IFT3912 Développement, Maintenance de Logiciels

Démo2 : Gestion de la qualité, WBS et COCOMO

Professeur: Yann-Gaël Guéhéneuc Démonstrateur: Naouel Moha

Exercice 1 : Gestion de la qualité & CMM

Caractéristiques:

- Intégrité : protection contre les accès non autorisés.
 - → Moyens : Firewall, système de cryptage, password/login, tests hackers, logiciel de hacking.
- Conformité: conforme à la spécification et permet à l'usager de remplir sa mission.
 - → Moyens : cahier des charges, tests de complétude, traçabilité, revues, inspections avec le client.
- **Efficacité :** quantité de ressources informatiques et assimilées requises par le fonctionnement opérationnel.
- **Fiabilité**: aptitude à fonctionner sans pannes.
 - → Moyens : tests de surcharge (montée en charge).
- Maintenabilité : facilité de correction et de modification.
- **Testabilité** : facilité de test.
- **Utilisabilité**: facilité d'apprentissage, de mémorisation, d'emploi.
 - → Moyens : tests d'utilisabilité basés sur des scénarios avec des futurs utilisateurs.
- **Inter-opérabilité** : facilité de couplage avec d'autres systèmes.
- **Portabilité :** facilité de changement de plateforme.
- **Réutilisabilité:** aptitude du logicile ou de certaines de ses parties à être réutilisées dans d'autres applications.

Niveau CMM:

Pas beaucoup d'informations dans l'étude de cas nous permet de déterminer avec exactitude le niveau CMM. Cependant, on peut définir un niveau CMM 3 car le système a déjà été installé auprès d'une centaine de lieux de commerce donc l'équipe développement a une certaine expertise dans ce type de logiciel.

Exercice 2: WBS

ompilateur C	
Commencement	t du projet
Allouer les res	sources
Bablir l'enviro	onnement du projet
Planifier la ge	stion du projet
Controle du proj	et
ldentifier et a	nlyser les risques
Composer le	plan d'aversion de risques
Gestion de cont	role du projet
Definier les m	netriques
Gerer la qulite	du logiciel
Besoins	
Analyser les 1	fonctions
Developper l'a	architecture de systeme
Developper le	s besoins et les specifications
Definir les be	soins sur l'interface
Conception	
Concevoir l'in	terface graphique
Concevoir le	parseur
Concevoir l'ar	nalyseur syntaxique et semantique
Concevoir le	generateur du code
Implantation et t	ests unitaires
Coder l'interfa	ice graphique et faire les tests unitaires
Coder le pars	eur et faire les tests unitaires
Coder l'analys	seur syntaxique et semantique et faire les tests unitaires
Coder le gene	rateur du code et faire les tests unitaires
Integration	
Installer le co	mpilateur
Tester l'interfa	ace graphique
Tester le pars	eur
Tester le gene	erateur du code
Tester l'analy:	seur syntaxique et semantique
Documentation	
Ecrire les doc	uments d'usager
Ecrire les doc	uments de developpeur
anttProject (1.9	1.11)

Exercice 3 : COCOMO (COnstructive COst MOdel)

(a) COCOMO de base

Nous appliquons la méthode COCOMO et nous nous apercevons que c'est un projet organique. Nous avons donc pour le calcul de l'effort et la durée, les formules suivantes:

$$E = 2.4 \text{ X } KLOC^{1.05}$$
 $D = 2.5 \text{ X } E^{0.38}$

Donc selon la formule de la charge: $\mathbf{E} = 2.4 (40)^{1.05} \approx 115 \text{ Personne-Mois}$

D = $2.5 (115)^{0.38} \approx 15$ Mois

Ce qui nous donne: **Taille équipe = E / D** = $115/15 \approx 7.6$ soit 8 Personnes.

(b) COCOMO intermédiaire

1) Type de projet :

En examinant les définitions et les caractéristiques suivantes des trois classes de projet :

- a) Projets de mode organique : Ces projets sont réalisés par une équipe de taille relativement petite travaillant dans un environnement familier et dans un domaine d'application connu de l'équipe. En conséquence, le surcoût dû à la communication est faible, les membres de l'équipe savent ce qu'ils ont à faire et le font rapidement
- b) Projets de mode semi-détaché: Ce mode représente un intermédiaire entre le mode organique et le mode embarqué décrit ci-dessous. Pour des projets de mode semi-détaché, l'équipe projet peut être composée de programmeurs de divers niveaux d'expérience. Les membres de l'équipe ont une expérience limitée de ce type de système. Ils peuvent être totalement inexpérimentés en ce qui concerne quelques-uns des aspects du système à développer, mais pas tous.
- c) Projets de mode embarqué: La caractéristique principale d'un projet de mode embarqué est que le système doit fonctionner sous des contraintes particulièrement fortes. Le système à développer est une partie d'un système complexe et fortement connecté de matériels et de logiciels, de normes et de procédures opérationnelles. En conséquence, les modifications de spécifications destinées à contourner des problèmes logiciels sont en général impossibles et les coûts de validation extrêmement élevées. Du fait de la nature même de ces projets, il est habituel de disposer d'ingénieurs logiciels expérimentés dans le domaine d'application.

Nous concluons que le projet est de type embarqué vu sa complexité, ses contraintes fortes de sécurité et surtout sa forte connexion avec le matériel et les autres systèmes de l'atelier.

Donc les formules de l'effort et la durée sont les suivantes :

 $E = 3.6 \text{ X } \text{KLOC}^{1.2} \quad D = 2.5 \text{ X } E^{0.32}$

Calcul de la taille de projet en PF PF =200*5*2=2000 PF

Calcul de la taille de projet en KLOC 2000*0.7*65+2000*0.3*85=142000 LOC =142 KLOC

Calcul de l'effort et de la durée : $E = 3.6 \times (142)^{1.2} = 1377.363 \text{ PM}$ D = 2.5 x $(1377.363)^{0.36} = 33.728 \text{ Mois}$

Taille moyenne de l'équipe E/D = 40.83 (41 Personnes)

2) Les facteurs d'influences selon le texte sont :

Les multiplicateurs associés à ces attributs sont montrés à la table 1 qui est extraite de Boehm (1981). Notez que TB signifie très bas, B bas, M moyen, E élevé, TE très élevé et TTE très, très élevé.

1: Multiplicateurs d'attributs de projet								
Attributs	6c Valeurs							
	ТВ	В	М	Е	TE	TTE		
FIAB	0,75	0,88	1,00	1,15	1,40			
DONN		0,94	1,00	1,08	1,16			
CPLX	0,70	0,85	1,00	1,15	1,30	1,65		
TEMP			1,00	1,11	1,30	1,66		
ESPA			1,00	1,06	1,21	1,56		
VIRT		0,87	1,00	1,15	1,30			
CSYS		0,87	1,00	1,07	1.15			
APTA	1,46	1.19	1,00	0,86	0,71			
EXPA	1,29	1,13	1,00	0,91	0,82			
APTP	1,42	1,17	1,00	0,86	0,70			
EXPV	1,21	1,10	1,00	0,90				
EXPL	1,14	1,07	1,00	0,95				
PMOD	1,24	1,10	1,00	0,91	0,82			
OLOG	1,24	1,10	1,00	0,91	0,83			
DREQ	1,23	1,08	1,00	1,04	1.10			

3) Calcul de l'effort, de la durée et de la taille moyenne de l'équipe (COCOMO intermédiaire)

 $E = E_{nominal} \times FA$

$$FA = \prod FA_i$$

FA = FIAB*DONN*CLPX*TEMP*PMOD*OLOG=1.40*0.94*1.65*1.11*0.82*0.83=1.62

E = 1377.363*1.62 = 2238.87 Personne-Mois

 $\mathbf{D} = 2.5*(2238.87)^{0.36} = 40.17 \text{ MOIS}$

Taille moyenne de l'équipe :

E/D = 55.7 (56 Personnes)

 $\begin{aligned} & \textbf{P}(\textbf{Productivit\'e}): \\ & \text{Size}(\text{KLOC})/\text{Effort} = 142/2238.87 = 0.06342 \text{ KLOC/PM} = 63.42 \text{ LOC/PM} \end{aligned}$