
Page 1

DAP.F96 1

Lecture 5:
VLIW, Software Pipelining,

and Limits to ILP

Professor David A. Patterson
Computer Science 252

Spring 1998

DAP.F96 2

Review: Tomasulo

• Prevents Register as bottleneck
• Avoids WAR, WAW hazards of Scoreboard
• Allows loop unrolling in HW
• Not limited to basic blocks (provided branch

prediction)
• Lasting Contributions

– Dynamic scheduling
– Register renaming

– Load/store disambiguation

• 360/91 descendants are PowerPC 604, 620;
MIPS R10000; HP-PA 8000; Intel Pentium Pro

Page 2

DAP.F96 3

Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)
• Branch History Table is simplest

– Lower bits of PC address index table of 1-bit values
– Says whether or not branch taken last time
– No address check

• Problem: in a loop, 1-bit BHT will cause two
mispredictions (avg is 9 iteratios before exit):

– End of loop case, when it exits instead of looping as
before

– First time through loop on next time through code, when it
predicts exit instead of looping

DAP.F96 4

Dynamic Branch Prediction

• Solution: 2-bit scheme where change prediction
only if get misprediction twice: (Figure 4.13, p. 264)

• Red: stop, not taken
• Green: go, taken

T

T

T

T

NT

NT

NT

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
Taken

Page 3

DAP.F96 5

BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch
– Got branch history of wrong branch when index the

table

• 4096 entry table programs vary from 1%
misprediction (nasa7, tomcatv) to 18%
(eqntott), with spice at 9% and gcc at 12%

• 4096 about as good as infinite table
(in Alpha 211164)

DAP.F96 6

Correlating Branches

• Hypothesis: recent branches are correlated; that is,
behavior of recently executed branches affects
prediction of current branch

• Idea: record m most recently executed branches as
taken or not taken, and use that pattern to select the
proper branch history table

• In general, (m,n) predictor means record last m
branches to select between 2m history talbes each
with n-bit counters

– Old 2-bit BHT is then a (0,2) predictor

Page 4

DAP.F96 7

Correlating Branches

(2,2) predictor
– Then behavior of

recent branches
selects between, say,
four predictions of next
branch, updating just
that prediction

Branch address

2-bits per branch predictors

PredictionPrediction

2-bit global branch history

DAP.F96 8

F
re

qu
en

cy
 o

f
M

is
pr

ed
ic

ti
on

s

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

na
sa

7

m
at

ri
x3

00

to
m

ca
tv

do
du

cd

sp
ic

e

fp
pp

p

gc
c

es
pr

es
so

eq
nt

ot
t li

0%

1%

5%

6% 6%

11%

4%

6%

5%

1%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

Accuracy of Different Schemes
(Figure 4.21, p. 272)

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

0%

18%

F
re

q
u

en
cy

 o
fM

is
p

re
d

ic
tio

n
s

Page 5

DAP.F96 9

Re-evaluating Correlation

• Several of the SPEC benchmarks have less
than a dozen branches responsible for 90% of
taken branches:
program branch % static # = 90%

compress 14% 236 13
eqntott 25% 494 5
gcc 15% 9531 2020
mpeg 10% 5598 532

real gcc 13% 17361 3214

• Real programs + OS more like gcc
• Small benefits beyond benchmarks for

correlation? problems with branch aliases?

DAP.F96 10

Need Address
at Same Time as Prediction

Look up Predicted PC

Number of
entries
in branch-
target
buffer

No: instruction is
not predicted to be
branch. Proceed normally

=

Yes: then instruction is branch and predicted
PC should be used as the next PC

Branch
predicted
taken or
untaken

PC of instruction to fetch

FIGURE 4.22 A branch-target buffer.

Page 6

DAP.F96 11

• Avoid branch prediction by turning branches
into conditionally executed instructions:
if (x) then A = B op C else NOP

– If false, then neither store result nor cause
exception

– Expanded ISA of Alpha, MIPS, PowerPC, SPARC
have conditional move; PA-RISC can annul any
following instr.

– IA-64: 64 1-bit condition fields selected so
conditional execution of any instruction

• Drawbacks to conditional instructions
– Still takes a clock even if “annulled”
– Stall if condition evaluated late
– Complex conditions reduce effectiveness;

condition becomes known late in pipeline

HW support for More ILP

x

A =
B op C

DAP.F96 12

Dynamic Branch Prediction
Summary

• Branch History Table: 2 bits for loop accuracy
• Correlation: Recently executed branches

correlated with next branch
• Branch Target Buffer: include branch address

& prediction
• Predicated Execution can reduce number of

branches, number of mispredicted branches

Page 7

DAP.F96 13

• Speculation: allow an instruction to issue that is
dependent on branch predicted to be taken without
any consequences (including exceptions) if branch is
not actually taken (“HW undo”); called “boosting”

• Combine branch prediction with dynamic scheduling
to execute before branches resolved

• Separate speculative bypassing of results from real
bypassing of results

– When instruction no longer speculative,
write boosted results (instruction commit)
or discard boosted results

– execute out-of-order but commit in-order
to prevent irrevocable action (update state or exception)
until instruction commits

HW support for More ILP

DAP.F96 14

HW support for More ILP
• Need HW buffer for results of

uncommitted instructions:
reorder buffer

– 3 fields: instr, destination, value

– Reorder buffer can be operand
source => more registers like RS

– Use reorder buffer number
instead of reservation station
when execution completes

– Supplies operands between
execution complete & commit

– Once operand commits,
result is put into register

– Instructions commit in order
– As a result, its easy to undo

speculated instructions
on mispredicted branches
or on exceptions

Reorder
Buffer

FP Regs

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

Page 8

DAP.F96 15

Four Steps of Speculative
Tomasulo Algorithm

1.Issue—get instruction from FP Op Queue
If reservation station and reorder buffer slot free, issue
instr & send operands & reorder buffer no. for
destination (this stage sometimes called “dispatch”)

2.Execution—operate on operands (EX)
When both operands ready then execute; if not ready,
watch CDB for result; when both in reservation station,
execute; checks RAW (sometimes called “issue”)

3.Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4.Commit—update register with reorder result
When instr. at head of reorder buffer & result present,
update register with result (or store to memory) and
remove instr from reorder buffer. Mispredicted branch
flushes reorder buffer (sometimes called “graduation”)

DAP.F96 16

Renaming Registers
• Common variation of speculative design
• Reorder buffer keeps instruction information

but not the result
• Extend register file with extra

renaming registers to hold speculative results
• Rename register allocated at issue;

result into rename register on execution complete;
rename register into real register on commit

• Operands read either from register file
(real or speculative) or via Common Data Bus

• Advantage: operands are always from single source
(extended register file)

Page 9

DAP.F96 17

Dynamic Scheduling in PowerPC
604 and Pentium Pro

• Both In-order Issue, Out-of-order execution,
In-order Commit

Pentium Pro more like a scoreboard since
central control vs. distributed

DAP.F96 18

Dynamic Scheduling in
PowerPC 604 and Pentium Pro

Parameter PPC PPro
Max. instructions issued/clock 4 3
Max. instr. complete exec./clock 6 5
Max. instr. commited/clock 6 3
Window (Instrs in reorder buffer) 16 40
Number of reservations stations 12 20
Number of rename registers 8int/12FP 40
No. integer functional units (FUs) 2 2
No. floating point FUs 1 1
No. branch FUs 1 1
No. complex integer FUs 1 0
No. memory FUs 1 1 load +1 store

Q: How pipeline 1 to 17 byte x86 instructions?

Page 10

DAP.F96 19

Dynamic Scheduling in Pentium Pro

• PPro doesn’t pipeline 80x86 instructions
• PPro decode unit translates the Intel instructions into
72-bit micro-operations (DLX)
• Sends micro-operations to reorder buffer & reservation
stations
• Takes 1 clock cycle to determine length of 80x86
instructions + 2 more to create the micro-operations
•12-14 clocks in total pipeline (3 state machines)
• Many instructions translate to 1 to 4 micro-operations
• Complex 80x86 instructions are executed by a
conventional microprogram (8K x 72 bits) that issues
long sequences of micro-operations

DAP.F96 20

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Two variations
• Superscalar: varying no. instructions/cycle (1 to

8), scheduled by compiler or by HW (Tomasulo)
– IBM PowerPC, Sun UltraSparc, DEC Alpha, HP 8000

• (Very) Long Instruction Words (V)LIW:
fixed number of instructions (4-16) scheduled by
the compiler; put ops into wide templates

– Joint HP/Intel agreement in 1999/2000?
– Intel Architecture-64 (IA-64) 64-bit address
– Style: “Explicitly Parallel Instruction Computer (EPIC)”

• Anticipated success lead to use of
Instructions Per Clock cycle (IPC) vs. CPI

Page 11

DAP.F96 21

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Superscalar DLX: 2 instructions, 1 FP & 1 anything else
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type PipeStages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

• 1 cycle load delay expands to 3 instructions in SS
– instruction in right half can’t use it, nor instructions in next slot

DAP.F96 22

Review: Unrolled Loop that
Minimizes Stalls for Scalar

1 Loop: LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,#32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

LD to ADDD: 1 Cycle
ADDD to SD: 2 Cycles

Page 12

DAP.F96 23

Loop Unrolling in Superscalar
Integer instruction FP instruction Clock cycle

Loop: LD F0,0(R1) 1
LD F6,-8(R1) 2
LD F10,-16(R1) ADDD F4,F0,F2 3
LD F14,-24(R1) ADDD F8,F6,F2 4
LD F18,-32(R1) ADDD F12,F10,F2 5
SD 0(R1),F4 ADDD F16,F14,F2 6
SD -8(R1),F8 ADDD F20,F18,F2 7
SD -16(R1),F12 8
SD -24(R1),F16 9
SUBI R1,R1,#40 10
BNEZ R1,LOOP 11
SD -32(R1),F20 12

• Unrolled 5 times to avoid delays (+1 due to SS)
• 12 clocks, or 2.4 clocks per iteration (1.5X)

DAP.F96 24

Multiple Issue Challenges
• While Integer/FP split is simple for the HW, get CPI of

0.5 only for programs with:
– Exactly 50% FP operations
– No hazards

• If more instructions issue at same time, greater
difficulty of decode and issue

– Even 2-scalar => examine 2 opcodes, 6 register specifiers, &
decide if 1 or 2 instructions can issue

• VLIW: tradeoff instruction space for simple decoding
– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long

instruction word are independent => execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide

– Need compiling technique that schedules across several
branches

Page 13

DAP.F96 25

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
LD F0,0(R1) LD F6,-8(R1) 1
LD F10,-16(R1) LD F14,-24(R1) 2
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3
LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5
SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6
SD -16(R1),F12 SD -24(R1),F16 7
SD -32(R1),F20 SD -40(R1),F24 SUBI R1,R1,#48 8
SD -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15 vs. 6 in SS)

DAP.F96 26

Trace Scheduling

• Parallelism across IF branches vs. LOOP branches
• Two steps:

– Trace Selection
» Find likely sequence of basic blocks (trace)

of (statically predicted or profile predicted)
long sequence of straight-line code

– Trace Compaction
» Squeeze trace into few VLIW instructions
» Need bookkeeping code in case prediction is wrong

• Compiler undoes bad guess
(discards values in registers)

• Subtle compiler bugs mean wrong answer
vs. pooer performance; no hardware interlocks

Page 14

DAP.F96 27

Advantages of HW (Tomasulo)
vs. SW (VLIW) Speculation

• HW determines address conflicts
• HW better branch prediction
• HW maintains precise exception model
• HW does not execute bookkeeping instructions
• Works across multiple implementations
• SW speculation is much easier for HW design

DAP.F96 28

Superscalar v. VLIW

• Smaller code size
• Binary compatability

across generations
of hardware

• Simplified Hardware
for decoding, issuing
instructions

• No Interlock Hardware
(compiler checks?)

• More registers, but
simplified Hardware
for Register Ports
(multiple independent
register files?)

Page 15

DAP.F96 29

Intel/HP “Explicitly Parallel
Instruction Computer (EPIC)”

• 3 Instructions in 128 bit “groups”; field determines if
instructions dependent or independent

– Smaller code size than old VLIW, larger than x86/RISC
– Groups can be linked to show independence > 3 instr

• 64 integer registers + 64 floating point registers
– Not separate filesper funcitonal unit as in old VLIW

• Hardware checks dependencies
(interlocks => binary compatibility over time)

• Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

• IA-64 : name of instruction set architecture; EPIC is type
• Merced is name of first implementation (1999/2000?)
• LIW = EPIC?

DAP.F96 30

Dynamic Scheduling in Superscalar

• Dependencies stop instruction issue
• Code compiler for old version will run poorly on

newest version
– May want code to vary depending on how superscalar

Page 16

DAP.F96 31

Dynamic Scheduling in Superscalar

• How to issue two instructions and keep in-order
instruction issue for Tomasulo?

– Assume 1 integer + 1 floating point
– 1 Tomasulo control for integer, 1 for floating point

• Issue 2X Clock Rate, so that issue remains in order
• Only FP loads might cause dependency between

integer and FP issue:
– Replace load reservation station with a load queue;

operands must be read in the order they are fetched

– Load checks addresses in Store Queue to avoid RAW
violation

– Store checks addresses in Load Queue to avoid WAR,WAW
– Called “decoupled architecture”

DAP.F96 32

Performance of Dynamic SS
Iteration Instructions Issues Executes Writes result
no. clock-cycle number
1 LD F0,0(R1) 1 2 4
1 ADDD F4,F0,F2 1 5 8
1 SD 0(R1),F4 2 9
1 SUBI R1,R1,#8 3 4 5
1 BNEZ R1,LOOP 4 5
2 LD F0,0(R1) 5 6 8
2 ADDD F4,F0,F2 5 9 12
2 SD 0(R1),F4 6 13
2 SUBI R1,R1,#8 7 8 9
2 BNEZ R1,LOOP 8 9

 4 clocks per iteration; only 1 FP instr/iteration
Branches, Decrements issues still take 1 clock cycle
How get more performance?

Page 17

DAP.F96 33

Software Pipelining
• Observation: if iterations from loops are independent,

then can get more ILP by taking instructions from
different iterations

• Software pipelining: reorganizes loops so that each
iteration is made from instructions chosen from different
iterations of the original loop (Tomasulo in SW)

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

DAP.F96 34

Software Pipelining Example
Before: Unrolled 3 times
1 LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4
4 LD F6,-8(R1)
5 ADDD F8,F6,F2
6 SD -8(R1),F8
7 LD F10,-16(R1)
8 ADDD F12,F10,F2
9 SD -16(R1),F12
10 SUBI R1,R1,#24
11 BNEZ R1,LOOP

After: Software Pipelined
1 SD 0(R1),F4 ; Stores M[i]
2 ADDD F4,F0,F2 ; Adds to M[i-1]
3 LD F0,-16(R1); Loads M[i-2]
4 SUBI R1,R1,#8
5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
– Maximize result-use distance
– Less code space than unrolling
– Fill & drain pipe only once per loop

vs. once per each unrolled iteration in loop unrolling

SW Pipeline

Loop Unrolled

ov
er

la
pp

ed
 o

ps

Time

Time

Page 18

DAP.F96 35

Limits to Multi-Issue Machines

• Inherent limitations of ILP
– 1 branch in 5: How to keep a 5-way VLIW busy?
– Latencies of units: many operations must be scheduled
– Need about Pipeline Depth x No. Functional Units of

independent operations to keep machines busy,
e.g. 5 x 4 = 15–20 independent instructions?

• Difficulties in building HW
– Easy: More instruction bandwidth

– Easy: Duplicate FUs to get parallel execution
– Hard: Increase ports to Register File (bandwidth)

» VLIW example needs 7 read and 3 write for Int. Reg.
& 5 read and 3 write for FP reg

– Harder: Increase ports to memory (bandwidth)
– Decoding Superscalar and impact on clock rate, pipeline

depth?

DAP.F96 36

Limits to Multi-Issue Machines

• Limitations specific to either Superscalar or VLIW
implementation

– Decode issue in Superscalar: how wide practical?
– VLIW code size: unroll loops + wasted fields in VLIW

» IA-64 compresses dependent instructions, but still larger

– VLIW lock step => 1 hazard & all instructions stall
» IA-64 not lock step? Dynamic pipeline?

– VLIW & binary compatibility is practical weakness as vary
number FU and latencies over time

» IA-64 promises binary compatibility

Page 19

DAP.F96 37

Limits to ILP
• Conflicting studies of amount of parallelism

available in late 1980s and early 1990s. Different
assumptions about:

– Benchmarks (vectorized Fortran FP vs. integer C programs)

– Hardware sophistication
– Compiler sophistication

• How much ILP is available using existing
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW mechanisms to
keep on processor performance curve?

DAP.F96 38

Limits to ILP

Initial HW Model here; MIPS compilers.
Assumptions for ideal/perfect machine to start:

1. Register renaming–infinite virtual registers and all
WAW & WAR hazards are avoided
2. Branch prediction–perfect; no mispredictions
3. Jump prediction–all jumps perfectly predicted =>
machine with perfect speculation & an unbounded
buffer of instructions available
4. Memory-address alias analysis–addresses are
known & a store can be moved before a load
provided addresses not equal

1 cycle latency for all instructions; unlimited number of
instructions issued per clock cycle

Page 20

DAP.F96 39

Upper Limit to ILP: Ideal Machine
(Figure 4.38, page 319)

Programs

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

Integer: 18 - 60

FP: 75 - 150

IP
C

DAP.F96 40

Program

0

10

20

30

40

50

60

gcc espresso li fpppp doducd tomcatv

35

41

16

61

58
60

9

12
10

48

15

6
7 6

46

13

45

6 6 7

45

14

45

2 2 2

29

4

19

46

Perfect Selective predictor Standard 2-bit Static None

More Realistic HW: Branch Impact
Figure 4.40, Page 323

Change from Infinite
window to examine to
2000 and maximum
issue of 64 instructions
per clock cycle

ProfileBHT (512)Pick Cor. or BHTPerfect No prediction

FP: 15 - 45

Integer: 6 - 12

IP
C

Page 21

DAP.F96 41

Selective History Predictor
8096 x 2 bits

2048 x 4 x 2 bits

Branch Addr

Global
History

2

00
01
10
11

Taken/Not Taken

8K x 2 bit
Selector

11
10
01
00

Choose Non-correlator

Choose Correlator

1
0

11 Taken
10
01 Not Taken
00

DAP.F96 42

Program

0

10

20

30

40

50

60

gcc espresso li fpppp doducd tomcatv

11

15

12

29

54

10

15

12

49

16

10

13
12

35

15

44

9 10 11

20

11

28

5 5 6 5 5
7

4 4
5

4
5 5

59

45

Infinite 256 128 64 32 None

More Realistic HW: Register Impact
Figure 4.44, Page 328

Change 2000 instr
window, 64 instr
issue, 8K 2 level
Prediction

64 None256Infinite 32128

Integer: 5 - 15

FP: 11 - 45

IP
C

Page 22

DAP.F96 43

Program

0

5

10

15

20

25

30

35

40

45

50

gcc espresso li fpppp doducd tomcatv

10

15

12

49

16

45

7 7
9

49

16

4
5 4 4

6 5
3

5
3 3 4 4

45

Perfect Global/stack Perfect Inspection None

More Realistic HW: Alias Impact
Figure 4.46, Page 330

Change 2000 instr
window, 64 instr
issue, 8K 2 level
Prediction, 256
renaming registers

NoneGlobal/Stack perf;
heap conflicts

Perfect Inspec.
Assem.

FP: 4 - 45
(Fortran,
no heap)

Integer: 4 - 9

IP
C

DAP.F96 44

Program

0

10

20

30

40

50

60

gcc expresso li fpppp doducd tomcatv

10

15

12

52

17

56

10

15

12

47

16

10

13
11

35

15

34

9
10 11

22

12

8 8 9

14

9

14

6 6 6
8

7
9

4 4 4 5
4

6

3 2 3 3 3 3

45

22

Infinite 256 128 64 32 16 8 4

Realistic HW for ‘9X: Window Impact
(Figure 4.48, Page 332)

Perfect disambiguation
(HW), 1K Selective
Prediction, 16 entry
return, 64 registers,
issue as many as
window

64 16256Infinite 32128 8 4

Integer: 6 - 12

FP: 8 - 45

IP
C

Page 23

DAP.F96 45

• 8-scalar IBM Power-2 @ 71.5 MHz (5 stage pipe)
vs. 2-scalar Alpha @ 200 MHz (7 stage pipe)

Braniac vs. Speed Demon(1993)

Benchmark

0

100

200

300

400

500

600

700

800

900
es

pr
es

so li

eq
nt

ot
t

co
m

pr
es

s sc gc
c

sp
ic

e

d
o

d
u

c

m
dl

jd
p2

w
av

e5

to
m

ca
tv or
a

al
vi

nn ea
r

m
dl

js
p2

sw
m

25
6

su
2c

or

hy
dr

o2
d

na
sa

fp
pp

p

DAP.F96 46

3 1996 Era Machines

Alpha 21164 PPro HP PA-8000
Year 1995 1995 1996
Clock 400 MHz 200 MHz 180 MHz
Cache 8K/8K/96K/2M 8K/8K/0.5M 0/0/2M
Issue rate 2int+2FP 3 instr (x86) 4 instr
Pipe stages 7-9 12-14 7-9
Out-of-Order 6 loads 40 instr (µop) 56 instr
Rename regs none 40 56

Page 24

DAP.F96 47

SPECint95base Performance
(July 1996)

0

2

4

6

8

10

12

go

88
ks

im gc
c

co
m

pr
es

s li

ijp
eg pe

rl

vo
rte

x

S
P

E
C

in
t

PA-8000
21164
PPro

DAP.F96 48

SPECfp95base Performance
(July 1996)

0

5

10

15

20

25

30

35

to
m

ca
tv

sw
im

su
2c

or

hy
dr

o2
d

m
gr

id

ap
pl

u

tu
rb

3d ap
si

fp
pp

p

w
av

e5

S
P

E
C

fp

PA-8000
21164
PPro

Page 25

DAP.F96 49

Alpha 21164 Pentium II HP PA-8000
Year 1995 1996 1996
Clock 600 MHz (‘97) 300 MHz (‘97) 236 MHz (‘97)
Cache 8K/8K/96K/2M 16K/16K/0.5M 0/0/4M
Issue rate 2int+2FP 3 instr (x86) 4 instr
Pipe stages 7-9 12-14 7-9
Out-of-Order 6 loads 40 instr (µop) 56 instr
Rename regs none 40 56

3 1997 Era Machines

DAP.F96 50

SPECint95base Performance (Oct. 1997)

0
2
4
6
8

10
12
14
16
18
20

go

88
ks

im gc
c

co
m

pr
es

s li

ijp
eg pe

rl

vo
rte

x

S
P

E
C

in
t

PA-8000
21164
PPro

Page 26

DAP.F96 51

SPECfp95base Performance (Oct. 1997)

0

5
10
15
20

25
30
35

40
45
50

to
m

ca
tv

sw
im

su
2c

or

hy
dr

o2
d

m
gr

id

ap
pl

u

tu
rb

3d ap
si

fp
pp

p

w
av

e5

S
P

E
C

fp

PA-8000
21164
PPro

DAP.F96 52

Summary

• Branch Prediction
– Branch History Table: 2 bits for loop accuracy
– Recently executed branches correlated with next branch?
– Branch Target Buffer: include branch address & prediction

– Predicated Execution can reduce number of branches,
number of mispredicted branches

• Speculation: Out-of-order execution, In-order commit
(reorder buffer)

• SW Pipelining
– Symbolic Loop Unrolling to get most from pipeline with little

code expansion, little overhead

• Superscalar and VLIW: CPI < 1 (IPC > 1)
– Dynamic issue vs. Static issue
– More instructions issue at same time => larger hazard penalty

