

Design flow in logic synthesis

- Circuit capture:
 - Tabular specifications of functions or *finite-state* machines (FSMs).

_____ © GDM __

- Schematic capture.
- Hardware Description Languages (HDLs).
- Synthesis and optimization:
 - Map circuit representation to abstract model.
 - Transformations on abstract model.
 - Library binding.

- Useful for:
 - Machine-level processing.
 - Reasoning about properties.
- Derived from language models by compilation.

_____ © gdm __

- Netlists:
 - Modules, nets, incidence.
 - Ports.
 - Hierarchy.
- Incidence (sparse) matrix of a graph.

• Model behavior of sequential circuits.

abr'/1

br'/1

r/0

^s 2

, ar'/1) a'r'/0

Graph:

Vertices = states.

- Edges = transitions.

Major logic synthesis problems ————————————————————————————————————	Combinational logic design background © GDM —
 Optimization of logic function representation. Minimization of two-level forms. Optimization of Binary Decision Diagrams (BDDs). Synthesis of combinational multiple-level logic networks. Optimization or area, delay, power, testability. Optmization of FSM models. State minimization, encoding. Synthesis of sequential multiple-level logic networks. Optimization or area, delay, power, testability. Library binding. Optimal selection of library cells. 	 Boolean algebra: Quintuple (B, +, ., 0, 1) Binary Boolean algebra B = {0,1} Boolean function: Single output: f : Bⁿ → B. Multiple output: f : Bⁿ → B^m. Incompletely specified: * don't care symbol *. * f : Bⁿ → {0, 1, *}^m.
The don't care conditions	Definitions © GDM

• We don't care about the value of the function.

___ © GDM __

- Related to the environment:
 - Input patterns that never occur.
 - Input patterns such that some output is never observed.
- Very important for synthesis and optimization.

- Scalar function:
 ON set: subset of the domain such that f is true.
 - OFF set: subset of the domain such that f is false.
 - DC set: subset of the domain such that f is a *don't care*.
- Multiple-output function:
 - Defined for each component.

Example

— © GDM —

• Function: f = a'b'c' + a'b'c + abc + abc'

• Primes:

α	00*	1
eta	*01	1
γ	1*1	1
δ	11*	1

• Implicant table:

	α	β	γ	δ
000	1	0	0	0
001	1	1	0	0
101	0	1	1	0
111	0	0	1	1
110	0	0	0	1

_____ © GDM __

- Reduce table:
 - Iteratively identify essentials, save them in the cover, remove covered minterms.
- Petrick's method.
 - Write covering clauses in *pos* form.
 - Multiply out *pos* form into *sop* form.
 - Select cube of minimum size.
 - Remark:
 - * Multiplying out clauses is exponential.

- Solutions:
 - $\{\alpha, \beta, \delta\}$

$$- \{\alpha, \gamma, \delta\}$$

Branch and bound algorithm

🗕 © GDM

• Tree search of the solution space:

- Potentially exponential search.
- Use bounding function:
 - If the lower bound on the solution cost that can be derived from a set of future choices exceeds the cost of the best solution seen so far:
 - Kill the search.
- Good pruning may reduce run-time.

Branch and bound algorithm

Branch and bound algorithm for covering Reduction strategies

— © GDM —

- Partitioning:
 - If **A** is block diagonal:
 - * Solve covering problem for corresponding blocks.
- Essentials (EPI):
 - Column incident to one (or more) row with single 1:
 - * Select column.
 - * Remove covered row(s) from table.

Branch and bound algorithm for covering Reduction strategies

_____ © GDM ____

- Column (implicant) dominance:
 - If $a_{ki} \ge a_{kj} \ \forall k$:
 - * remove column j.
- Row (minterm) dominance:
 - If $a_{ik} \ge a_{jk} \ \forall k$:
 - \ast Remove row i.

• Fourth column is essential.
• Fifth column is dominated.
• Fifth row is dominant.
•
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Example

Example Prime implicant table (after removing essentials)

_____ © GDM -

	α	β	ϵ	ζ
0000,0010	1	1	0	0
1101	0	0	1	1

* Represent set of primes.

- Compare:
 - -a + b > 4?
 - -a + b < 3?

Example					
a	1	a_0	b_1	b_0	x
	0	0	0	0	$\{ 000, 001, 010 \}$
	0	0	0	1	{ 000, 001, 010 }
	0	0	1	0	{ 000, 001, 010 }
	0	1	0	0	{ 000, 001, 010 }
	1	0	0	0	{ 000, 001, 010 }
	0	1	0	1	{ 000, 001, 010 }
	0	0	1	1	{ 011, 100 }
	0	1	1	0	$\{011, 100\}$
	1	0	0	1	$\{011, 100\}$
	1	0	1	0	${011, 100}$
	1	1	0	0	${011, 100}$
	0	1	1	1	${011, 100}$
	1	1	0	1	$\{011, 100\}$
	1	0	1	1	{ 101, 110, 111 }
	1	1	1	0	$\{101, 110, 111\}$
	1	1	1	1	$\{$ 101, 110, 111 $\}$

Example (2) Minimum implementation © GDM $-$ $a_1 a_0 b_1 b_0 \mathbf{x}$ 0 * 1 * 0 10 1 * 0 * 010 1 * 1 * 100 * * * 1 001 * 1 * 1 001	 Minimization of Boolean relations © GDM Since there are many possible output values there are many logic functions implementing the relation. Compatible functions. Find a function with minimum cardinality. Do not enumerate all possible functions: May be too many. 		
	 Represent the primes of all possible functions Compatible primes (c - primes). 		
Minimization of Boolean relation	Example © GDM — • Boolean relation:		
 Exact: Find a set of compatible primes. Solve a <i>binate</i> covering problem. * Consistency relations. 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
– Iterative improvement [GYOCRO].	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

• Harder problem to solve.