
Page 1

DAP Spr.‘98 ©UCB 1

Caches

Prof. David A. Patterson

Computer Science 252

Spring 1998

DAP Spr.‘98 ©UCB 2

Recap: Who Cares About the Memory 
Hierarchy?

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

P
e
rf

o
rm

a
n

c
e

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)



Page 2

DAP Spr.‘98 ©UCB 3

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit

Disk
G Bytes, 10 ms 
(10,000,000 ns)

10   - 10  cents/bit
-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

DAP Spr.‘98 ©UCB 4

The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at 

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon (e.g., loops, reuse)

– Spatial Locality (Locality in Space): If an item is referenced, items 
whose addresses are close by tend to be referenced soon 
(e.g., straightline code, array access)

• Last 15 years, HW relied on localilty for speed



Page 3

DAP Spr.‘98 ©UCB 5

Memory Hierarchy: Terminology

• Hit: data appears in some block in the upper level 
(example: Block X) 

– Hit Rate: the fraction of memory access found in the upper level

– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the 
lower level (Block Y)

– Miss Rate  = 1 - (Hit Rate)

– Miss Penalty: Time to replace a block in the upper level  + 

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264!)Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

DAP Spr.‘98 ©UCB 6

Cache Measures

• Hit rate: fraction found in that level
– So high that usually talk about Miss rate
– Miss rate fallacy: as MIPS to CPU performance, 

miss rate to average memory access time in memory 

• Average memory-access time 
= Hit time + Miss rate x Miss penalty 

(ns or clocks)

• Miss penalty: time to replace a block from 
lower level, including time to replace in CPU

– access time: time to lower level 

= f(latency to lower level)

– transfer time: time to transfer block 

=f(BW between upper & lower levels)



Page 4

DAP Spr.‘98 ©UCB 7

Simplest Cache: Direct  Mapped

Memory

4  Byte Direct Mapped Cache

Memory Address
0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Cache Index

0

1

2

3

• Location 0 can be occupied by 
data from:

– Memory location 0, 4, 8, ... etc.

– In general: any memory location
whose 2 LSBs of the address are 0s

– Address<1:0>  => cache index

• Which one should we place in 
the cache?

• How can we tell which one is in 
the cache?

DAP Spr.‘98 ©UCB 8

1 KB Direct Mapped Cache, 32B blocks

• For a 2 ** N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag

– The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0

1

2

3

:

Cache Data

Byte 0

0431

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select

Ex: 0x00

9



Page 5

DAP Spr.‘98 ©UCB 9

Two-way Set Associative Cache

• N-way set associative: N entries for each Cache Index
– N direct mapped caches operates in parallel (N typically 2 to 4)

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache

– The two tags in the set are compared in parallel

– Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

DAP Spr.‘98 ©UCB 10

Disadvantage of Set Associative Cache

• N-way Set Associative Cache v. Direct Mapped Cache:
– N comparators vs. 1

– Extra MUX delay for the data

– Data comes AFTER Hit/Miss

• In a direct mapped cache, Cache Block is available 
BEFORE Hit/Miss:

– Possible to assume a hit and continue.  Recover later if miss.

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit



Page 6

DAP Spr.‘98 ©UCB 11

4 Questions for Memory 
Hierarchy

• Q1: Where can a block be placed in the upper level? 
(Block placement)

• Q2: How is a block found if it is in the upper level?
(Block identification)

• Q3: Which block should be replaced on a miss? 
(Block replacement)

• Q4: What happens on a write? 
(Write strategy)

DAP Spr.‘98 ©UCB 12

Q1: Where can a block be 
placed in the upper level? 

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set associative

– S.A. Mapping = Block Number Modulo Number Sets

Memory



Page 7

DAP Spr.‘98 ©UCB 13

Q2: How is a block found if it is in 
the upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index, 
expands tag

DAP Spr.‘98 ©UCB 14

Q3: Which block should be replaced 
on a miss?

• Easy for Direct Mapped

• Set Associative or Fully Associative:
– Random

– LRU (Least Recently Used)

Associativity: 2-way 4-way 8-way

Size LRURandomLRURandom LRURandom

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17%1.13% 1.13% 1.12% 1.12%



Page 8

DAP Spr.‘98 ©UCB 15

Q4: What happens on a write?

• Write through—The information is written to 
both the block in the cache and to the block in 
the lower-level memory.

• Write back—The information is written only to 
the block in the cache. The modified cache 
block is written to main memory only when it 
is replaced.

– is block clean or dirty?

• Pros and Cons of each?
– WT: read misses cannot result in writes

– WB: no repeated writes to same location

• WT always combined with write buffers so 
that don’t wait for lower level memory

DAP Spr.‘98 ©UCB 16

Write Buffer for Write Through

• A Write Buffer is needed between the Cache and 
Memory

– Processor: writes data into the cache and the write buffer

– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4

– Works fine if:  Store frequency (w.r.t. time) << 1 / DRAM write cycle

• Memory system designer’s nightmare:
– Store frequency (w.r.t. time)   ->  1 / DRAM write cycle

– Write buffer saturation

Processor
Cache

Write Buffer

DRAM



Page 9

DAP Spr.‘98 ©UCB 17

Impact of Memory Hierarchy on 
Algorithms

• Today CPU time is a function  of (ops, cache misses) 
vs. just f(ops):
What does this mean to Compilers, Data structures, 
Algorithms?

• “The Influence of Caches on the Performance of 
Sorting” by A. LaMarca and R.E. Ladner. Proceedings 
of the Eighth Annual ACM-SIAM Symposium on 
Discrete Algorithms, January, 1997, 370-379.

• Quicksort: fastest comparison based sorting 
algorithm when all keys fit in memory

• Radix sort: also called “linear time” sort because for 
keys of fixed length and fixed radix a constant 
number of passes over the data is sufficient 
independent of the number of keys

• For Alphastation 250, 32 byte blocks, direct mapped 
L2 2MB cache, 8 byte keys, from 4000 to 4000000

DAP Spr.‘98 ©UCB 18

Quicksort vs. Radix as vary number 
keys: Instructions

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)

Set size in keys

Instructions/key

Radix sort

Quick
sort



Page 10

DAP Spr.‘98 ©UCB 19

Quicksort vs. Radix as vary number 
keys: Instrs & Time

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)
Quick (Clocks/key)
Radix (c locks/key)

Time

Set size in keys

Instructions

Radix sort

Quick
sort

DAP Spr.‘98 ©UCB 20

Quicksort vs. Radix as vary number 
keys: Cache misses

0

1

2

3

4

5

1000 10000 100000 1000000 1000000
0

Quick(miss/key)
Radix(miss/key)

Cache misses

Set size in keys

Radix sort

Quick
sort

What is proper approach to fast algorithms?



Page 11

DAP Spr.‘98 ©UCB 21

5 minute Class Break

• 80 minutes straight is too long for me to 
lecture (12:40:00 – 2:00:00): 

–  1 minute: review last time & motivate this lecture

–  20 minute lecture

–  3 minutes: discuss class manangement

–  25 minutes: lecture 

– 5 minutes: break

– 25 minutes: lecture

– 1 minute: summary of today’s important topics

DAP Spr.‘98 ©UCB 22

A Modern Memory Hierarchy

• By taking advantage of the principle of locality:
– Present the user with as much memory as is available in the 

cheapest technology.

– Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s  
(10s ms)

Speed (ns): 10s 100s

100s
Gs

Size (bytes):
Ks Ms

Tertiary
Storage

(Disk/Tape)

10,000,000,000s  
(10s sec)

Ts



Page 12

DAP Spr.‘98 ©UCB 23

Basic Issues in VM System Design
size of information blocks that are transferred from

secondary to main storage (M)

block of information brought into M, and M is full, then some region
of M must be released to make room for the new block -->
replacement policy

which region of M is to hold the new block -->  placement policy 

missing item fetched from secondary memory only on the occurrence
of a fault  -->  demand load policy

Paging Organization

virtual and physical address space partitioned into blocks of equal size

page frames

pages

pages

reg

cache
mem disk

frame

DAP Spr.‘98 ©UCB 24

Address Map
V = {0, 1, . . . , n - 1}   virtual address space
M = {0, 1, . . . , m - 1}  physical address space

MAP:  V -->  M  U  {0}  address mapping function

n > m

MAP(a)  =  a'  if data at virtual address a is present in physical 
address a' and  a' in M

=  0  if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

a

a
a'

0

missing item fault

physical address OS performs
this transfer



Page 13

DAP Spr.‘98 ©UCB 25

Paging Organization
frame 0

1

7

0

1024

7168

P.A.

Physical
Memory

1K

1K

1K

Addr
Trans
MAP

page 0
1

31

1K

1K

1K

0

1024

31744

unit of 
mapping

also unit of
transfer from
virtual to
physical 
memory

Virtual Memory

Address Mapping

VA page no. disp
10

Page Table

index
into
page
table

Page Table
Base Reg

V
Access
Rights PA +

table located
in physical

memory

physical
memory
address

actually, concatenation 
is more likely

V.A.

DAP Spr.‘98 ©UCB 26

Virtual Address and a Cache

CPU
Trans-
lation

Cache
Main

Memory

VA PA miss

hit
data

It takes an extra  memory access to translate VA to PA

This makes cache access very expensive, and this is the 
"innermost loop" that you want to go as fast as possible

ASIDE:  Why access cache with PA at all?  VA caches have a problem!
synonym  / alias problem: two different virtual addresses map to 
same physical address  =>  two different cache entries holding data for
the same physical address!  

for update:  must update all cache entries with same
physical address or memory becomes inconsistent

determining this requires significant hardware, essentially an
associative lookup on the physical address tags to see if you 
have multiple hits; or

software enforced alias boundary: same lsb of VA &PA > cache size



Page 14

DAP Spr.‘98 ©UCB 27

TLBs
A way to speed up translation is to use a special cache of recently

used page table entries  -- this has many names, but the most
frequently used is Translation Lookaside Buffer or TLB

Virtual Address   Physical Address   Dirty   Ref   Valid   Access

Really just a cache on the page table mappings

TLB access time comparable to cache access time
(much less than main memory access time)

DAP Spr.‘98 ©UCB 28

Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully associative,

set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
high end machines.  This permits fully associative
lookup on these machines.  Most mid-range machines use small
n-way set associative organizations.

CPU
TLB

Lookup
Cache

Main
Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB



Page 15

DAP Spr.‘98 ©UCB 29

Reducing Translation Time

Machines with TLBs go one step further to reduce # 
cycles/cache access

They overlap the cache access with the TLB access:

high order bits of the VA are used to look in the TLB 
while low order bits are used as index into cache

DAP Spr.‘98 ©UCB 30

Overlapped Cache & TLB Access

TLB Cache

10 2

00

4 bytes

index
1 K

page # disp
20 12

assoc
lookup32

PA Hit/
Miss PA Data Hit/

Miss

=

IF cache hit AND (cache tag = PA) then deliver data to CPU
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN

access memory with the PA from the TLB
ELSE do standard VA translation



Page 16

DAP Spr.‘98 ©UCB 31

Problems With Overlapped TLB Access
Overlapped access only works as long as the address bits used to

index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
n-way set associative caches if you want a large cache

Example:  suppose everything the same except that the cache is
increased to 8 K bytes instead of 4 K:

11 2

00

virt page # disp
20 12

cache 
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
go to 8K byte page sizes;
go to 2 way set associative cache; or
SW guarantee VA[13]=PA[13]

1K

4 4
10

2 way set assoc cache

DAP Spr.‘98 ©UCB 32

Summary #1/4:

• The Principle of Locality:
– Program access a relatively small portion of the address space at 

any instant of time.

» Temporal Locality: Locality in Time

» Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life.  Example: cold start misses.

– Capacity Misses: increase cache size

– Conflict Misses:  increase cache size and/or associativity.
Nightmare Scenario: ping pong effect!

• Write Policy:
– Write Through: needs a write buffer.  Nightmare: WB saturation

– Write Back: control can be complex



Page 17

DAP Spr.‘98 ©UCB 33

Summary #2 / 4: 
The Cache Design Space

• Several interacting dimensions
– cache size

– block size

– associativity

– replacement policy

– write-through vs write-back

– write allocation

• The optimal choice is a compromise
– depends on access characteristics

» workload

» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

DAP Spr.‘98 ©UCB 34

Summary #3/4: TLB, Virtual Memory

• Caches, TLBs, Virtual Memory all understood by 
examining how they deal with 4 questions: 1) Where 
can block be placed? 2) How is block found? 3) What 
block is repalced on miss? 4) How are writes 
handled?

• Page tables map virtual address to physical address

• TLBs are important for fast translation

• TLB misses are significant in processor performance
– funny times, as most systems can’t access all of 2nd level cache

without TLB misses!



Page 18

DAP Spr.‘98 ©UCB 35

Summary #4/4: Memory Hierachy

• VIrtual memory was controversial at the time: 
can SW automatically manage 64KB across many 
programs?

– 1000X DRAM growth removed the controversy

• Today VM allows many processes to share single 
memory without having to swap all processes to 
disk; today VM protection is more important than 
memory hierarchy

• Today CPU time is a function  of (ops, cache misses) 
vs. just f(ops):
What does this mean to Compilers, Data structures, 
Algorithms?


