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Review: Tomasulo

• Prevents Register as bottleneck
• Avoids WAR, WAW hazards of Scoreboard
• Allows loop unrolling in HW
• Not limited to basic blocks (provided branch 

prediction)
• Lasting Contributions

– Dynamic scheduling
– Register renaming

– Load/store disambiguation

• 360/91 descendants are PowerPC 604, 620; 
MIPS R10000; HP-PA 8000; Intel Pentium Pro
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Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)
• Branch History  Table is simplest

– Lower bits of PC address index table of 1-bit values
– Says whether or not branch taken last time
– No address check

• Problem: in a loop, 1-bit BHT will cause two
mispredictions (avg is 9 iteratios before exit):

– End of loop case, when it exits instead of  looping as 
before

– First time through loop on next time through code, when it 
predicts exit instead of looping
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Dynamic Branch Prediction

• Solution: 2-bit scheme where change prediction 
only if get misprediction twice: (Figure 4.13, p. 264)

• Red: stop, not taken
• Green: go, taken
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BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch
– Got branch history of wrong branch when index the 

table

• 4096 entry table  programs vary from 1%
misprediction (nasa7, tomcatv) to 18% 
(eqntott), with spice at 9% and gcc at 12%

• 4096 about as good as infinite table
(in Alpha 211164)
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Correlating Branches

• Hypothesis: recent branches are correlated; that is,
behavior of recently executed branches affects 
prediction of current branch

• Idea: record m most recently executed branches as 
taken or not taken, and use that pattern to select the 
proper branch history table

• In general, (m,n) predictor means record last m 
branches to select between 2m history talbes each 
with n-bit counters

– Old 2-bit BHT is then a (0,2) predictor
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Correlating Branches

(2,2) predictor
– Then behavior of 

recent branches 
selects between, say, 
four predictions of next 
branch, updating just 
that prediction 

Branch address

2-bits per branch predictors

PredictionPrediction

2-bit global branch history
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Re-evaluating Correlation

• Several of the SPEC benchmarks have less 
than a dozen branches responsible for 90% of 
taken branches:
program branch % static # = 90%

compress 14% 236 13
eqntott 25% 494 5
gcc 15% 9531 2020
mpeg 10% 5598 532

real gcc 13% 17361 3214

• Real programs + OS more like gcc
• Small benefits beyond benchmarks for 

correlation? problems with branch aliases?
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Need Address 
at Same Time as Prediction

Look up Predicted PC

Number of 
entries 
in branch- 
target 
buffer

No:  instruction is 
not predicted to be 
branch. Proceed normally

=

Yes:  then instruction is branch and predicted 
PC should be used as the next PC

Branch 
predicted 
taken or 
untaken

PC of instruction to fetch

FIGURE 4.22  A branch-target buffer.
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• Avoid branch prediction by turning branches 
into conditionally executed instructions:
if (x) then A = B op C else NOP

– If false, then neither store result nor cause 
exception

– Expanded ISA of Alpha, MIPS, PowerPC, SPARC 
have conditional move; PA-RISC can annul any 
following instr.

– IA-64: 64 1-bit condition fields selected so 
conditional execution of any instruction

• Drawbacks to conditional instructions
– Still takes a clock even if “annulled”
– Stall if condition evaluated late
– Complex conditions reduce effectiveness; 

condition becomes known late in pipeline

HW support for More ILP

x

A = 
B op C
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Dynamic Branch Prediction 
Summary

• Branch History Table: 2 bits for loop accuracy
• Correlation: Recently executed branches 

correlated with next branch
• Branch Target Buffer: include branch address 

& prediction
• Predicated Execution can reduce number of 

branches, number of mispredicted branches
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• Speculation: allow an instruction  to issue  that is 
dependent on branch predicted to be taken without
any consequences (including exceptions) if branch is 
not actually taken (“HW undo”); called “boosting”

• Combine branch prediction with dynamic scheduling 
to execute before branches resolved

• Separate speculative bypassing of results from real 
bypassing of results

– When instruction no longer speculative, 
write boosted results (instruction commit)
or discard boosted results

– execute out-of-order but commit in-order 
to prevent irrevocable action (update state or exception) 
until instruction commits 

HW support for More ILP
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HW support for More ILP
• Need HW buffer for results of 

uncommitted instructions: 
reorder buffer

– 3 fields: instr, destination, value

– Reorder buffer can be operand 
source => more registers like RS

– Use reorder buffer number 
instead of reservation station 
when execution completes

– Supplies operands between 
execution complete & commit

– Once operand commits, 
result is put into register

– Instructions commit  in order
– As a result, its easy to undo 

speculated instructions 
on mispredicted branches 
or on exceptions

Reorder
Buffer

FP Regs

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations
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Four Steps of Speculative
Tomasulo Algorithm

1.Issue—get instruction from FP Op Queue
If reservation station and reorder buffer slot free, issue
instr & send operands & reorder buffer no. for 
destination (this stage sometimes called “dispatch”)

2.Execution—operate on operands (EX)
When both operands ready then execute; if not ready, 
watch CDB for result; when both in reservation station, 
execute; checks RAW (sometimes called “issue”)

3.Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs 
& reorder buffer; mark reservation station available.

4.Commit—update register with reorder result
When instr. at head of reorder buffer & result present, 
update register with result (or store to memory) and 
remove instr from reorder buffer. Mispredicted branch 
flushes reorder buffer (sometimes called “graduation”)
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Renaming Registers
• Common variation of speculative design
• Reorder buffer keeps instruction information 

but not the result
• Extend register file with extra 

renaming registers to hold speculative results
• Rename register allocated at issue; 

result into rename register on execution complete; 
rename register into real register on commit

• Operands read either from register file 
(real or speculative) or via Common Data Bus

• Advantage: operands are always from single source 
(extended register file)
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Dynamic Scheduling in PowerPC 
604 and Pentium Pro

• Both In-order Issue, Out-of-order execution, 
In-order Commit

Pentium Pro more like a scoreboard since 
central control vs. distributed
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Dynamic Scheduling in 
PowerPC 604 and Pentium Pro

Parameter PPC PPro
Max. instructions issued/clock 4 3
Max. instr. complete exec./clock 6 5
Max. instr. commited/clock 6 3
Window (Instrs in reorder buffer) 16 40
Number of reservations stations 12 20
Number of rename registers 8int/12FP 40
No. integer functional units (FUs) 2 2
No. floating point FUs 1 1 
No. branch FUs 1 1 
No. complex integer FUs 1 0
No. memory FUs 1 1 load +1 store

Q: How pipeline 1 to 17 byte x86 instructions?
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Dynamic Scheduling in Pentium Pro

• PPro doesn’t pipeline 80x86 instructions
• PPro decode unit translates the Intel instructions into 
72-bit micro-operations ( DLX)
• Sends micro-operations to reorder buffer & reservation 
stations
• Takes 1 clock cycle to determine length of 80x86 
instructions + 2 more to create the micro-operations
•12-14 clocks in total pipeline ( 3 state machines)
• Many instructions translate to 1 to 4 micro-operations
• Complex 80x86 instructions are executed by a 
conventional microprogram (8K x 72 bits) that issues 
long sequences of micro-operations
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Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Two variations
• Superscalar: varying no. instructions/cycle (1 to 

8), scheduled by compiler or by HW (Tomasulo)
– IBM PowerPC, Sun UltraSparc, DEC Alpha, HP 8000

• (Very) Long Instruction Words (V)LIW: 
fixed number of instructions (4-16) scheduled by 
the compiler; put ops into wide templates

– Joint HP/Intel agreement in 1999/2000?
– Intel Architecture-64 (IA-64) 64-bit address
– Style: “Explicitly Parallel Instruction Computer (EPIC)”

• Anticipated success lead to use of 
Instructions Per Clock cycle (IPC) vs. CPI
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Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Superscalar DLX: 2 instructions, 1 FP & 1 anything else
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type PipeStages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

• 1 cycle load delay expands to 3 instructions in SS
– instruction in right half can’t use it, nor instructions in next slot
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Review: Unrolled Loop that 
Minimizes Stalls for Scalar

1 Loop: LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,#32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

LD to ADDD: 1 Cycle
ADDD to SD: 2 Cycles
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Loop Unrolling in Superscalar
Integer instruction FP instruction Clock cycle

Loop: LD    F0,0(R1) 1
LD    F6,-8(R1) 2
LD    F10,-16(R1) ADDD F4,F0,F2 3
LD    F14,-24(R1) ADDD F8,F6,F2 4
LD    F18,-32(R1) ADDD F12,F10,F2 5
SD    0(R1),F4 ADDD F16,F14,F2 6
SD    -8(R1),F8 ADDD F20,F18,F2 7
SD    -16(R1),F12 8
SD    -24(R1),F16 9
SUBI   R1,R1,#40 10
BNEZ  R1,LOOP 11
SD    -32(R1),F20 12

• Unrolled 5 times to avoid delays (+1 due to SS)
• 12 clocks, or 2.4 clocks per iteration (1.5X)
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Multiple Issue Challenges
• While Integer/FP split is simple for the HW, get CPI of 

0.5 only for programs with:
– Exactly 50% FP operations
– No hazards

• If more instructions issue at same time, greater 
difficulty of decode and issue

– Even 2-scalar => examine 2 opcodes, 6 register specifiers, & 
decide if 1 or 2 instructions can issue

• VLIW: tradeoff instruction space for simple decoding
– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long 

instruction word are independent => execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide

– Need compiling technique that schedules across several 
branches
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Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
LD F0,0(R1) LD F6,-8(R1) 1
LD F10,-16(R1) LD F14,-24(R1) 2
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3
LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5
SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6
SD -16(R1),F12 SD -24(R1),F16 7
SD -32(R1),F20 SD -40(R1),F24 SUBI  R1,R1,#48 8
SD -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15 vs. 6 in SS)
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Trace Scheduling

• Parallelism across IF branches vs. LOOP branches
• Two steps:

– Trace Selection
» Find likely sequence of basic blocks (trace) 

of (statically predicted or profile predicted) 
long sequence of straight-line code

– Trace Compaction
» Squeeze trace into few VLIW instructions
» Need bookkeeping code in case prediction is wrong 

• Compiler undoes bad guess 
(discards values in registers)

• Subtle compiler bugs mean wrong answer 
vs. pooer performance; no hardware interlocks
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Advantages of HW (Tomasulo) 
vs. SW (VLIW) Speculation

• HW determines address conflicts
• HW better branch prediction
• HW maintains precise exception model
• HW does not execute bookkeeping instructions
• Works across multiple implementations
• SW speculation is much easier for HW design
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Superscalar v. VLIW

• Smaller code size
• Binary compatability

across generations 
of hardware

• Simplified Hardware 
for decoding, issuing 
instructions

• No Interlock Hardware 
(compiler checks?)

• More registers, but 
simplified Hardware 
for Register Ports 
(multiple independent 
register files?)
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Intel/HP “Explicitly Parallel 
Instruction Computer (EPIC)”

• 3 Instructions in 128 bit “groups”; field determines if 
instructions dependent or independent

– Smaller code size than old VLIW, larger than x86/RISC
– Groups can be linked to show independence > 3 instr

• 64 integer registers + 64 floating point registers
– Not separate filesper funcitonal unit as in old VLIW

• Hardware checks dependencies 
(interlocks => binary compatibility over time)

• Predicated execution (select 1 out of 64 1-bit flags) 
=> 40% fewer mispredictions?

• IA-64 : name of instruction set architecture; EPIC is type
• Merced is name of first implementation (1999/2000?)
• LIW = EPIC?
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Dynamic Scheduling in Superscalar

• Dependencies stop instruction issue
• Code compiler for old version will run poorly on 

newest version
– May want code to vary depending on how superscalar
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Dynamic Scheduling in Superscalar

• How to issue two instructions and keep in-order 
instruction issue for Tomasulo?

– Assume 1 integer + 1 floating point
– 1 Tomasulo control for integer, 1 for floating point

• Issue 2X Clock Rate, so that issue remains in order
• Only FP loads might cause dependency between 

integer and FP issue:
– Replace load reservation station with a load queue; 

operands must be read in the order they are fetched

– Load checks addresses in Store Queue to avoid RAW 
violation

– Store checks addresses in Load Queue to avoid WAR,WAW
– Called “decoupled architecture”
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Performance of Dynamic SS
Iteration Instructions Issues Executes Writes result
no. clock-cycle number
1 LD   F0,0(R1) 1 2 4
1 ADDD F4,F0,F2 1 5 8
1 SD   0(R1),F4 2 9
1 SUBI  R1,R1,#8 3 4 5
1 BNEZ R1,LOOP 4 5
2 LD   F0,0(R1) 5 6 8
2 ADDD F4,F0,F2 5 9 12
2 SD   0(R1),F4 6 13
2 SUBI  R1,R1,#8 7 8 9
2 BNEZ R1,LOOP 8 9

 4 clocks per iteration; only 1 FP instr/iteration
Branches, Decrements issues still take 1 clock cycle
How get more performance?
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Software Pipelining
• Observation: if iterations from loops are independent, 

then can get more ILP by taking instructions from 
different iterations

• Software pipelining: reorganizes loops so that each 
iteration is made from instructions chosen from different 
iterations of the original loop ( Tomasulo in SW)

Iteration 
0 Iteration 

1 Iteration 
2 Iteration 

3 Iteration 
4

Software- 
pipelined 
iteration
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Software Pipelining Example
Before: Unrolled 3 times
1 LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4
4 LD F6,-8(R1)
5 ADDD F8,F6,F2
6 SD -8(R1),F8
7 LD F10,-16(R1)
8 ADDD F12,F10,F2
9 SD -16(R1),F12
10 SUBI R1,R1,#24
11 BNEZ R1,LOOP

After: Software Pipelined
1 SD 0(R1),F4 ; Stores M[i]
2 ADDD F4,F0,F2 ; Adds to M[i-1]
3 LD F0,-16(R1); Loads M[i-2]
4 SUBI R1,R1,#8
5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
– Maximize result-use distance 
– Less code space than unrolling
– Fill & drain pipe only once per loop

vs. once per each unrolled iteration in loop unrolling

SW Pipeline

Loop Unrolled

ov
er

la
pp

ed
 o

ps

Time

Time
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Limits to Multi-Issue Machines

• Inherent limitations of ILP
– 1 branch in 5: How to keep a  5-way VLIW busy?
– Latencies of units: many operations must be scheduled
– Need about Pipeline Depth x No. Functional Units of 

independent  operations to keep machines busy, 
e.g. 5 x 4 = 15–20 independent instructions?

• Difficulties in building HW
– Easy: More instruction bandwidth

– Easy: Duplicate FUs to get parallel execution
– Hard: Increase ports to Register File (bandwidth)

» VLIW example needs 7 read and 3 write for Int. Reg. 
& 5 read and 3 write for FP reg

– Harder: Increase ports to memory (bandwidth)
– Decoding Superscalar and impact on clock rate, pipeline 

depth?
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Limits to Multi-Issue Machines

• Limitations specific to either Superscalar or VLIW 
implementation

– Decode issue in Superscalar: how wide practical?
– VLIW code size:  unroll loops + wasted fields in VLIW

» IA-64 compresses dependent instructions, but still larger

– VLIW lock step => 1 hazard & all instructions stall
» IA-64 not lock step? Dynamic pipeline?

– VLIW & binary compatibility  is practical weakness as vary 
number FU and latencies over time

» IA-64 promises binary compatibility
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Limits to ILP
• Conflicting studies of amount  of parallelism 

available in late 1980s and early 1990s. Different 
assumptions about:

– Benchmarks (vectorized Fortran FP vs. integer C programs)

– Hardware sophistication
– Compiler sophistication

• How much ILP is available using existing 
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW mechanisms to 
keep on processor performance curve?
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Limits to ILP

Initial HW Model here; MIPS compilers. 
Assumptions for ideal/perfect machine to start:

1. Register renaming–infinite virtual registers and all 
WAW & WAR hazards are avoided
2. Branch prediction–perfect; no mispredictions 
3. Jump prediction–all jumps perfectly predicted => 
machine with perfect speculation & an unbounded 
buffer of instructions available
4. Memory-address alias analysis–addresses are 
known & a store can be moved before a load 
provided addresses not equal

1 cycle latency for all instructions; unlimited number of 
instructions issued per clock cycle
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Upper Limit to ILP: Ideal Machine
(Figure 4.38, page 319)
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Selective History Predictor
8096 x 2 bits

2048 x 4 x 2 bits

Branch Addr

Global
History

2

00
01
10
11

Taken/Not Taken

8K x 2 bit
Selector

11
10
01
00

Choose Non-correlator

Choose Correlator

1
0

11 Taken
10
01 Not Taken
00
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• 8-scalar IBM Power-2 @ 71.5 MHz (5 stage pipe)
vs. 2-scalar Alpha @ 200 MHz (7 stage pipe)

Braniac vs. Speed Demon(1993)
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3 1996 Era Machines

Alpha 21164 PPro HP PA-8000
Year 1995 1995 1996
Clock 400 MHz 200 MHz 180 MHz
Cache 8K/8K/96K/2M 8K/8K/0.5M 0/0/2M
Issue rate 2int+2FP 3 instr (x86) 4 instr 
Pipe stages 7-9 12-14 7-9
Out-of-Order 6 loads 40 instr (µop) 56 instr
Rename regs none 40 56
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SPECint95base Performance 
(July 1996)
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SPECfp95base Performance 
(July 1996)
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Alpha 21164 Pentium II HP PA-8000
Year 1995 1996 1996
Clock 600 MHz (‘97) 300 MHz (‘97) 236 MHz (‘97)
Cache 8K/8K/96K/2M 16K/16K/0.5M 0/0/4M
Issue rate 2int+2FP 3 instr (x86) 4 instr 
Pipe stages 7-9 12-14 7-9
Out-of-Order 6 loads 40 instr (µop) 56 instr
Rename regs none 40 56

3 1997 Era Machines

DAP.F96  50

SPECint95base Performance (Oct. 1997)
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SPECfp95base Performance (Oct. 1997)
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Summary

• Branch Prediction
– Branch History Table: 2 bits for loop accuracy
– Recently executed branches correlated with next branch?
– Branch Target Buffer: include branch address & prediction

– Predicated Execution can reduce number of branches, 
number of mispredicted branches

• Speculation: Out-of-order execution, In-order commit 
(reorder buffer)

• SW Pipelining
– Symbolic Loop Unrolling to get most from pipeline with little 

code expansion, little overhead

• Superscalar and VLIW: CPI < 1 (IPC > 1)
– Dynamic issue vs. Static issue
– More instructions issue at same time => larger hazard penalty


