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Abstract .  This paper is a survey of genetic algorithms for t h e
traveling salesman problem. Genetic algorithms are randomized
search techniques that simulate some of the processes observed i n
natural evolution. In this paper, a simple genetic algorithm is
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research literature.
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Section 1. Introduction.

The Traveling Salesman Problem (TSP) is a classic combinatorial
optimization problem, which is simple to state but very difficult t o
solve. The problem is to find the shortest possible tour through a se t
of N vertices so that each vertex is visited exactly once. This problem
is known to be NP-hard, and cannot be solved exactly in polynomial
t ime.

Many exact and heuristic algorithms have been developed in t h e
field of operations research (OR) to solve this problem. We re fe r
readers to [Bodin et al. 83, Lawler et al. 85, Laporte 92] for good
overviews of the TSP. In the sections that follow, we brief ly
introduce the OR problem-solving approaches to the TSP. Then, t h e
genetic algorithms are discussed.

1.1  Exact algorithms.

The exact algorithms are designed to find the optimal solution t o
the TSP, that is, the tour of minimal length. They are computationally
expensive because they must (implicitly) consider all solutions i n
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order to identify the optimum. These exact algorithms are typically
derived from the integer linear programming (ILP) formulation of
the TSP

Min  Σ iΣ j  dij x i j

subject to:

 Σ j  xij  = 1  , i=1,..,N

 Σ i  xij  = 1  , j=1,..,N

(xij )  X
x ij  = 0 or 1  ,

where N is the number of vertices, d i j  is the distance be tween
vertices i and j and the x ij 's are the decision variables: x ij  is set to 1
when arc (i,j) is included in the tour, and 0 otherwise. (x ij )  X
denotes the set of subtour-breaking constraints that restrict t h e
feasible solutions to those consisting of a single tour.

Although the subtour-breaking constraints can be formulated i n
many different ways, one very intuitive formulation is

Σ i,j SV
 xij  ≤ |Sv| - 1      (Sv  V; 2 ≤ |Sv| ≤ N-2) ,

where V is the set of all vertices, Sv is some subset of V and |Sv| is
the cardinality of Sv. These constraints prohibit subtours, that is,
tours on subsets with less than N vertices. If there were such a
subtour on some subset of vertices Sv, this subtour would contain |Sv|
arcs. Consequently, the left hand side of the inequality would b e
equal to |Sv|, which is greater than |Sv|-1, and the above constraint
would be violated for this particular subset. Without the subtour -
breaking constraints, the TSP reduces to an assignment problem
(AP), and a solution like the one shown in Figure 1 would then b e
feasible.

Branch and bound algorithms are commonly used to find a n
optimal solution to the TSP, and the above AP-relaxation is useful t o
generate good lower bounds on the optimal value. This is true i n
particular for asymmetric problems, where d i j  ≠ d j i  for some i,j. For
symmetric problems, like the Euclidean TSP (ETSP), the AP-solutions
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often contain many subtours on two vertices. Consequently, these
problems are better addressed by specialized algorithms that can
exploit their particular structure. For instance, a specific ILP
formulation can be derived for the symmetric problem which allows
for relaxations that provide sharp lower bounds (e.g., the well-known
one-tree relaxation [Held and Karp 70]).

(a) (b)(a) (b)

Figure 1.  (a) solving the TSP.  (b) solving the assignment problem.

It is worth noting that problems with a few hundred vert ices
can now be routinely solved to optimality. Moreover, instances
involving more than 2,000 vertices have been recently addressed.
For example, the optimal solution to a symmetric problem with 2,392
vertices was found after two hours and forty minutes of computation
time on a powerful vector computer, the IBM 3090/600 [Padberg
and Rinaldi 88, Padberg and Rinaldi 90]. On the other hand, a
classical problem with 532 vertices took five hours on the same
machine, indicating that the size of the problem is not the only
determining factor for computation time.

We refer the interested reader to [Laporte 92] for a good account
of the state of the art in exact algorithms.

1.2  Heuristic algorithms.

Running an exact algorithm for hours on a powerful computer
may not be very cost-effective if a solution, within a few percent of
the optimum, can be found quickly on a small microcomputer.
Accordingly, heuristic or approximate algorithms are often pre fer red
to exact algorithms for solving the large TSP problems that occur i n
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practice (e.g. drilling problems). Generally speaking, TSP heurist ics
can be classified as tour construction procedures, tour improvement
procedures, and composite procedures, which are based on bo th
construction and improvement techniques.

(a) Construction procedures. The best known procedures in th is
class gradually build a tour by selecting each vertex in turn and b y
inserting them one by one into the current tour. Various measures
are used for selecting the next vertex and for identifying the bes t
insertion place, like the proximity to the current tour and t h e
minimum detour [Rosenkrantz et al. 77].

(b) Improvement procedures. Among the local improvement
procedures, the k-opt exchange heuristics are the most widely used,
in particular, the 2-opt, 3-opt, Or-opt and Lin-Kernighan heurist ics
[Lin 65, Lin and Kernighan 73, Or 76]. These heuristics locally modify
the current solution by replacing k arcs in the tour by k new arcs so
as to generate a new improved tour. Figure 2 shows an example of a
2-opt exchange. Typically, the exchange heuristics are appl ied
iteratively until a local optimum is found, namely a tour which
cannot be improved further via the exchange heuristic u n d e r
consideration. In order to overcome the limitations associated w i th
local optimality, new heuristics like simulated annealing and Tabu
search are now being used [Aarts et al. 88, Cerny 85,  Fiechter 90,
Glover 89, Glover 90, Johnson 90, Kirkpatrick et al. 83, Malek et al.
89]. Basically, these new procedures allow local modifications t h a t
increase the length of the tour. By this means, these methods can
escape from local minima and explore a larger number of solutions.

(c) Composite procedures. Recently developed composite
procedures, which are based on both construction and improvement
techniques, are now among the most powerful heuristics for solving
TSPs. Among the new generation of composite heuristics, the most
successful ones are the CCAO heuristic [Golden and Stewart 85], t h e
iterated Lin-Kernighan heuristic [Johnson 90] and the GENIUS
heuristic [Gendreau et al. 92].

For example, the iterated Lin-Kernighan heuristic can rout inely
find solutions within 1% of the optimum for problems with up t o
10,000 vertices [Johnson 90]. Heuristic solutions within 4% of t h e
optimum for some 1,000,000-city ETSP problems are also reported i n
[Bentley 92]. Here, the tour construction procedure is a simple greedy
heuristic. At the start, each city is considered as a fragment, a n d
multiple fragments are built in parallel by iteratively connecting t h e
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closest fragments together until a single tour is generated. Then, t h e
solution is processed by a 3-opt exchange heuristic. A clever
implementation of the above procedure solved some 1,000,000-city
problems in less than four hours on a VAX 8550. The k e y
implementation idea is that most of the edges that are likely to b e
added during the construction of the tour are not affected by t h e
addition of a new edge. Consequently, only a few calculations need t o
be performed from one iteration to the next. Also, special da ta
structures are designed to implement a priority queue for t h e
insertion of the next edge.

i j

l k

i j

l k

Figure 2.  Exchange of links (i,k),(j,l) for links (i,j),(k,l).

1.3  Genetic algorithms.

Due to the simplicity of its formulation, the TSP has always been
a fertile ground for new solution ideas. Consequently, it is no t
surprising that genetic algorithms have already been applied to t h e
TSP. However, the "pure" genetic algorithm, developed by Holland
and his students at the University of Michigan in the '60s and '70s,
was not designed to solve combinatorial optimization problems. I n
these early days, the application domains were mostly learning tasks
and optimization of numerical functions. Consequently, the original
algorithm needed to be modified to handle combinatorial
optimization problems like the TSP.

This paper describes various extensions to the original algorithm
to solve the TSP. To this end, the rest of the paper is organized along
the following lines. In Sections 2 and 3, we first introduce a simple
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genetic algorithm and explain why this algorithm cannot be appl ied
to the TSP. Then, Sections 4 to 9 survey various extensions proposed
in the literature to address the problem. Finally, Section 10 discusses
other applications in transportation-related domains.

A final remark concerns the class of TSP problems addressed b y
genetic algorithms. Although these algorithms have been applied t o
TSPs with randomly generated distance matrices [Fox and McMahon
91], virtually all work concerns the ETSP. Accordingly, Euclidean
distances should be assumed in the sections that follow, unless it is
explicitly stated otherwise.

Section 2.  A simple genetic algorithm.

This section describes a simple genetic algorithm. The
vocabulary will probably look a little bit "esoteric" to the OR
specialist, but the aim of this section is to describe the basic
principles of the genetic search in the most straightforward a n d
simple way. Then, the next section will explain how to apply these
principles to a combinatorial optimization problem like the TSP.

At the origin, the evolution algorithms were randomized search
techniques aimed at simulating the natural evolution of asexual
species [Fogel et al. 66]. In this model, new individuals were created
via random mutations to the existing individuals. Holland and h is
students extended this model by allowing "sexual reproduction", t h a t
is, the combination or crossover of genetic material from two parents
to create a new offspring. These algorithms were called "genetic
algorithms" [Bagley 67], and the introduction of the crossover
operator proved to be a fundamental ingredient in the success of th is
search technique.

2.1  Underlying principles.

Basically, a genetic algorithm operates on a finite population of
chromosomes or bit strings. The search mechanism consists of t h ree
different phases: evaluation of the fitness of each chromosome,
selection of the parent chromosomes, and application of the mutat ion
and recombination operators to the parent chromosomes. The n e w
chromosomes resulting from these operations form the next
generation, and the process is repeated until the system ceases t o
improve. In the following, the general behavior of the genetic search
is first characterized. Then, Section 2.2 will describe a simple genetic
algorithm in greater detail.
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First, let assume that some numerical function f is to b e
maximized over a set of integers ranging from 0 to 63 (here, w e
ignore the fact that this small problem could be easily solved through
complete enumeration). In order to apply a genetic algorithm to th is
problem, the value of the variable x must first be encoded as a b i t
string. Here, a bit string of length 6 is chosen, so that integers
between 0 (000000) and 63 (111111) can be obtained. The fitness of
each chromosome is f(x), where x is the integer value encoded in t h e
chromosome. Assuming a population of eight chromosomes, an initial
population is created by randomly generating eight different b i t
strings, and by evaluating their fitness through the function f, a s
illustrated in Figure 3. For example, chromosome 1 encodes t h e
integer 49 and its fitness is f(49)=90.

Chromosome 1: 110001 Fitness: 9 0
Chromosome 2: 010101 Fitness: 1 0
Chromosome 3: 110101 Fitness: 1 0 0
Chromosome 4: 100101 Fitness:   5
Chromosome 5: 000011 Fitness: 9 5
Chromosome 6: 010011 Fitness: 9 0
Chromosome 7: 001100 Fitness:   5
Chromosome 8: 101010 Fitness:   5

Figure 3.   A population of chromosomes.

By looking at the similarities and differences between t h e
chromosomes and by comparing their fitness values, it is possible t o
hypothesize that chromosomes with high fitness values have two 1 's
in the first two positions or two 1's in the last two positions. These
similarities are exploited by the genetic search via the concept of
schemata (hyperplanes, similarity templates). A schema is composed
of 0's and 1's, like the original chromosomes, but with the addit ional
"wild card" or "don't care" symbol * , that stands either for 0 or 1. Via
the don't care symbol, schemata represent subsets of chromosomes
in the population. For example, the schema 11**** stands for
chromosomes 1 and 3 in the population of Figure 3, while the schema
****11 stands for chromosomes 5 and 6.

Two fundamental characteristics of schemata are the order a n d
the defining length, namely:

(1) The order is the number of positions with fixed values ( the
schema 11**** is of order 2, the schema 110*00 is of order 5).
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(2) The defining length is the distance between the first and last
positions with fixed values (e.g. the schema 11**** is of length
1, the schema 1****1 is of maximal length 5).

A "building block" is a schema of low order, short defining length
and above-average fitness (where the fitness of a schema is def ined
as the average fitness of its members in the population). Generally
speaking, the genetic algorithm moves in the search space b y
combining the building blocks of two parent chromosomes on a single
offspring. Consequently, the basic assumption at the core of t h e
genetic algorithm is that a better chromosome is generated b y
combining the best features of two good chromosomes. In t h e
previous example, genetic material or bits would be exchanged
between a chromosome with two 1's in the first two positions, a n d
another chromosome with two 1's in the last two positions, so as t o
create an offspring with two 1's in the first two positions and   two 1's
in the last two positions (in the hope that the x value encoded in th is
chromosome would produce a higher f(x) value than both of i ts
parents). Hence, the two above-average building blocks 11*** a n d
***11 are combined to create a better offspring.

2.2  A simple genetic algorithm.

Based on the above principles, a simple "pure" genetic algorithm
can be defined. In the following description, many new terms a r e
introduced. These terms will be defined in Sections 2.2.1 to 2.2.4.

1. Create an initial population of P chromosomes (Generation 0).

2. Evaluate the fitness of each chromosome.

3. Select P parents from the current population via proport ional
selection (i.e. the selection probability is proportional to t h e
fitness).

4. Choose at random a pair of parents for mating. Exchange b i t
strings with the one-point crossover to create two offspring.

5. Process each offspring by the mutation operator, and insert t h e
resulting offspring in the new population.

6. Repeat Steps 4 and 5 until all parents are selected and ma ted
(P offspring are created).

7. Replace the old population of chromosomes by the new one.

8. Evaluate the fitness of each chromosome in the new population.
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9. Go back to Step 3 if the number of generations is less t h a n
some upper bound. Otherwise, the final result is the bes t
chromosome created during the search.

The above algorithm introduces many new concepts, like t h e
selection probability of a chromosome for parenthood, the one-point
crossover operator to exchange bit strings, and the mutation operator
to introduce random perturbations in the search process. These
concepts are now defined more precisely.

2.2.1 Selection probability (selection pressure).

The parent chromosomes are selected for mating v ia
proportional selection, also known as "roulette wheel selection". It is
defined as follows.

1. Sum up the fitness values of all chromosomes in the population.

2. Generate a random number between 0 and the sum of t h e
fitness values.

3. Select the chromosome whose fitness value added to the sum of
the fitness values of the previous chromosomes is greater o r
equal to the random number.

In the population of chromosomes illustrated in Figure 3, t h e
total fitness value is 400. The first chromosome is chosen when t h e
random number falls in the interval [0, 90]. Similarly, chromosomes
2 to 8 are chosen if the random number falls in the intervals (90,
100], (100, 200], (200 , 205], (205, 300], (300, 390], (390, 395] a n d
(395, 400], respectively. Obviously, a chromosome with high f i tness
has a greater probability of being selected as a parent (assimilating
the sum of the fitness values to a roulette-wheel, a chromosome w i th
high fitness covers a larger portion of the roulette). Chromosomes
with high fitness contain more above-average building blocks, a n d
are favored during the selection process. In this way, good solution
features are propagated to the next generation.

However, proportional selection has also some drawbacks. I n
particular, a "super-chromosome" with a very high fitness value will
be selected at almost each trial and will quickly dominate t h e
population. When this situation occurs, the population does no t
evolve anymore, because all its members are similar (a phenomenon
referred to as "premature convergence"). To alleviate this problem,
the rank of the fitness values can be used as an alternative to t h e



1 0

usual scheme [Whitley 89]. In this case, the selection probability of a
chromosome is related to its rank in the population, rather than i ts
absolute fitness value. Accordingly, the selection probability of a
super-chromosome becomes identical to the selection probability of
any chromosome of rank 1 in a given population.

2.2.2  One-point crossover.

The one-point crossover operator is aimed at exchanging b i t
strings between two parent chromosomes. A random position
between 1 and L-1 is chosen along the two parent chromosomes,
where L is the chromosome's length. Then, the chromosomes are cu t
at the selected position, and their end parts are exchanged to create
two offspring. In Figure 4, for example, the parent chromosomes a r e
cut at position 3.

parent 1 : 1 1 0 | 0 0 1

parent 2 : 0 1 0 | 1 1 1
______________________________________

offspring 1 : 1 1 0 1 1 1

offspring 2 : 0 1 0 0 0 1

Figure 4.   The one-point crossover.

A probability is associated to the application of the crossover
operator. If the operator is not applied to the selected parents, t h e y
are copied to the new population without any modification. In th is
way, good chromosomes can be preserved from one generation to t h e
next. The crossover rate can be related to the "aggressiveness" of t h e
search. High crossover rates create more new offspring, at the risk of
loosing many good chromosomes in the current population.
Conversely, low crossover rates tend to preserve the good
chromosomes from one generation to the next, via a more
conservative exploration of the search space. In [De Jong 75], it is
suggested that good performance requires the choice of a fairly high
crossover rate, like 0.6, so that about 60% of the selected parents will
undergo crossover.

Various extensions of the one-point crossover are also repor ted
in the literature. For example, the two-point crossover selects two cut
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points at random on both parent chromosomes, and exchange t h e
substring located between the two cut points. Other generalizations,
like the M-point crossover and the uniform crossover [Syswerda 89]
may be found in the literature, but their description would b e
beyond the scope of this paper.

2.2.3   Mutation.

The bits of the two offspring generated by the one-point
crossover are then processed by the mutation operator. This operator
is applied in turn to each bit with a small probability (e.g. 0.001).
When it is applied at a given position, the new bit value switches
from 0 to 1 or from 1 to 0. The aim of the mutation operator is t o
introduce random perturbations into the search process. It is useful,
in particular, to introduce diversity in homogeneous populations, a n d
to restore bit values that cannot be recovered via crossover (e.g.
when the bit value at a given position is the same for eve ry
chromosome in the population). Accordingly, it is good practice t o
increase the mutation probability as the search progresses, in o rder
to maintain an acceptable level of diversity in the population.

2.2.4  Generation replacement.

In the simple genetic algorithm, the whole population is replaced
by a new population at each generation. Other approaches only
replace a fraction of the population with new chromosomes. I n
particular, the elitist approach always maintains the best member of
the current population in the next population.

Clearly, genetic algorithms differ from traditional search
techniques in many ways. The next section summarizes t h e
distinctive features of the genetic search.

2.3  Characteristics of the genetic search.

Broadly speaking, the search performed by a genetic algorithm
can be characterized in the following way [Goldberg 89]:

(a) Genetic algorithms manipulate bit strings or chromosomes
encoding useful information about the problem, but they d o
not manipulate the information as such (no decoding o r
interpretation).

(b) Genetic algorithms use the evaluation of a chromosome, a s
returned by the fitness function, to guide the search. They d o
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not use any other information about the fitness function or the
application domain.

(c) The search is run in parallel from a population of
chromosomes.

(d) The transition from one chromosome to another in the search
space is done stochastically.

In particular, points (a) and (b) explain the robustness of t h e
genetic algorithms and their wide applicability as meta-heuristics i n
various application domains. However, the simple genetic search
introduced in this section cannot be directly applied to a
combinatorial optimization problem like the TSP. The next section
will now provide more explanations on this matter.

Section 3. Genetic algorithms for the TSP.

The description of the genetic algorithm of Section 2 included
many genetic terms. In order to better understand how genetic
algorithms can be applied to combinatorial optimization problems,
the following equivalence will be useful.

   Combinatorial        Optimization        Genetic        Algorithm     

Encoded Solution Chromosome
Solution Decoded Chromosome
Set of Solutions Population
Objective function Fitness function

In a TSP context, each chromosome encodes a solution to t h e
problem (i.e. a tour). The fitness of the chromosome is related to t h e
tour length, which in turn depends on the ordering of the cities. Since
the TSP is a minimization problem, the tour lengths must b e
transformed, so that high fitness values are associated with shor t
tours, and conversely. A well-known approach is to subtract each
tour length to the maximum tour length found in the cur rent
population. Other approaches are based on the rank of the tours i n
the population (as mentioned in the previous section).

The genetic algorithm searches the space of solutions b y
combining the best features of two good tours into a single one. Since
the fitness is related to the length of the edges included in the tour, it
is clear that the edges represent the basic information to b e
transferred to the offspring. The success or failure of the approaches
described in the following sections, can often be explained by the i r
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ability or inability to adequately represent and combine the edge
information in the offspring.

Difficulties quickly arise when the simple "pure" genetic
algorithm of Section 2 is applied to a combinatorial optimization
problem like the TSP. In particular, the encoding of a solution as a b i t
string is not convenient. Assuming a TSP of size N, each city would b e
coded using 2log N   bits, and the whole chromosome would encode a

tour as a sequence of N* 2log N   bits. Accordingly, most sequences i n
the search space would not correspond to feasible tours. For example,
it would be easy to create a sequence with two occurrences of t h e
same city, using the mutation operator. Moreover, when the n u m b e r
of cities is not a power of two, some bit sequences in the code would
not correspond to any city. In the literature, fitness functions w i th
penalty terms, and repair operators to transform infeasible solutions
into feasible ones have been proposed to alleviate these problems
[Richardson et al. 89, Siedlecki and Sklansky 89, Michalewicz a n d
Janikow 91]. However, these approaches were designed for v e r y
specific application domains, and are not always relevant in a TSP
context.

The preferred research avenue for the TSP is to design
representational frameworks that are more sophisticated than the bit
string, and to develop specialized operators to manipulate these
representations and create feasible sequences. For example, t h e
chromosomes shown in Figure 5 are based on the "path"
representation of a tour (on cities 1 to 8). It is clear that the mutation
operator and the one-point crossover are still likely to generate
infeasible tours when they are applied to this integer representat ion.
For example, applying the crossover operator at position 2 creates
two infeasible offspring, as illustrated in Figure 5.

tour (12564387): 1 2 | 5 6 4 3 8 7

tour (14236578): 1 4 | 2 3 6 5 7 8
________________________________________________________

offspring 1 : 1 2 2 3 6 5 7 8

offspring 2 : 1 4 5 6 4 3 8 7

Figure 5.  Application of the one-point crossover
on two parent tours.
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None of the two offspring is a permutation of the cities. The TSP,
as opposed to most problems tackled by genetic algorithms, is a p u r e
ordering problem. Namely, all chromosomes carry exactly the same
values and differ only in the ordering of these values. Accordingly,
specialized permutation operators must be developed for th is
problem.

In the following sections, we explain how genetic algorithms can
be tailored to the TSP. The extensions proposed in the literature will
be classified according to the representational framework used t o
encode a TSP tour into a chromosome, and the crossover operators
used to manipulate these representations.

Section 4.  The ordinal representation.

In [Grefenstette et al. 85], the authors developed an ingenious
coding scheme for the classical one-point crossover. With this coding
scheme, the one-point crossover always generates feasible offspring.
This representation is mostly of historical interest, because t h e
sequencing information in the two parent chromosomes is not well
transferred to the offspring, and the resulting search is close to a
random search.

The encoding is based on a reference or canonic tour. For N=8
cities, let us assume that this canonic tour is 12345678. Then, t h e
tour to be encoded is processed city by city. The position of t h e
current city in the canonic tour is stored at the corresponding
position in the resulting chromosome. The canonic tour is updated b y
deleting that city, and the procedure is repeated with the next city i n
the tour to be encoded.

This approach is illustrated in Figure 6 using a small example. I n
this Figure, the first string is the current tour to be encoded, t h e
second string is the canonic tour and the third string is the result ing
chromosome. The underlined city in the first string corresponds t o
the current city. The position of the current city in the canonic tour is
used to build the ordinal representation.
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Current Tour Canonic Tour Ordinal Representation

    1     2 5 6 4 3 8 7     1     2 3 4 5 6 7 8 1
1     2     5 6 4 3 8 7     2     3 4 5 6 7 8 1 1
1 2     5     6 4 3 8 7 3 4     5     6 7 8 1 1 3
1 2 5     6     4 3 8 7 3 4     6     7 8 1 1 3 3
1 2 5 6     4     3 8 7 3     4     7 8 1 1 3 3 2
1 2 5 6 4     3     8 7     3     7 8 1 1 3 3 2 1
1 2 5 6 4 3     8     7 7     8    1 1 3 3 2 1 2
1 2 5 6 4 3 8     7        7    1 1 3 3 2 1 2 1

Figure 6.   The ordinal representation.

The resulting chromosome 11332121 can be easily decoded into
the original tour 12564387 by the inverse process. Interest ingly
enough, two parent chromosomes encoded in this way always
generate a feasible offspring when they are processed by the one-
point crossover. In fact, each value in the ordinal representat ion
corresponds to a particular position in the canonic tour. Exchanging
values between two parent chromosomes simply modifies the o rder
of selection of the cities in the canonic tour. Consequently, a
permutation is always generated. For example, the two pa ren t
chromosomes in Figure 7 encode the tours 12564387 and 14236578,
respectively. After a cut at position 2, a feasible offspring is created.

parent 1 (12564387): 1  1 | 3 3 2 1 2 1

parent 2 (14236578): 1  3 | 1 1 2 1 1 1
_________________________________________________________

offspring (12346578): 1  1 1 1 2 1 1 1

Figure 7.  Application of the one-point crossover on two parent
 tours using the ordinal representation.

Section 5. The path representation.

As opposed to the ordinal representation, the p a t h
representation is a natural way to encode TSP tours. However, a
single tour can be represented in 2N distinct ways, because any city
can be placed at position 1, and the two orientations of the tour a r e
the same for a symmetric problem. Of course, the factor N can b e
removed by fixing a particular city at position 1 in the chromosome.
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The crossover operators based on this representation typically
generate offspring that inherit either the relative order or t h e
absolute position of the cities from the parent chromosomes. We will
now describe these operators in turn. In each case, a single offspring
is shown. However, a second offspring can be easily generated b y
inverting the roles of the parents.

5.1  Crossover operators preserving the absolute position.

The two crossover operators introduced in this section w e r e
among the first to be designed for the TSP. Generally speaking, t h e
results achieved with these operators are not very impressive (as
reported at the end of this section).

(a)  Partially-Mapped crossover (PMX) [Goldberg and Lingle 85]

This operator first randomly selects two cut points on bo th
parents. In order to create an offspring, the substring between t h e
two cut points in the first parent replaces the corresponding
substring in the second parent. Then, the inverse replacement is
applied outside of the cut points, in order to eliminate duplicates a n d
recover all cities.

In Figure 8, the offspring is created by first replacing t h e
substring 236 in parent 2 by the substring 564. Hence, city 5
replaces city 2, city 6 replaces city 3, and city 4 replaces city 6 (s tep
1). Since cities 4 and 5 are now duplicated in the offspring, t h e
inverse replacement is applied outside of the cut points. Namely, city
2 replaces city 5, and city 3 replaces city 4 (step 2). In the la t ter
case, city 6 first replaces city 4, but since city 6 is already found i n
the offspring at position 4, city 3 finally replaces city 6. Multiple
replacements at a given position occur when a city is located
between the two cut points on both parents, like city 6 in th is
example.

parent 1 : 1    2 | 5 6   4 | 3 8 7

parent 2 : 1 4 | 2 3  6 | 5 7 8
______________________________________________________
offspring
(step 1) : 1 4    5 6   4 5 7 8
(step 2) : 1 3    5 6   4 2 7 8

Figure 8.  The partially-mapped crossover.
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Clearly, PMX tries to preserve the absolute position of the cities,
when they are copied from the parents to the offspring. In fact, t h e
number of cities that do not inherit their position from one of t h e
two parents is at most equal to the length of the string between t h e
two cut points. In the above example, only cities 2 and 3 do no t
inherit their absolute position from one of the two parents.

(b)  Cycle crossover (CX) [Oliver et al. 87]

The cycle crossover focuses on subsets of cities that occupy t h e
same subset of positions in both parents. Then, these cities are copied
from the first parent to the offspring (at the same positions), and t h e
remaining positions are filled with the cities of the second parent. I n
this way, the position of each city is inherited from one of the two
parents. However, many edges can be broken in the process, because
the initial subset of cities is not necessarily located at consecutive
positions in the parent tours.

In Figure 9, the subset of cities {3,4,6} occupies the subset of
positions {2,4,5} in both parents. Hence, an offspring is created b y
filling the positions 2, 4 and 5 with the cities found in parent 1, a n d
by filling the remaining positions with the cities found in parent 2.

parent 1: 1    3    5 6   4    2 8 7

parent 2: 1 4   2 3  6   5 7 8
______________________________________________________
offspring: 1 3    2 6   4 5 7 8

Figure 9.   The cycle crossover.

Note that the crossover operator introduced in [Brady 85] is a
restricted version of CX, where the subset of cities must occupy
consecutive positions in both parents.

Computational Results

[Goldberg and Lingle 85] tested the PMX operator on the small
10-city TSP problem in [Karg and Thompson 64], and reported good
results. One run generated the optimal tour of length 378, and t h e
other run generated a tour of length 381. However, later studies i n
[Oliver et al. 87, Starkweather et al. 91] demonstrated that PMX a n d
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CX were not really competitive with the order-preserving crossover
operators (see Section 5.2). 

5.2 Crossover operators preserving the relative order.

Most operators in this section were designed a few years a f te r
the operators of Section 5.1, and generally provide much be t te r
results on TSPs.

(a) Modified crossover [Davis 85]

This crossover operator is an extension of the one-point
crossover for permutation problems. A cut position is chosen a t
random on the first parent chromosome. Then, an offspring is created
by appending the second parent chromosome to the initial part of the
first parent (before the cut point), and by eliminating the duplicates.
An example is provided in Figure 10.

parent 1: 1    2    | 5 6   4    3 8 7

parent 2: 1 4   2 3  6   5 7 8
______________________________________________________
offspring: 1 2     4 3  6 5 7 8

Figure 10.  The modified crossover.

Note that the cities occupying the first positions in parent 2 t e n d
to move forward in the resulting offspring (with respect to the i r
positions in parent 1). For example, city 4 occupies the fifth position
in parent 1 but since it occupies the second position in parent 2, i t
moves to the third position in the resulting offspring.

(b)  Order Crossover (OX) [Davis 85, Oliver et al. 87]

This crossover operator extends the modified crossover of Davis
by allowing two cut points to be randomly chosen on the pa ren t
chromosomes. In order to create an offspring, the string between t h e
two cut points in the first parent is first copied to the offspring. Then,
the remaining positions are filled by considering the sequence of
cities in the second parent, starting after the second cut point (when
the end of the chromosome is reached, the sequence continues a t
position 1).
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In Figure 11, the substring 564 in parent 1 is first copied to t h e
offspring (step 1). Then, the remaining positions are filled one by one
after the second cut point, by considering the corresponding
sequence of cities in parent 2, namely 57814236 (step 2). Hence, city
5 is first considered to occupy position 6, but it is discarded because
it is already included in the offspring. City 7 is the next city to b e
considered, and it is inserted at position 6. Then, city 8 is inserted a t
position 7, city 1 is inserted at position 8, city 4 is discarded, city 2 is
inserted at position 1, city 3 is inserted at position 2, and city 6 is
discarded.

parent 1 : 1    2 | 5 6   4 | 3 8 7

parent 2 : 1 4 | 2 3  6 | 5 7 8
______________________________________________________
offspring
(step 1) : - -    5 6   4 - - -
(step 2) : 2 3    5 6   4 7 8 1

Figure 11.  The order crossover.

Clearly, OX tries to preserve the relative order of the cities i n
parent 2, rather than their absolute position. In Figure 11, t h e
offspring does not preserve the position of any city in parent 2.
However, city 7 still appears before city 8, and city 2 before city 3 i n
the resulting offspring. It is worth noting that a variant of OX, known
as the maximal preservative crossover, is also described in [Gorges-
Schleuter 89].

(c)  Order-Based crossover (OBX) [Syswerda 90]

This crossover also focuses on the relative order of the cities o n
the parent chromosomes. First, a subset of cities is selected in t h e
first parent. In the offspring, these cities appear in the same order a s
in the first parent, but at positions taken from the second parent .
Then, the remaining positions are filled with the cities of the second
parent .

In Figure 12, cities 5, 4, and 3 are first selected in parent 1, a n d
must appear in this order in the offspring. Actually, these cities
occupy positions 2, 4 and 6 in parent 2. Hence, cities 5, 4 and 3
occupy positions 2, 4 and 6, respectively, in the offspring. The
remaining positions are filled with the cities found in parent 2.
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parent 1: 1    2       5   6      4         3   8 7

parent 2: 1     4       2     3      6       5    7 8
______________________________________________________
offspring: 1 5     2 4   6 3 7 8

Figure 12.  The order-based crossover

(d)  Position-Based crossover (PBX) [Syswerda 90]

Here, a subset of positions is selected in the first parent. Then,
the cities found at these positions are copied to the offspring (at t h e
same positions). The other positions are filled with the remaining
cities, in the same relative order as in the second parent.

The name of this operator is a little bit misleading, because it is
the relative order of the cities that is inherited from the parents ( the
absolute position of the cities inherited from the second parent a r e
rarely preserved). This operator can be seen as an extension of t h e
order crossover OX, where the cities inherited from the first pa ren t
do not necessarily occupy consecutive positions.

In Figure 13, positions 3, 5 and 6 are first selected in parent 1.
Cities 5, 4, and 3 are found at these positions, and occupy the same
positions in the offspring. The other positions are filled one by one,
starting at position 1, by inserting the remaining cities according t o
their relative order in parent 2, namely 12678.

parent 1: 1    2       5   6      4         3   8 7

parent 2: 1 4   2 3  6   5 7 8
______________________________________________________
offspring: 1 2    5  6 4 3 7 8

Figure 13.  The position-based crossover.

Computational Results

Studies by [Oliver et al. 87, Starkweather et al. 91] demonstrated
that order-preserving crossover operators were clearly superior t o
the operators preserving the absolute position of the cities.

In [Oliver et al. 87], PMX, CX and OX were applied to the 30-c i ty
problem in [Hopfield and Tank 85]. They found that the best tou r
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generated with OX was 11% shorter than the best PMX tour, and 15%
shorter than the best CX tour. In a later study [Starkweather et al.
91], six different crossover operators were tested on the problem of
Hopfield and Tank. Thirty different runs were performed with each
operator. In this experiment, OX found the optimum 25 times (out of
30), while PMX found the optimum only once, and CX never found
the optimum.

Table 1 summarizes the results in [Starkweather et al. 91]. It is
worth noting that the parameters of the genetic algorithm w e r e
tuned for each crossover operator, so as to provide the best possible
results. Accordingly, the population size and number of trials (i.e.
total number of tours generated) are not the same in each case. The
edge recombination operator ER will be introduced in the next
section, and should be ignored for now.

Crossover Number of
Trials

Pop. Size Optimum Average
Tour

Length

Edge Recombination (ER)  30,000 1,000 3 0 / 3 0 420.0

Order (OX) 100,000 1,000 2 5 / 3 0 420.7

Order Based (OBX) 100,000 1,000 1 8 / 3 0 421.4

Position Based (PBX) 120,000 1,000 1 8 / 3 0 423.4

Partially Mapped (PMX) 120,000 1,400 1 / 3 0 452.8

Cycle (CX) 140,000 1,500 0 / 3 0 490.3

Table 1.  Comparison of six crossover operators (30 runs)
in [Starkweather et al. 91].

Section 6.  The adjacency representation.

The adjacency representation is designed to facilitate t h e
manipulation of edges. The crossover operators based on th is
representation generate offspring that inherit most of their edges
from the parent chromosomes.

The adjacency representation can be described as follows: city j
occupies position i in the chromosome if there is an edge from city i
to city j in the tour. For example, the chromosome 38526417 encodes
the tour 13564287. City 3 occupies position 1 in the chromosome
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because edge (1,3) is in the tour. Similarly, city 8 occupies position 2
because edge (2,8) is in the tour, etc. As opposed to the p a t h
representation, a tour has only two different adjacency
representations for symmetric TSPs.

Various crossover operators are designed to manipulate th is
representation, and are introduced in the next sections. These
operators are aimed at transferring as many edges as possible f rom
the parents to the offspring. However, it is important to note t h a t
they share a common weakness: the selection of the last edge, for
connecting the final city to the initial city, is not enforced. In o ther
words, the last edge is added to the final solution, without a n y
reference to the parents. Accordingly, this edge is rarely inherited.

(a) Alternate Edges crossover [Grefenstette et al. 85]

This operator is mainly of historical interest. As reported i n
[Grefenstette et al. 85], the results with this operator have been
uniformly discouraging. However, it is a good introduction to t h e
other edge-preserving operators.

Here, a starting edge (i,j) is selected at random in one parent .
Then, the tour is extended by selecting the edge (j,k) in the o ther
parent. The tour is progressively extended in this way b y
alternatively selecting edges from the two parents. When an edge
introduces a cycle, the new edge is selected at random (and is no t
inherited from the parents).

In Figure 14, an offspring is generated from two pa ren t
chromosomes that encode the tours 13564287 and 14236578,
respectively, using the adjacency representation. Here, edge (1,4) is
first selected in parent 2, and city 4 in position 1 of parent 2 is
copied at the same position in the offspring.

Then, the edges (4,2) in parent 1, (2,3) in parent 2, (3,5) i n
parent 1 and (5,7) in parent 2 are selected and inserted in t h e
offspring. Then, edge (7,1) is selected in parent 1. However, this edge
introduces a cycle and a new edge incident to 7 and to a city not y e t
visited is selected at random. Let us assume that (7,6) is chosen.
Then, edge (6,5) is selected in parent 2, but it also introduces a cycle.
At this point, (6,8) is the only selection that does not introduce a
cycle. Finally, the tour is completed with edge (8,1).
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parent 1: 3    8    5 2   6    4 1 7

parent 2: 4 3   6 2  7   5 8 1
______________________________________________________
offspring: 4 3   5 2   7 8 6 1

Figure 14.  The alternate edges crossover.

The final offspring encodes the tour 14235768, and all edges i n
the offspring are inherited from the parents, apart from the edges
(7,6) and (6,8).

In the above description, an implicit orientation of the pa ren t
tours is assumed. For symmetric problems, the two edges that a r e
incident to a given city can be considered. In the above example,
when we get to city 7 and select the next edge in parent 1, edges
(7,1) and (7,8) can both be considered. Since (7,1) introduces a cycle,
edge (7,8) is selected. Finally, edges (8,6) and (6,1) complete the tour.

parent 1: 3    8    5 2   6    4 1 7

parent 2: 4 3   6 2  7   5 8 1
______________________________________________________
offspring: 4 3   5 2   7 1 8 6

Figure 15.  The alternate edges crossover (revisited).

(b)  Edge Recombination crossover (ER) [Whitley et al. 89]

Quite often, the alternate edge operator introduces m a n y
random edges in the offspring, particularly the last edges, when t h e
choices for extending the tour are limited. Since the offspring m u s t
inherit as many edges as possible from the parents, the introduction
of random edges should be minimized. The edge recombination
operator reduces the myopic behavior of the alternate edge approach
with a special data structure called the "edge map".

Basically, the edge map maintains the list of edges that a r e
incident to each city in the parent tours, and lead to cities not y e t
included in the offspring. Hence, these edges are still available for
extending the tour, and are said to be active. The strategy is t o
extend the tour by selecting the edge that leads to the city with t h e
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minimum number of active edges. In case of equality between two or
more cities, one of these cities is selected at random. With th is
strategy, the approach is less likely to get trapped in a "dead end",
namely, a city with no remaining active edges that requires t h e
selection of a random edge.

For the tours 13564287 and 14236578 (path representation),
the initial edge map is shown in Figure 16.

city 1 has edges to :  3 4 7 8
city 2 has edges to :  3 4 8
city 3 has edges to :  1 2 5 6
city 4 has edges to :  1 2 6
city 5 has edges to :  3 6 7
city 6 has edges to :  3 4 5
city 7 has edges to :  1 5 8
city 8 has edges to :  1 2 7

Figure 16.   The edge map.

The operation of the genetic recombination crossover operator
will now be illustrated on this initial edge map (see Figure 17). To
this end, the edge map will be updated after each city selection. I n
these edge maps, cities of particular interest are underlined (namely,
cities that are adjacent to the selected city in the parents, and are no t
visited yet).

Let us assume that city 1 is selected as the starting city.
Accordingly, all edges incident to city 1 must be deleted from t h e
initial edge map. From city 1, we can go to city 3, 4, 7 or 8. City 3 has
three active edges, while cities 4, 7 and 8 have two active edges, a s
shown by edge map (a) in Figure 17. Hence, a random choice is m a d e
between cities 4, 7 and 8. We assume that city 8 is selected. From 8,
we can go to cities 2 and 7. As indicated in edge map (b), city 2 has
two active edges and city 7 only one, so the latter is selected. From 7,
there is no choice, but to go to city 5. From this point, edge map (d)
offers a choice between cities 3 and 6 with two active edges. Let u s
assume that city 6 is randomly selected. From city 6, we can go t o
cities 3 and 4, and edge map (e) indicates that both cities have one
active edge. We assume that city 4 is randomly selected. Finally,
from city 4 we can only go to city 2, and from city 2 we must go t o
city 3.
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The final tour is 18756423 and all edges are inherited from bo th
parents.

City 1 is selected City 8 is selected

(a) city 2 has edges to : 3 4 8 (b) city     2     has edges to:     3        4    
city     3     has edges to :     2        5        6    city 3 has edges to: 2 5 6
city     4     has edges to :     2        6    city 4 has edges to: 2 6
city 5 has edges to: 3 6 7 city 5 has edges to: 3 6 7
city 6 has edges to: 3 4 5 city 6 has edges to: 3 4 5
city     7     has edges to :     5        8    city     7     has edges to:     5    
city     8     has edges to :     2        7    

City 7 is selected City 5 is selected

(c) city 2 has edges to : 3 4 (d) city 2 has edges to: 3 4
city 3 has edges to: 2 5 6 city     3     has edges to:     2        6    
city 4 has edges to: 2 6 city 4 has edges to: 2 6
city     5     has edges to :     3        6     city     6     has edges to:     3        4    
city 6 has edges to: 3 4 5

City 6 is selected City 4 is selected

(e) city 2 has edges to : 3 4 (f) city     2     has edges to:     3    
city     3     has edges to :     2    city 3 has edges to: 2 6
city     4     has edges to :     2    

City 2 is selected City 3 is selected

(g) city     3     has edges to :  

Figure 17.   Evolution of the edge map.

A variant which focuses on edges common to both parents is also
described in [Starkweather et al. 91]. The common edges are marked
with an asterisk in the edge map, and are always selected first (even
if they do not lead to the city with the minimum number of act ive
edges). In the previous example, (2,4), (5,6) and (7,8) are found i n
both parents and have priority over all other active edges. In t h e
above example, the new approach generates the same tour, because
the common edges always lead to the cities with the min imum
number of active edges.
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(c)  Heuristic crossover (HX) [Grefenstette et al. 85, Grefenstette 87]

It is worth noting that the previous crossover operators did no t
exploit the distances between the cities (i.e. the length of the edges).
In fact, it is a characteristic of the genetic approach to avoid a n y
heuristic information about a specific application domain, apart f rom
the overall evaluation or fitness of each chromosome. This
characteristic explains the robustness of the genetic search and i ts
wide applicability.

However, some researchers departed from this line of thinking
and introduced domain-dependent heuristics into the genetic search,
to create "hybrid" genetic algorithms. They have sacrificed
robustness over a wide class of problems, for better performance o n
a specific problem.  The heuristic crossover HX is an example of th is
approach and can be described as follows:

1. Pick a random starting city from one of the two parents.

2. Compare the edges leaving the current city in both parents
and select the shorter edge.

3. If the shorter parental edge introduces a cycle in the part ia l
tour, then extend the tour with a random edge that does no t
introduce a cycle.

4. Repeat Steps 2 and 3 until all cities are included in the tour.

Note that a variant is proposed in [Suh and Gucht 87, Liepins e t
al. 87] to emphasize the inheritance of edges from the parents.
Basically, step 3 is modified as follows:

3'. if the shorter parental edge introduces a cycle, then try t h e
other parental edge. If it also introduces a cycle, then extend
the tour with a random edge that does not introduce a cycle.

[Jog et al. 89] also proposed to replace the random edge selection
by the selection of the shortest edge in a pool of random edges ( the
size of the pool being a parameter of the algorithm).

Computational Results

Results reported in the literature show that the edge preserving
operators are superior to the other types of crossover operators
[Liepins et al. 90, Starkweather et al. 91]. In particular, the edge
recombination ER outperformed all other tested operators in t h e
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study of [Starkweather et al. 91]. A genetic algorithm based on ER
was run 30 times on the 30-city problem described in [Hopfield a n d
Tank 85], and the optimal tour was found on each run (see Table 1).

However, these operators alone cannot routinely find good
solutions to larger TSP problems. For example, [Grefenstette et al. 85]
applied the heuristic crossover HX to three TSP problems of size 50,
100 and 200, and the reported solutions were as far as 25%, 16% a n d
27% over the optimum, respectively. Generally speaking, many edge
crossings can still be observed in the solutions generated by the edge
preserving operators. Accordingly, powerful mutation operators
based on k-opt exchanges [Lin 65] are added to these operators t o
improve solution quality. These hybrid schemes will be discussed i n
the next section.

Table 2 summarizes sections 4 to 6 by providing a global view of
the various crossover operators for the TSP. They are classified
according to the type of information transferred to the offspring (i.e.
relative order of the cities, absolute position of the cities, or edges).

Crossover Operator Relative
Order

Position Edge

Modified X

Order (OX) X

Order Based (OBX) X

Position Based (PBX) X

Partially Mapped (PMX) X

Cycle (CX) X

Alternate Edge X

Edge Recombination (ER) X

Heuristic (HX) X

Table 2. Information inheritance for nine crossover operators.

As a final remark, it is worth noting that [Fox and McMahon 91]
describe an alternative matrix-based encoding of the TSP tours.
Boolean matrices, encoding the predecessor and successor
relationships in the tour,  are manipulated by special union a n d
intersection crossover operators. This approach provided mixed
results on problems with four different topologies. In particular,
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union and intersection operators were both outperformed by simple
unary mutation operators. However, these operators presented a n
interesting characteristic: they managed to make progress even when
elitism was not used (i.e. when the best tour in a given population
was not preserved in the next population).

Recently, [Homaifar et al. 93] reported good results with another
matrix-based encoding of the tours. In this work, each chromosome
corresponds to the adjacency matrix of a tour (i.e. the entry (i,j) i n
the matrix is one if arc (i,j) is in the tour). Accordingly, there is
exactly one entry equal to one in each row and column of the matrix.
Then, the parent chromosomes produce offspring by exchanging
columns via a specialized matrix-based crossover operator called MX.
Since the resulting offspring can have rows with either no entry o r
many entries equal to one, a final "repair" operator is applied t o
generate valid adjacency matrices. A 2-opt exchange heuristic is also
used to locally optimize the solutions. With this approach, the authors
solved eight classical TSP problems ranging in size from 25 to 3 1 8
nodes, and they matched the best known solutions for five problems
out of eight.

Section 7.  Mutation operators.

Mutation operators for the TSP are aimed at randomly
generating new permutations of the cities. As opposed to the classical
mutation operator, which introduces small perturbations into t h e
chromosome, the permutation operators for the TSP often great ly
modifies the original tour. These operators are summarized below.

(a)  Swap

Two cities are swapped, and their positions are exchanged. This
mutation operator is the closest in philosophy to the original
mutation operator, because it only slightly modifies the original tour.

(b) Local hill-climbing

Typically, a local edge exchange heuristic is applied to the tou r
(e.g. 2-opt, 3-opt). The exchange heuristic is applied for a fixed
number of iterations, or until a local optimum is found. Note that t h e
reordering operator known as inversion [Holland 75] corresponds t o
a single 2-opt exchange.

(c) Scramble

Two cut points are selected at random on the chromosome, a n d
the cities within the two cut points are randomly permuted.
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Computational Results

The studies of [Suh and Gucht 87, Jog et al. 89, Ulder et al. 91]
pointed out the importance of the hill-climbing mutation operators.
Suh and Gucht added a 2-opt hill-climbing mutation operator to t h e
heuristic crossover HX. On the first 100-city problem in [Krolak et al.
71], they found a tour of length 21,651, only 1.7% over the opt imum.
The heuristic crossover HX alone found a solution as far as 25% over
the optimum.

On the same problem, [Jog et al. 89] found that the average a n d
best tours, over 10 different runs, were 2.6% and 0.8% over t h e
optimum, with a similar approach based on HX and 2-opt. By adding
Or-opt (i.e. some chromosomes perform a 2-opt hill-climbing, whi le
others perform a Or-opt), the average and best solutions improved t o
1.4% and 0.01% over the optimum, respectively.

In [Ulder et al. 91], eight classical TSP problems ranging in size
from 48 to 666 cities were solved with a genetic algorithm based o n
the order crossover OX and the Lin-Kernighan hill-climbing heuristic.
Five runs were performed on each problem and the averages w e r e
within 0.4% of the optimum in each case. Table 3 shows their resul ts
for the three largest problems of size 442, 532 and 666 [Padberg a n d
Rinaldi 87, Grotschel and Holland 88]. This genetic algorithm w a s
compared with four other solution procedures, and it found the bes t
solution in each case. All approaches were allowed the same amount
of computation time on a VAX 8650, using the computation time of
the simulated annealing heuristic as the reference. In Table 3, t h e
number in each cell is the average % over the optimum.

[Braun 91] also reported interesting results on the 442- a n d
666-city problems. Fifty different runs were performed with a
genetic algorithm based on the order crossover OX and a mixed 2 -
opt, Or-opt hill-climbing. He found the optimum of the 442-c i ty
problem, and a solution within 0.04% of the optimum for the 6 6 6 -
city problem. On a 431-city problem, each run generated a solution
within 0.5% of the optimum, and about 25% of the solutions w e r e
optimal. In the latter case, the average run time on a Sun
workstation was about 30 minutes. Braun also reported that a 2 2 9 -
city problem was solved in less than three minutes.
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TSP CPU Time
(seconds)

SA M-2opt M-LK G-2opt G-LK

442-c i ty 4,100 2.60 % 9.29 % 0.27 % 3.02 % 0.19 %

532-ci ty 8,600 2.77 % 8.34 % 0.37 % 2.99 % 0.17 %

666-ci ty 17,000 2.19 % 8.67 % 1.18 % 3.45 % 0.36 %

SA Simulated Annealing
M-2opt Multi-Start 2-opt (a new starting point is chosen when a loca l

optimum is found)
M-LK Mult i-Start Lin-Kernighan
G-2opt Genetic algorithm with 2-opt mutation operator
G-LK Genetic algorithm with Lin-Kernighan mutation operator

Table 3. Average % over the optimum (5 runs)
for five solution procedures in [Ulder et al. 91].

Section 8.  Parallel implementations.

The genetic algorithm is well suited for paral lel
implementations, because it is applied to a population of solutions. I n
particular, a parallel implementation described in [Muhlenbein et al.
87, Mulhenbein et al. 88, Gorges-Schleuter 89, Mulhenbein 91] w a s
very successful on some large TSP problems.

In this implementation, each processor is responsible for a single
chromosome. Since the processors (chromosomes) are linked together
according to a fixed topology, the population of chromosomes is
structured. Namely, a neighborhood can be established around each
chromosome based on this topology, and reproduction takes place
among neighboring chromosomes only. Since the neighborhoods
intersect, the new genetic material slowly "diffuses" through t h e
whole population. One main benefit of this organization over a
uniform population, where each chromosome can mate with a n y
other chromosome, is that diversity is more easily maintained in t h e
population. Accordingly, the parallel genetic algorithm can work w i th
smaller populations, without suffering from premature convergence.

The parallel genetic algorithm can be described as follows.

1. Create an initial random population.

2. Each chromosome performs a local hill climbing (2-opt).



3 1

3. Each chromosome selects a partner for mating in i ts
neighborhood.

4. An offspring is created with an appropriate crossover
operator (OX).

5. The offspring performs a local hill climbing (2-opt). Then, i t
replaces its parent if the two conditions below are satisfied:

(a) it is better than the worst chromosome in t h e
parent's neighborhood.

(b) it is better than the parent, if the parent is the bes t
chromosome in its neighborhood (elitist strategy).

This algorithm is totally asynchronous. Each chromosome selects
a partner for mating in its neighborhood without any regard for t h e
population as a whole (which implies that some chromosomes can b e
at generation T, while other chromosomes are at generation T+1 o r
more). Note also that the algorithm always searches for new local
optima. In particular, it combines two local optima to generate a n e w
local optimum that is hopefully better than the two previous ones.

In [Whitley et al. 90], the authors describe an al ternat ive
implementation where subpopulations of chromosomes evolve i n
parallel on different processors. After a fixed number of i terat ions
(based on the size of the subpopulations), the best chromosomes o n
each processor migrate to a neighboring processor and replace t h e
worst chromosomes on that processor. A similar idea is also found i n
[Braun 91].

Computational Results

[Whitley et al. 90] solved a 105-city problem with the i r
distributed approach based on migration using the edge
recombination operator ER for crossover, and no mutation operator.
With this parallel algorithm, they found the optimum tour in 1 5
different runs (out of 30). In addition, 29 solutions were within 0.5%
of the optimum, and all solutions were within 1% of the optimum.

The parallel genetic algorithm [Mulhenbein et al. 88, Gorges-
Schleuter 89] was applied to the classical 442- and 532-c i ty
problems described in [Padberg and Rinaldi 87, Grotschel a n d
Holland 88]. On a parallel computer with 64 T800 transputers, the i r
algorithm solved the two problems in approximately 0.6 and one
hour (the computation times can change depending on the parameter
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settings). The best solutions for the 442- and 666-city problems
were within 0.3% and 0.1% of the optimum, respectively. Note t h a t
[Braun 91] found the optimal solution of the 442-city problem w i th
his approach (c.f. Section 7).

Section 9.  Overview of the computational results

The results published in the literature on genetic algorithms
cannot be easily compared, because various algorithmic designs a n d
parameter settings are used. With respect to the algorithmic design,
most implementations use a proportional selection scheme based o n
some transformation of the raw fitness value or tour length (c.f.
scaling, ranking, etc.). Various generation replacement mechanisms
are also described, ranging from a complete replacement of t h e
population without any form of elitism, to the replacement of t h e
worst tour by a single newly created tour. Judicious parameter
settings can also improve the quality of the final solution (e.g.
population size, maximum number of generations, crossover a n d
mutation rates, etc.). Finally, the initial population can be generated
in various ways (e.g. random tours versus heuristic tours)

Although a particular implementation scheme can influence t h e
quality of the final solution, we avoided implementation details i n
the previous sections to focus on the crossover and mutat ion
operators only. This approximation greatly simplified the description
of the computational results. Generally speaking, the resul ts
published in the literature support the following conclusions:

(a) The edge-preserving crossover operators outperform t h e
operators that preserve the relative order or the absolute
position of the cities.

(b) The combination of crossover and local hill-climbing mutat ion
is critical to the success of the genetic algorithm. Crossover
alone typically generates tours with many edge crossings
(which can be easily eliminated with a 2-opt).

(c) An efficient approach for solving large TSP problem is t o
divide the population of chromosomes into subpopulations.
The subpopulations evolve in parallel and periodically
exchange genetic material. The structure in the population
alleviates premature convergence by maintaining a n
acceptable level of diversity. Hence, large problems can b e
solved with relatively small populations.
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(d) For any given implementation, the quality of the final solution
increases with the size of the population. This result is also
related to the diversity found in large populations.

Table 4 summarizes the paper, by collecting all the resul ts
presented in the previous sections. When the tour length is repor ted
as a % above the best known solution, the corresponding entry is
shown as +n%. For example, the best result reported in [Jog et al. 89]
on a 100-city problem is 0.01% over the best known solution.
Accordingly, the entry under the column heading "Length of Tour
from Genetic Algorithm" is +0.01%.

Finally, it is worth noting that a tour of length 27,702 was found
by Mulhenbein on the 532-city of Padberg and Rinaldi, using t h e
parallel genetic algorithm PGA, as reported in [Johnson 90]. This
solution was obtained after less than 3 hours on a network of 6 4
transputers. The true optimum of 27,686 was found for the first t ime
with an exact branch-and-cut algorithm after 5 hours of computation
on a supercomputer [Padberg and Rinaldi 87, Padberg and Rinaldi
88]. On the same problem, [Fiechter 90] reports a tour of length
27,839 after 100 runs of the Tabu search, while [Johnson 90] repor ts
a solution value of 27,705 after 20,000 different runs of the Lin-
Kernighan heuristic. In the latter case, it took about 530 hours on a
Sequent computer to get this result. Finally, the iterated Lin-
Kernighan heuristic, which introduces some randomization into t h e
original exchange procedure, found the optimum on 6 runs out of 20,
with an average solution value of 27,699. Each run took about 8
hours on a Sequent computer. The iterated Lin-Kernighan heurist ic
also found the optimum for many classical problems reported in t h e
literature, including a problem with 2,392 cities [Johnson 90].

Overall, the results reported in this section indicate that genetic
algorithms are competitive with the best known heuristics for t h e
TSP (apart from the iterated Lin-Kernighan heuristic) for med ium-
sized TSPs with a few hundred cities. However, they require large
running times to achieve good results, and they cannot b e
successfully applied to problems as large as those reported in t h e
operations research literature (c.f. the 1,000,000-city problems i n
[Bentley 92]). On the other hand, genetic algorithms provide a natural
framework for parallel implementations, since they work on a
population of solutions. Accordingly, they will greatly benefit in t h e
future from the spectacular developments that are taking place i n
parallel computing.
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P a p e r Method
(c rossove r

a n d
mu ta t i on )

La rges t
TSP

( N u m b e r
of Cities)

Length of
Tour from

Genet ic
A lgo r i t hm

Other
TSP

Heur is t ic

Length of
Tour from

TSP
Heur is t ic

Best
k n o w n
so lu t ion

Goldberg and
Lingle (1985)

PMX 10 378 NA NA 378

Grefenste t te
et al. (1985)

HX 200 203.5 NA NA 160.2*

Oliver
et al. (1987)

OX 30 425α LK 424 424

L iep ins
et al. (1987)

HX 15 17,509.6a NN 17858.0ab NA

Suh and
Gucht (1987)

HX
and 2-opt

100 21,651 NA NA 21,282

Jog
et al. (1989)

HX
and 2-opt,

Or-opt

100 +0.01%c NA NA 21,282

Whi t ley
et al. (1990)

ER
(pa ra l l e l )

105 14,383d NA NA 14,383

Gorges-
Sch leu te r
(1989)

PGA 442

532

5,086cβ

27,715cγ
NA NA 5,069

27,694**

B r a u n
(1991)

OX
and 2-opt,

Or-opt

431

442

666

+0.0%eδ

+0.0%e

+0.4%e

NA NA 171,414
5,069

294,358

Ulder
et al. (1991)

OX
and LK

442

532

666

+0.19%fε

+0.17%fφ

+0.36%fη

M-LK +0.27%fε

+0.37%fφ

+1.18%fη

5,069
27,686
294,358

Homai fa r
et al. (1993)

MX
and 2-opt

318 42,154 NA NA 41,345

a Average over 20 problems α CPU time : 15 minutes, Apollo DN4000
b Best of 15 runs β CPU time : 0.6 hour, 64 T800 Transputers
c Best of 10 runs γ CPU time : 1.0 hour, 64 T800 Transputers
d Best of 30 runs δ CPU time : 0.5 hour, Sun workstation
e Best of 50 runs ε CPU time : 1.1 hours, VAX 8650
f Average of 5 runs φ CPU time : 2.4 hours, VAX 8650
* Estimated optimum η CPU time : 4.8 hours, VAX 8650

* * Optimal value with the misprint in the coordinates of the 265th city i n
[Padberg and Rinaldi 87]

LK L i n - K e r n i g h a n NNNearest Neighbor
M-LK Mult i-Start Lin-Kernighan PGA Parallel Genetic Algorithm
NA Not Available/Not Applicable

Table 4.    Main results with genetic algorithms.
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Section 10.  Concluding remarks.

We would like to conclude this work by mentioning some
applications of genetic algorithms in other t ransportat ion-related
domains. In [Nygard and Yang 92], the authors describe a genetic
algorithm for solving the Traveling Salesman Problem with Time
Windows (TSPTW). In this work, a sophisticated crossover operator is
developed to handle the time window constraints. Since the operator
does not guarantee feasibility, a penalty is added to the tour length
when a time window is not satisfied, in order to favor feasible
solutions. The authors report good results on a standard set of
TSPTW problems. [Blanton and Wainwright 93] also developed
specialized crossover operators for multiple vehicle routing problems
with time windows and capacity constraints.

In [Thangiah et al. 93, Thangiah and Gubbi 93, Thangiah a n d
Nygard 93, Thangiah and Nygard 92, Thangiah et al. 91], a genetic
algorithm is used to group customers within a "cluster first, rou te
second" problem-solving strategy. The clustering algorithm was t h e n
applied to many different types of vehicle routing problems, w i th
various side constraints.

Applications of genetic algorithms to the linear and non-l inear
transportation problems are reported in [Vigaux and Michalewicz 91,
Michalewicz and Janikow 91, Michalewicz et al. 91]. The authors use
the special structure of the problem to develop sophisticated
crossover and mutation operators for a matrix-based encoding of t h e
chromosomes. These operators are designed to maintain solution
feasibility during the search.

Finally, an application for the routing and scheduling of trains is
described in [Gabbert et al. 91].
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