Addr [Value
PL: Write 10 to A1 Excl. Al 10 WrMs P1 Al
P1: Read A1
P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

Assumes Al and A2 map to same cache block

DAP Spr.'98 ©UCB 35

Example

P1 P2 Bus Memory
step Sate Addr |Value |Sate Addr |Value |Action [Proc. |Addr Value |Addr |Value
P1: Write 10to A1 Excl, Al 10 WrMs p1 Al
P1: Read Al Excl. Al 10
P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

Assumes Al and A2 map to same cache block

DAP Spr.'98 ©UCB 36
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Example

P1 P2 Bus Memory
step Sate Addr |Value |Sate Addr |Value |Action |Proc. |Addr Value |Addr [Value
PL: Write 10 to A1 Excl. Al 10 WrMs P1 Al
Pl: Read A1 Excl. Al 10
P2: Read A1 Shar. Al RdMs P2 Al
Shar, Al 10 WrBk p1 Al 10 10
Shar. Al 10 RdDa P2 Al 10 10
P2: Write 20 to AL 10
P2: Write 40 to A2 10
10

Assumes Al and A2 map to same cache block

DAP Spr.'98 ©UCB 37

Example

P1 P2 Bus Memory
step Sate Addr |Value |Sate Addr |Value |Action [Proc. |Addr Value |Addr |Value
P1: Write 10to A1 Excl, Al 10 WrMs p1 Al
Pl Read Al Excl. Al 10
P2: Read A1 Shar. Al RdMs P2 Al
Shar, Al 10 Wi Bk Pl ALl 10 10
Shar. Al 10 RdDa P2 Al 10 10
P2: Write 20 to A1 1nv. Excl. Al 20 WrMs P2 Al 10
P2: Write 40 to A2 10
10

Assumes Al and A2 map to same cache block

DAP Spr.'98 ©UCB 38
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Example

P1 P2 Bus Memory
step Sate Addr |Value |Sate Addr |Value |Action |Proc. |Addr Value |Addr [Value
PL: Write 10 to A1 Excl. Al 10 WrMs P1 Al
Pl: Read A1 Excl. Al 10
P2: Read A1 Shar. Al RdMs P2 Al
Shar, Al 10 WrBk p1 Al 10 A1_| 10
Shar. Al 10 RdDa P2 Al 10 10
P2: Write 20 to A1 1nv. Excl. Al 20 WrMs P2 Al 10
P2: Write 40 to A2 WrMs P2 A2 10
Excl. A2 40 WrBk P2 Al 20 A1 | 20

Assumes Al and A2 map to same cache block,
but A1 ° A2

DAP Spr.'98 ©UCB 39

Implementation Complications

« Write Races:

— Cannot update cache until bus is obtained

» Otherwise, another processor may get bus first,
and then write the same cache block!

— Two step process:
» Arbitrate for bus
» Place miss on bus and complete operation
— If miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restart.

— Split transaction bus:

» Bus transaction is not atomic:
can have multiple outstanding transactions for a block

» Multiple misses can interleave,
allowing two caches to grab block in the Exclusive state

» Must track and prevent multiple misses for one block

e Must support interventions and invalidations PAPSpre8eUCB40
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Implementing Snooping Caches

Multiple processors must be on bus, access to both
addresses and data

Add a few new commands to perform coherency,
in addition to read and write

Processors continuously snoop on address bus

— If address matches tag, either invalidate or update

Since every bus transaction checks cache tags,
could interfere with CPU just to check:
— solution 1: duplicate set of tags for L1 caches just to allow
checks in parallel with CPU
— solution 2: L2 cache already duplicate,
provided L2 obeys inclusion with L1 cache

» block size, associativity of L2 affects L1
DAP Spr.'98 ©UCB 41

Implementing Snooping Caches

Bus serializes writes, getting bus ensures no one else
can perform memory operation

On a miss in a write back cache, may have the desired
copy and its dirty, so must reply

Add extra state bit to cache to determine shared or not

Add 4th state (MESI)

DAP Spr.'98 ©UCB 42
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Summary: Parallel Framework

Programming Model
Communication Abstraction
Interconnection SW/OS

* Layers: Interconnection HW

— Programming Model:
» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and recieve messages

» Data Parallel: several agents operate on several data
sets simultaneously and then exchange information
globally and simultaneously (shared or message
passing)

— Communication Abstraction:
» Shared address space: e.g., load, store, atomic swap
» Message passing: e.g., send, recieve library calls

» Debate over this topic (ease of programming, scaling)
=> many hardware designs 1:1 programming mod ebApPSpr.98©UCB 43

Summary : Small-Scale MP
Designs

e Memory: centralized with uniform access time
(*uma”) and bus interconnect

e Examples: Sun Enterprise 5000 , SGI Challenge,
Intel SystemPro

CASISAS

One ar One or One or Oneor
rrore levels rrore levels rrore levels rrore levels
af cache of cache of cache of cache
/0 1
| DAP Spr.98 ©UCB 44
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Summary

e Caches contain all information on state of
cached memory blocks

* Snooping and Directory Protocols similar;
bus makes snooping easier because of
broadcast (snooping => uniform memory
access)

 Directory has extra data structure to keep
track of state of all cache blocks

e Distributing directory => scalable shared
address multiprocessor
=> Cache coherent, Non uniform memory

access
DAP Spr.'98 ©UCB 45

Larger MPs

Separate Memory per Processor
Local or Remote access via memory controller
1 Cache Coherency solution: non-cached pages

Alternative: directory per cache that tracks state of every block in
every cache

- Which caches have a copies of block, dirty vs. clean, ...
Info per memory block vs. per cache block?
- PLUS: In memory => simpler protocol (centralized/one location)
— MINUS: In memory => directory is f(memory size) vs. f(cache size)

Prevent directory as bottleneck?
distribute directory entries with memory, each keeping track of which
Procs have copies of their blocks

DAP Spr.'98 ©UCB 46

Page 23




Distributed Directory MPs

rocesso
+ cache

Interconnection network j

Di rector!_ Director*_ Director!_

DAP Spr.'98 ©UCB 47

Directory Protocol

e Similar to Snoopy Protocol: Three states
— Shared: O 1 processors have data, memory up-to-date
— Uncached (no processor hasit; not valid in any cache)

- Exclusive: 1 processor (owner) has data;
memory out-of-date

e In addition to cache state, must track which processors
have data when in the shared state (usually bit vector, 1 if
processor has copy)

« Keep it simple(r):

— Writes to non-exclusive data
=> write miss

- Processor blocks until access completes

- Assume messages received
and acted upon in order sent

DAP Spr."98 ©UCB 48
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Directory Protocol

* No bus and don’'t want to broadcast:
— interconnect no longer single arbitration point

— all messages have explicit responses
« Terms: typically 3 processors involved
— Local node where arequest originates

— Home node where the memory location
of an address resides

— Remote node has a copy of a cache
block, whether exclusive or shared

e Example messages on next slide:
P = processor number, A = address

DAP Spr.'98 ©UCB 49

Directory Protocol Messages

Message type Source Destination Msg Content
Read miss Local cache P, A

— Processor P reads data at address A;
make P a read sharer and arrange to send data back

Write miss Local cache P, A

— Processor P writes data at address A;
make P the exclusive owner and arrange to send data back

Invalidate Remote caches A
— Invalidate a shared copy at address A.
Fetch Remote cache A

— Fetch the block at address A and send it to its home directory
Fetch/Invalidate Remote cache A

— Fetch the block at address A and send it to its home directory;
invalidate the block in the cache

Data value reply Local cache Data
- Return a data value from the home memory (read miss response)
Data write -back Remote cache A, Data

— Write-back a data value for address A (invalidate response)

DAP Spr."98 ©UCB 50
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State Transition Diagram for an
Individual Cache Block in a
Directory Based System

e States identical to snoopy case; transactions
very similar.

¢ Transitions caused by read misses, write misses,
invalidates, data fetch requests

¢ Generates read miss & write miss msg to home
directory.

e Write misses that were broadcast on the bus for
snooping => explicit invalidate & data fetch
requests.

« Note: on a write, a cache block is bigger, so need
to read the full cache block

DAP Spr.'98 ©UCB 51

CPU -Cache State Machine

CPU Read hit

State machine Invalidate

for CPU requests or Miss due to

for each gddress conflict: Shared

memory block Invalid N ( dlonty)
>\ (read/only

Invalid state CPU Read

ifin - Send Read Miss

memory A message

CPU Write: .
; CPU Write:
Fetch/Invalidate Send Write Miss cend
or Miss due to msg to h.d. en

Write Miss message
to home directory

address conflict:
send Data Write Back message
to home directory

Fetch: send
Data Write Back message
to home directory

Exclusive
(read/write

)

CPU read hit
CPU write hit

DAP Spr.'98 ©UCB 52
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State Transition Diagram for the
Directory

e Same states & structure as the transition
diagram for an individual cache

e 2 actions: update of directory state &
send msgs to statisfy requests

e Tracks all copies of memory block.

« Also indicates an action that updates the
sharing set, Sharers, as well as sending
a message.

DAP Spr.'98 ©UCB 53

Directory State Machine

Read miss:
State machine Sha(YjErS += {Pl}; |
for Directory requests for Read miss: send Data Value Rep
each Sharers = {P}
memory block send Data Value
Uncached state Uncached | Reply Shared

(read only)

if in memory

Write Miss: . .
Write Miss:
) Sharers = {P}; )
Data Write Back: send Invalidate
send Data to Sharers;
Sharers = {} Value Reply ;

then Sharers = {P};
send Data Value
Reply msg

(Write back block)
msg

Read miss:
Sharers += {P};

Write Miss: send Fetch;

Sharers = {P};
send Fetch/lnvalidate;
send Data Value Reply
msg to remote cache

Exclusive
(read/write

)

send Data Value Reply
msg to remote cache
(Write back block)

DAP Spr.'98 ©UCB 54
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Example Directory Protocol
* Message sent to directory causes two actions:
- Update the directory
- More messages to satisfy request
e Block isin Uncached state: the copy in memory is the current value;
only possible requests for that block are:

- Read miss: requesting processor sent data from memory &requestor made
only sharing node; state of block made Shared.

- Write miss: requesting processor is sent the value & becomes the Sharing
node. The block is made Exclusive to indicate that the only valid copy is
cached. Sharers indicates the identity of the owner.

e Block is Shared => the memory value is up-to-date:

- Read miss: requesting processor is sent back the data from memory &
requesting processor is added to the sharing set.

- Write miss: requesting processor is sent the value. All processors in the
set Sharers are sent invalidate messages, & Sharers is set to identity of
requesting processor. The state of the block is made Exclusive.

DAP Spr.'98 ©UCB 55

Example Directory Protocol

» Block is Exclusive: current value of the block is held in the cache of
the processor identified by the set Sharers (the owner) => three
possible directory requests:

- Read miss: owner processor sent data fetch message, causing state of
block in owner’s cache to transition to Shared and causes owner to send
data to directory, where it is written to memory & sent back to
requesting processor.

Identity of requesting processor is added to set Sharers, which still
contains the identity of the processor that was the owner (since it still
has a readable copy). State is shared.

- Data write-back: owner processor is replacing the block and hence must
write it back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is now
Uncached, and the Sharer set is empty.

— Write miss: block has a new owner. A message is sent to old owner
causing the cache to send the value of the block to the directory from
which it is sent to the requesting processor, which becomes the new
owner. Sharers is set to identity of new owner, and state of block is
made Exclusive.
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Example

Processor 1 Processor 2

Interconnect Directory Memory
Pl P2 Bus Directory Memory
step State |Addr |Value | State |Addr |Value]Action |Proc. |Addr |Value |Addr |State |[{Procs} |Value
P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2 Write 20 to A1

P2: Write 40 to A2

Al and A2 map to the same cache block
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Example

Processor 1 Processor 2

Interconnect Directory Memory
Pl P2 | Bus Directory Memory
step State |Addr_|Value | State JAddr_|Val uel Action |Proc. [Addr_|Value [Addr |State [{Procs} [Value
P1: Write 10 to A1 wims | 1 | A1 Al Ex | P11
Excl. | AL 10 DaRp Pl Al 0
P1: Read A1
P2: Read A1

P2: Write 20 to Al

P2: Write 40 to A2

Al and A2 map to the same cache block
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Example

Processor 1 Processor 2 Interconnect Directory Memory

Pl P2 |Bus Directory Memory
step State |Addr_|Value | State |Addr | Val ue|Acti0n Proc. |Addr_|Value [Addr |State [{Procs} [Value
P1: Write 10 to A1 WrMs Pl Al Al Ex {P1}
Excl |ar f10 Darp | P1 | A1 ] O
P1: Read A1 Excl. | Al 10

P2: Read A1

P2 Write 20 to A1

P2: Write 40 to A2

Al and A2 map to the same cache block
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Example

Processor 1 Processor 2 Interconnect Directory Memory

Pl P2 |Bus Directory Memory
step State |Addr | Value | State JAddr |Val uelAdion Proc. JAddr |Value [Addr |State |{Procst |Value
P1: Write 10 to A1 WrMs Pl Al Al Ex {P1}
Excl. [Al 10 DaRp P1 Al 0
P Read AL [exc. [ a1 [ 10
P2: Read Al Shar, |A1 Rivs | P2 | A1
Shar. | A1 [ 10 | pch [ pr [ a1 [ 10 A1 | 10
lS‘ler. Al 10 /DaRp P2 Al 10 Al phar. [P1.P2 10
P2: Write 20 to Al / 10
/ 10
P2: Write 40 to A2 / 10
/
7
Write Back

Al and A2 map to the same cache block
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Example

Processor 1 Processor 2 Interconnect Directory Memory

Pl P2 | Bus Directory Memory
step State |Addr | Value | State | Addr Va\ue'Action Proc. JAddr | Value JAddr |State |{Procst |Value
P1: Write 10 to AL WrMs P1 Al Al Ex {P1}
Excl. | AL 10 DaRp Pl Al 0
PL Read AL [exc. [ a1 [ 10
P2: Read AL | Shar. |AL Rdvis | P2 | AL
Shar, Al 10 Ftch Pl Al 10 1 10
IShar. Al | 10 |DaRp P2 Al 10 Al phar. |P1.P2 10
P2: Write 20 to A1 Excl. | A1 | 20 |WrMs P2 Al 10
1nv. Inval, P1 Al Al |excl. | {P2} 10
P2: Write 40 to A2 10

Al and A2 map to the same cache block
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Example

Processor 1 Processor 2 Interconnect Directory Memory

Pl P2 |Bus Directory Memory
step State |Addr | Value | State JAddr |Val uel Action |Proc. JAddr |Value |Addr |State [{Procst [Value
P1: Write 10 to A1 WrMs Pl Al Al Ex {P1}
Excl. [Al 10 DaRp P1 Al 0
P Read AL [exc. [ a1 [ 10
P2: Read AL | Shar, |AL Rdvis | P2 | AL
Shar. | A1 [ 10 | fch | P [ AL | 10 A1 | 10
IS‘IH. Al |10 |DaRo P2 Al 10 Al phar. [P1.P2 10
P2: Write 20 to Al Excl. | A1 |20 |WrMs P2 Al 10
Lov. loval, Pl | A1 Al |exd. | {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 [Excl {P2} 0
W Bk P2 Al 20 Al nca. {1 20
Exd. |22 J40 Joaro [ P2 [ A2 0 A2 |Exd. |{P2} 0

Al and A2 map to the same cache block
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Implementing a Directory

* We assume operations atomic, but they are
not; reality is much harder; must avoid
deadlock when run out of bufffersin network
(see Appendix E)

e Optimizations:

— read miss or write miss in Exclusive: send data
directly to requestor from owner vs. 1st to memory
and then from memory to requestor
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Synchronization

« Why Synchronize? Need to know when it is safe for
different processes to use shared data
e Issues for Synchronization:

— Uninterruptable instruction to fetch and update memory
(atomic operation);

— User level synchronization operation using this primitive;

— For large scale MPs, synchronization can be a bottleneck;
techniques to reduce contention and latency of
synchronization
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Uninterruptable Instruction to
Fetch and Update Memory

« Atomic exchange: interchange a value in a register for a value in
memory

0 => synchronization variable is free
1 =>synchronization variable is locked and unavailable
- Set register to 1 & swap

- New value in register determines success in getting lock
0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

- Key is that exchange operation is indivisible
e Test-and-set: tests a value and sets it if the value passes the test

e Fetch-and-increment: it returns the value of a memory location
and atomically increments it

- 0 =>synchronization variable is free
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Uninterruptable Instruction to
Fetch and Update Memory

Hard to have read & write in 1 instruction: use 2 instead
Load linked (or load locked) + store conditional
— Load linked returns the initial value

— Store conditional returns 1 if it succeeds (no other store to same
memory location since preceeding load) and 0 otherwise

Example doing atomic swap with LL & SC:

try: mov R3,R4 ; mov exchange value

I R2,0(R1) ; load linked

sc R3,0(R1) ; store conditional

beqz R3,try ; branch store fails (R3 = 0)

mov R4,R2 ; put load value in R4
Example doing fetch & increment with LL & SC:
try: I R2,0(R1) ; load linked

addi R2,R2,#1 ;increment (OK if reg-reg)

sc R2,0(R1) ; store conditional

beqz R2,try ; branch store fails (R2 = 0)
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User Level Synchronization—
Operation Using this Primitive

Spin locks: processor continuously tries to acquire, spinning

around a loop trying to get the lock
li R2,#1
lockit:exch R2,0(R1) ;atomic exchange
bnez R2,lockit ;already locked?

What about MP with cache coherency?

- Want to spin on cache copy to avoid full memory latency

— Likely to get cache hits for such variables
Problem: exchange includes a write, which invalidates all other
copies; this generates considerable bus traffic

Solution: start by simply repeatedly reading the variable; when it
changes, then try exchange (“test and test&set”):

try: li R2,#1

lockit:lw R3,0(R1) ;load var
bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?
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Another MP Issue:
Memory Consistency Models

« What is consistency? When must a processor see the
new value? e.g., seems that

Pl1: A =0; P2: B = 0;
A=1; B =1;
L1: if (B ==0) ... L2: if (A==0)...

Impossible for both if statements L1 & L2 to be true?
— What if write invalidate is delayed & processor continues?
« Memory consistency models:

what are the rules for such cases?
e Sequential consistency: result of any execution is the
same as if the accesses of each processor were kept in
order and the accesses among different processors
were interleaved => assignments before ifs above

— SC: delay all memory accesses until all invalidates done
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Memory Consistency Model
e Schemes faster execution to sequential consistency
e Not really an issue for most programs;
they are synchronized

— A program is synchronized if all access to shared data are
ordered by synchronization operations

write (x)
'r.élease (s) {unlock}
;t':quire (s) {lock}

.r.e.ad(x)

¢ Only those programs willing to be nondeterministic are
not synchronized: “data race”: outcome f(proc. speed)

e Several Relaxed Models for Memory Consistency since
most programs are synchronized; characterized by their
attitude towards: RAR, WAR, RAW, WAW

to different addresses
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Review

e Caches contain all information on state of
cached memory blocks

e Snooping and Directory Protocols similar;
bus makes snooping easier because of
broadcast (snooping => uniform memory
access)

 Directory has extra data structure to keep
track of state of all cache blocks

e Distributing directory => scalable shared
address multiprocessor
=> Cache coherent, Non uniform memory
access
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