Outline

LOGIC SYNTHESIS AND
 TWO-LEVEL LOGIC OPTIMIZATION

© Giovanni De Micheli

Stanford University

- Overview of Iogic synthesis.
- Combinational-logic design:
- Background.
- Two-level forms.
- Exact minimization.
- Covering algorithms.
- Boolean relations.

Logic synthesis and optimization

- Determine microscopic structure of the circuit.
- Explore (area-delay)trade-off:
- Combinational circuits:
* I/O delay.
- Sequential circuits:
* cycle-time.
- Explore (power-delay)trade-off:
- Enhance circuit testability.

Circuit implementation issues

\qquad

- Implementation styles:
- Two-level (e.g. PLA macro cells).
- Multi-level (e.g. cell-based, array-based).
- Operation:
- Combinational.
- Sequential:
* Synchronous
* Asynchronous.

Design flow in logic synthesis

\qquad

- Circuit capture:
- Tabular specifications of functions or finite-state machines (FSMs).
- Schematic capture.
- Hardware Description Languages (HDLs).
- Synthesis and optimization:
- Map circuit representation to abstract model.
- Transformations on abstract model.
- Library binding.
- Models based on graphs.
- Useful for:
- Machine-Ievel processing.
- Reasoning about properties.
- Derived from language models by compilation.
- Netlists:
- Modules, nets, incidence.
- Ports.
- Hierarchy.
- Incidence (sparse) matrix of a graph.

Example

Logic funcions

- Black-box model of a combinational module.
- Defined on Boolean Algebra.
- Support variables correspond to module inputs.
- Logic functions may have multiple outputs and be incompletely specified.

Logic networks

- Mixed structural/behavioral views.
- Useful for multiple-level logic (combinational and sequential).
- Interconnection of modules:
- Logic gates.
- Logic functions.

State diagrams

- Model behavior of sequential circuits.
- Graph:
- Vertices $=$ states.
- Edges $=$ transitions.

Major logic synthesis problems

(C) GDM -

- Optimization of logic function representation.
- Minimization of two-level forms.
- Optimization of Binary Decision Diagrams (BDDs).
- Synthesis of combinational multiple-level Iogic networks.
- Optimization or area, delay, power, testability.
- Optmization of FSM models.
- State minimization, encoding
- Synthesis of sequential multiple-level logic networks.
- Optimization or area, delay, power, testability.
- Library binding.
- Optimal selection of library cells.

Combinational logic design background

(C) GDM

- Boolean algebra:
- Quintuple $(B,+, \cdot, 0,1)$
- Binary Boolean algebra $B=\{0,1\}$
- Boolean function:
- Single output: $f: B^{n} \rightarrow B$.
- Multiple output: $f: B^{n} \rightarrow B^{m}$.
- Incompletely specified:
* don't care symbol *.
$* f: B^{n} \rightarrow\{0,1, *\}^{m}$.

Definitions

The don't care conditions

- We don't care about the value of the function.
- Related to the environment:
- Input patterns that never occur.
- Input patterns such that some output is never observed.
- Very important for synthesis and optimization.
- Scalar function:
- ON-set: subset of the domain such that f is true.
- OFF - set: subset of the domain such that f is false.
- DC-set: subset of the domain such that f is a don't care.
- Multiple-output function:
- Defined for each component.

Definitions

Cubical representation

(C) GDM

- Truth table:
- List of all minterms of a function.
- Implicant table or cover:
- List of implicants of a function sufficient to define function.
- Remark:
- Implicant tables are smaller in size.

Example of implicant table
 $x=a b+a^{\prime} c ; \quad y=a b+b c+a c$

$a b c$	$x y$
001	10
$* 11$	11
101	01
11^{*}	11

Two-level logic optimization motivation

- Reduce size of the representation.
- Direct implementation:
- PLAs - reduce size and delay.
- Other implementation styles
(e.g. multi-level):
- Reduce amount of information.
- Simplify local functions and connections.

Cubical representation of minterms and implicants

\qquad

- $f_{1}=a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a b^{\prime} c+a b c+a b c^{\prime}$
- $f_{2}=a^{\prime} b^{\prime} c+a b^{\prime} c$

Programmable logic arrays
\qquad

- Macro-cells with rectangular structure.
- Implement any multi-output function.
- Layout easily generated by module generators.
- Fairly popular in the seventies/eighties (NMOS).
- Still used for control-unit implementation.

Programmable logic array
\longrightarrow © GDM -

00* 10
*01 11
11* 10
(a)

Two-level optimization
\qquad
(b)
(c)

- Assumptions:
- Primary goal is to reduce the number of implicants.
- All implicants have the same cost.
- Secondary goal is to reduce the number of literals.
- Rationale:
- Implicants correspond to PLA rows.
- Literals correspond to transistors.
- $f_{1}=a^{\prime} b^{\prime}+b^{\prime} c+a b \quad f_{2}=b^{\prime} c$

Definitions

Example

- Minimal cover w.r.t. 1-implicant containment.
- No implicant is contained by another one.
- Weak local optimum.
- $f_{1}=a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a b^{\prime} c+a b c+a b c^{\prime}$
- $f_{2}=a^{\prime} b^{\prime} c+a b^{\prime} c$

Definitions

- Prime implicant:
- Implicant not contained by any other implicant.
- Prime cover:
- Cover of prime implicants.
- Essential prime implicant:
- There exist some minterm covered only by that prime implicant.

Logic minimization

\qquad

- Exact methods:
- Compute minimum cover.
- Often impossible for large functions.
- Based on Quine McCluskey method.
- Heuristic methods:
- Compute minimal covers (possibly minimum).
- Large variety of methods and programs:
* MINI, PRESTO, ESPRESSO.

Exact logic minimization

(C) GDM

Prime implicant table
\qquad

- Rows: minterms.
- Columns: prime implicants.
- Exponential size:
- 2^{n} minterms.
- Up to $3^{n} / n$ prime implicants.
- Remark:
- Some functions have much fewer primes.
- Minterms can be grouped together.

Example

- Function: $f=a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a b^{\prime} c+a b c+a b c^{\prime}$
- Primes:

$$
\begin{array}{l|ll}
\alpha & 00 * & 1 \\
\beta & * 01 & 1 \\
\gamma & 1 * 1 & 1 \\
\delta & 11^{*} & 1
\end{array}
$$

- Implicant table:

	α	β	γ	δ
000	1	0	0	0
001	1	1	0	0
101	0	1	1	0
111	0	0	1	1
110	0	0	0	1

Minimum cover

 early methods- Reduce table:
- Iteratively identify essentials, save them in the cover, remove covered minterms.
- Petrick's method.
- Write covering clauses in pos form.
- Multiply out pos form into sop form.
- Select cube of minimum size.
- Remark:
* Multiplying out clauses is exponential.

Example Petrick's method

© GDM —

- pos clauses:
$-(\alpha)(\alpha+\beta)(\beta+\gamma)(\gamma+\delta)(\delta)=1$
- sop form:
$-\alpha \beta \delta+\alpha \gamma \delta=1$
- Solutions:
- $\{\alpha, \beta, \delta\}$
- $\{\alpha, \gamma, \delta\}$
$\xrightarrow{\text { Matrix representation }}$ © GDM -
- View table as Boolean matrix: A.
- Selection Boolean vector for primes: x.
- Determine \mathbf{x} such that:
$-\mathbf{A x} \geq 1$.
- Select enough columns to cover all rows.
- Minimize cardinality of \mathbf{x} :
- Example: $\mathbf{x}=[1101]^{T}$

Covering problem

© GDM -

- Set covering problem:
- A set S. (Minterm set).
- A collection C of subsets. (Implicant set).
- Select fewest elements of C to cover S.
- Intractable.
- Exact method:
- Branch and bound algorithm.
- Heuristic methods.

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1 \\
1 \\
1
\end{array}\right]
$$

Example edge-cover of a hypergraph

Branch and bound algorithm

- Tree search of the solution space:
- Potentially exponential search.
- Use bounding function:
- If the lower bound on the solution cost that can be derived from a set of future choices exceeds the cost of the best solution seen so far:
- Kill the search.
- Good pruning may reduce run-time.

Branch and bound algorithm

BRANCH_AND_BOUND \{
Current_best $=$ anything;
Current_cost $=\infty$;
$S=s_{0}$; while ($S \neq \emptyset$) do \{

Select an element in $s \in S$;
Remove s from S;
Make a branching decision based on s yielding sequences $\left\{s_{i}, i=1,2, \ldots, m\right\}$;
for ($i=1$ to m) \{
Compute the lower bound b_{i} of s_{i};
if ($b_{i} \geq$ Current_cost)
Kill s_{i};
else \{
if $\left(s_{i}\right.$ is a complete solution) \{ Current_best $=s_{i}$; Current_cost $=$ cost of s_{i};
\}
else
Add s_{i} to set S;
\}
\}
\}
\}

Branch and bound algorithm for covering Reduction strategies

\qquad

- Partitioning:
- If \mathbf{A} is block diagonal:
* Solve covering problem for corresponding blocks.
- Essentials (EPI):
- Column incident to one (or more) row with single 1:
* Select column.
* Remove covered row(s) from table.

Branch and bound algorithm for covering Reduction strategies

- Column (implicant) dominance:
- If $a_{k i} \geq a_{k j} \forall k$:
* remove column j.
- Row (minterm) dominance:
- If $a_{i k} \geq a_{j k} \forall k:$
* Remove row i.

Branch and bound covering algorithm

(c) GDM
$E X A C T _C O V E R(\mathbf{A}, \mathbf{x}, \mathbf{b})\{$
Reduce matrix \mathbf{A} and update corresponding \mathbf{x};
if (Current_estimate $\geq|\mathbf{b}|$) return(\mathbf{b});
if (\mathbf{A} has no rows) return (x);
Select a branching column c;
$x_{c}=1$;
$\widetilde{\mathbf{A}}=\mathbf{A}$ after deleting c and rows incident to it;
$\tilde{\mathbf{x}}=E X A C T _C O V E R(\widetilde{\mathbf{A}}, \mathbf{x}, \mathbf{b})$;
if $(|\widetilde{\mathbf{x}}|<|\mathbf{b}|)$
$\mathbf{b}=\widetilde{\mathbf{x}} ;$
$x_{c}=0$;
$\widetilde{\mathbf{A}}=\mathbf{A}$ after deleting c;
$\widetilde{\mathbf{x}}=E X A C T _C O V E R(\widetilde{\mathbf{A}}, \mathbf{x}, \mathbf{b})$;
if $(|\widetilde{\mathbf{x}}|<|\mathbf{b}|)$
$\mathbf{b}=\widetilde{\mathbf{x}} ;$
return (b);
\}

Bounding function

(C) GDM

- Estimate lower bound on the covers derived from the current \mathbf{x}.
- The sum of the ones in \mathbf{x}, plus bound on cover for local A:
- Independent set of rows:
* No 1 in same column.
- Build graph denoting pairwise independence.
- Find clique number.
- Approximation (lower) is acceptable.
$\xrightarrow{\text { Example }}$ © GDM —

$$
\mathbf{A}=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

- Row 4 independent from 1,2,3.
- Clique number is 2 .
- Bound is 2 .

Example

\qquad

- $\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$
- Choose first column:
- Recur with $\mathbf{A}=[11]$.
* Delete one dominated column.
* Take other column (essential).
- New cost is 3.
- Exclude first column:
- Find another solution with cost 3 (discarded).

ESPRESSO-EXACT

- Exact minimizer [Rudell].
- Exact branch and bound covering.
- Compact implicant table:
- Group together minterms covered by the same implicants.
- Very efficient. Solves most problems.

Example

Recent developments

Example

Prime implicant table (after removing essentials)
(C) GD

	α	β	ϵ	ζ
0000,0010	1	1	0	0
1101	0	0	1	1

- Many minimization problems can be solved exactly today.
- Usually bottleneck is table size.
- Implicit representation of prime implicants:
- Methods based on BDDs [COUDERT]:
* To represent sets.
* To do dominance simplification.
- Methods based on signature cubes [MCGEER]:
* Represent set of primes.

Summary
 Exact two-level minimization of logic functions

- Based on derivatives of Quine-McCluskey method.
- Many minimization problems can be now solved exactly.
- Usual problems are memory size and time.

Boolean relations

\qquad

- Generalization of Boolean functions.
- More than one output pattern may correspond to an input pattern.
- Some degrees of freedom in finding an implementation:
- More general than don't care conditions.
- Problem:
- Given a Boolean relation, find minimum cover of a compatible function.

- Compare:
$-\mathbf{a}+\mathbf{b}>4$?
$-\mathbf{a}+\mathbf{b}<3$?

Example

a_{1}	a_{0}	b_{1}	b_{0}	\mathbf{x}
0	0	0	0	$\{000,001,010\}$
0	0	0	1	$\{000,001,010\}$
0	0	1	0	$\{000,001,010\}$
0	1	0	0	$\{000,001,010\}$
1	0	0	0	$\{000,001,010\}$
0	1	0	1	$\{000,001,010\}$
0	0	1	1	$\{011,100\}$
0	1	1	0	$\{011,100\}$
1	0	0	1	$\{011,100\}$
1	0	1	0	$\{011,100\}$
1	1	0	0	$\{011,100\}$
0	1	1	1	$\{011,100\}$
1	1	0	1	$\{011,100\}$
1	0	1	1	$\{101,110,111\}$
1	1	1	0	$\{101,110,111\}$
1	1	1	1	$\{101,110,111\}$

Example (2)

Minimum implementation

a_{1}	a_{0}	b_{1}	b_{0}	\mathbf{x}
0	$*$	1	$*$	010
1	$*$	0	$*$	010
1	$*$	1	$*$	100
$*$	$*$	$*$	1	001
$*$	1	$*$	$*$	001

- Remark:
- Circuit is no longer an adder.

Minimization of Boolean relations

- Since there are many possible output values there are many logic functions implementing the relation.
- Compatible functions.
- Find a function with minimum cardinality.
- Do not enumerate all possible functions:
- May be too many.
- Represent the primes of all possible functions:
- Compatible primes ($c-$ primes).

Example

- Boolean relation:

0	0	0	$\left\{\begin{array}{l}\{00 \\ 0\end{array}\right.$
0	1	$\left\{\begin{array}{l}00\end{array}\right\}$	
0	1	0	$\{00\}$
0	1	1	$\{10\}$
1	0	0	$\{00\}$
1	0	1	$\{01\}$
1	1	0	$\{00,11\}$
1	1	1	$\{00,11\}$

- Compatible primes:

α	0	1	1	10
β	1	0	1	01
γ	1	1	0	11
δ	1	1	1	11
ϵ	$*$	1	1	10
ζ	1	$*$	1	01
η	1	1	$*$	11

Example © GDM -

- Input 011 - output 10.
- Covering clause $(\alpha+\epsilon)$.
- Input 111 - output 00 or 11 .
- No implicant - 00 - correct.
- Either η or $\epsilon \cup \zeta$ - output 11 - correct.
- Only ϵ or ζ is selected - output 10 or 01 - WRONG.
- Covering clause $\eta+\epsilon \zeta+\epsilon^{\prime} \zeta^{\prime}-$ binate.
- Overall covering clause:

$$
(\alpha+\epsilon) \cdot(\beta+\zeta) \cdot\left(\epsilon+\zeta^{\prime}+\eta\right) \cdot\left(\epsilon^{\prime}+\zeta+\eta\right)
$$

Binate covering

© GDM -

- Covering problem with binate clause.
- Implications:
- The selection of a prime may exclude other primes.
- No guarantee of finding a feasible solution:
- Inconsistent clauses.
- Minimum-cost satisfiability problem.
- Much harder to solve than unate cover.
- Branch and bound algorithm.
- BDD-based methods.

