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ALGORITHMS FOR 
THE VEHICLE ROUTING AND SCHEDULING PROBLEMS 

WITH TIME WINDOW CONSTRAINTS 
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Northeastern University, Boston, Massachusetts 

(Received February 1984; revisions received October 1984; March, October 1985; accepted December 1985) 

This paper considers the design and analysis of algorithms for vehicle routing and scheduling problems with time window 
constraints. Given the intrinsic difficulty of this problem class, approximation methods seem to offer the most promise 
for practical size problems. After describing a variety of heuristics, we conduct an extensive computational study of their 
performance. The problem set includes routing and scheduling environments that differ in terms of the type of data used 
to generate the problems, the percentage of customers with time windows, their tightness and positioning, and the 
scheduling horizon. We found that several heuristics performed well in different problem environments; in particular an 
insertion-type heuristic consistently gave very good results. 

A key element of many distribution systems is the 
1,81routing and scheduling of vehicles through a set 
of customers requiring service. 

The vehicle routing problem (VRP) involves the 
design of a set of minimum-cost vehicle routes, origi- 
nating and terminating at a central depot, for a fleet 
of vehicles that services a set of customers with known 
demands. Each customer is serviced exactly once and, 
furthermore, all the customers must be assigned to 
vehicles without exceeding vehicle capacities (see 
Bodin et al. 1983 for a comprehensive survey). In the 
vehicle routing and scheduling problem with time 
window constraints (VRSPTW), these issues must be 
addressed under the added complexity of allowable 
delivery times, or time windows, stemming from the 
fact that some customers impose delivery deadlines 
and earliest-delivery-time constraints. 

In the presence of time windows, the total routing 
and scheduling costs include not only the total travel 
distance and time costs considered for routing prob- 
lems, but also the cost of waiting time incurred when 
a vehicle arrives too early at a customer location or 
when the vehicle is loaded or unloaded. 

The VRSPTW has emerged as an important area 
for progress in handling realistic complications and 
generalizations of the basic routing model (Schrage 
1981, Bodin et al.). Time windows arise naturally in 
problems faced by business organizations that work 
on fixed time schedules. Specific examples include 
bank deliveries, postal deliveries, industrial refuse col- 
lection, dial-a-ride service, and school bus routing and 

scheduling. So far, this type of constraint has been 
handled in an ad hoc manner, mostly by manual 
adjustments to routing-based schedules. 

While the spatial problem of routing vehicles has 
been intensively studied in the literature (Bodin et al.), 
very little work has been done on the VRSPTW, which 
encompasses both spatial and temporal aspects of 
vehicle movements. Almost all approaches to the rout- 
ing problem suffer from the limitation that they do 
not consider time window constraints. The existing 
literature on the problem with time windows has dealt 
mainly with case studies (Pullen and Webb 1967, 
Knight and Hofer 1968, and Cook and Russell 1978). 
The latter authors report computational experience 
with a k-optimal improvement heuristic, M-TOUR 
(Russell 1977) for an actual problem involving 163 
customers, 4 vehicles and only 15% time-constrained 
customers. The computational requirements of Rus- 
sell's method are, however, very large (1.27 minutes 
of IBM 370/168 CPU time). 

The rest of the literature has been directed primarily 
at special structures. Christofides, Mingozzi and Toth 
(1981) discuss state space relaxations for dynamic 
programming approaches to the traveling salesman 
problem with time windows, while Baker (1983), and 
Baker and Rushinek (1982) present a branch-and- 
bound algorithm for a new, time-oriented formulation 
of the problem. Some progress has been made in 
the multiperiod routing problem (Federgruen and 
Lageweg 1980, Fisher et al. 1982). In this problem, 
the time windows are full days, and a service activity 
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must occur on a specified number of days of the 
planning horizon. 

Other classes of problems with time windows have 
received increased attention lately: the dial-a-ride 
problem (Psaraftis 1983, Sexton and Bodin 1985a,b) 
and the school-bus scheduling problem. Orloff (1976) 
presents a matching-based heuristic, while Swersey 
and Ballard (1982) discuss an optimal approach to 
this problem with the time window discretized. 
Desrosiers, Soumis and Derochers (1983a,b) develop 
exact methods for this problem. One algorithm uses a 
column generation approach in which the columns 
are generated by using a shortest-path-with-time- 
windows algorithm (Desrosiers, Pelletier and Soumis 
1982). Two other branch-and-bound algorithms in- 
volve relaxations of the time-window-related con- 
straints. 

Problems with time windows are from a computa- 
tional complexity perspective quite difficult. Since the 
(VRP) is NP-hard, by restriction, the VRSPTW is NP- 
hard. Furthermore, Savelsbergh (1984) has recently 
shown that even finding a feasible solution to the 
VRSPTW when the number of vehicles is fixed is itself 
a NP-complete problem. Therefore, the development 
of heuristic algorithms for this problem class is of 
primary interest. 

This paper is concerned with the design and analysis 
of tour-building algorithms for the VRSPTW. All the 
algorithms presented are extensions of known VRP 
heuristics. The novelty of our approach consists in 
incorporating not only the distance but also the time 
dimension in the heuristic process. The extensive 
modifications to the original algorithms have pro- 
duced more robust and flexible methods that can 
accommodate time window constraints. 

1. Heuristics 

Tour-building algorithms for the VRSPTW can be 
divided into sequential and parallel methods. Sequen- 
tial procedures construct one route at a time until all 
customers are scheduled. Parallel procedures are char- 
acterized by the construction of a number of routes 
simultaneously. The routes are either allowed to form 
freely or their number is fixed a priori. In the light of 
Savelsbergh's results (1984), we will focus on free- 
routing type of parallel procedures and on sequential 
methods. 

Before describing the heuristics, let us first state the 
assumptions and introduce the concepts that will be 
needed throughout the paper. For notational simplic- 
ity, we will assume a homogeneous vehicle fleet. 

The service at a customer, say i, i = 1, ..., n, 
involving pickup and/or delivery of goods or services 
for si units of time, can begin at time bi, within a time 
window defined by the earliest time ei and the latest 
time 1i that customer i will permit the start of service. 
Hence, if a vehicle travels directly from customer i to 
customer j and arrives too early at j, it will wait, that 
is, bj = maxIej, bi + si + tij , where tij is the direct 
travel time between i and j. Note that the times bi for 
i = 1, ..., n, at which services begin are decision 
variables. 

We assume that the cost of direct travel from cus- 
tomer i to customer j, is given by c0j = p Id/1 + P2(b1 - 

bi), pi 0 ?, P2 > 0, as defined by the direct distance dic 
from customer i to customer j. For example, if pi = 0 
and P2 = 1, one seeks to minimize total schedule time. 

We also assume that the number of vehicles used is 
free, i.e., the fleet size is determined simultaneously, 
using the best set of routes and schedules. The vehicles 
leave the depot, denoted by node 0, at time eo, at the 
earliest and must return to the depot by time lo, at the 
latest. Note that vehicle departure times from the 
depot are decision variables. 

Solomon (1983) presents an MIP formulation for 
the VRSPTW. It is based on a model for the basic 
routing problem given by Fisher and Jaikumar (1981), 
and on a generalization of the Miller, Tucker and 
Zemlin (1960) subtour elimination constraints that is 
similar to the generalization used by Desrosiers, 
Soumis and Desrochers (1983a) in the context of the 
traveling salesman problem with time windows. 

Of primary importance to the effectiveness and 
efficiency of heuristics for this problem is the way in 
which the time window constraints are incorporated 
in the solution process. Since we will concentrate on 
route-building procedures, let us first examine the 
necessary and sufficient conditions for time feasibility 
when inserting a customer, say u, between the cus- 
tomers it1, and ip, 1 < p < m, on a partially con- 
structed feasible route, (io, i,, i2, * * *, im), io = i= 0, 
for which the times to begin service, bi, for 0 sr sm, 
are known. 

We will assume that initially each vehicle leaves the 
depot at the earliest possible time, eo. After the com- 
plete vehicle schedules have been created, we can 
adjust the depot departure time separately for each 
vehicle to eliminate any unnecessary waiting time. 

Denote by bnw the new time when service at cus- 
tomer ip, begins, given the insertion of customer u. 
Also, let wir be the waiting time at ir for p < r < m. If 
we assume that the triangle inequality holds both for 
travel distances and times, this insertion defines a 
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push forward in the schedule at ip: 

PFi = b -pew - b1,? 0 

Furthermore, 

PFir+, = maxIO, PFi,-wi,,, , p < r < m-1. 

Similarly, one can also define a push backward in 
the schedule at ir for r = 0, . . ., p - 1. However, this 
concept is not appealing, since the current schedule 
can be pushed backward only if there is no waiting 
time in the schedule up to ip-, and the vehicle leaves 
the depot later than eo. Note that by initially assuming 
that each vehicle leaves the depot at eo, we can take 
advantage of the maximum possible push forward. 

If PFiP > 0, some of the customers ir, p < r < m, 
could become infeasible. It is easy to see that we should 
examine these customers sequentially for time feasi- 
bility until we find some customer, say ir with r < m, 
for which PFi, = 0, or ir is time infeasible, or, in the 
worst case all the customers ir, p S r S m are exam- 
ined. We have just proved: 

Lemma 1.1. The necessary and sufficient conditions 
for time feasibility when inserting a customer, say u, 
between ip,, and ip, 1 - p - m, on a partially con- 
structedfeasible route (io, il, i2, . . ., im), io = im = 0 
are 

bu - lu, and b1, + PFi, - 4i,, p - r - m. 

Note that if we assume non-euclidean travel dis- 
tances and times, then it is possible that PFiP < 0, 
which leaves all the customers time feasible. 

Note also that since im = 0, the use of Lemma 1.1 
will ensure that any customer that does not permit 
the vehicle to return to the depot within the scheduled 
time will not be added to the partial route. 

Let us now describe several heuristic methods for 
the solution of VRSPTW. 

1.1. Savings Heuristics 

Our initial approach to solving VRSPTW is to extend 
the savings heuristic originally proposed for the rout- 
ing problem by Clarke and Wright (1964). This pro- 
cedure begins with n distinct routes in which each 
customer is served by a dedicated vehicle. The parallel 
version of this tour-building heuristic is characterized 
by the addition at every iteration of a link of distinct, 
partially formed routes between two end customers, 
guided by a measure of cost savings given by 

savy= dio + do, - ud, u > . 

For example, when ,i = 1, savy1 is the savings in 
distance that results from servicing customers i and j 

on one route as opposed to servicing them individ- 
ually, directly from the depot. 

Due to the existence of time windows, we now must 
account for route orientation. Two partial routes with 
end customers i and j, respectively, have compatible 
orientations if i is first (last), and j is last (first), i.e., 
the admissible links are from the last customer (1) on 
one route to the first customer (f) on another. Fur- 
thermore, in addition to taking into account vehicle 
capacity constraints, we must check time window 
constraints for violation at every step in the heuristic 
process. Lemma 1.1 can be easily adapted to the case 
of links of the form (I, f). As in Lemma 1. 1, we simply 
use the push forward generated at f to efficiently test 
time feasibility. 

We implemented the parallel savings method using 
list processing and heapsort structures, as proposed by 
Golden, Magnanti and Nguyen (1977). 

As presented, the savings heuristic could find it 
profitable to join two customers very close in distance 
but far apart in time. Such links introduce extended 
periods of waiting time, which can have a high oppor- 
tunity cost since the vehicle could be servicing other 
customers instead of, for example, waiting for a cus- 
tomer to open. To account for both the spatial and 
temporal closeness of customers, we propose limiting 
the waiting time when joining two customers: letting 
wyew be the resulting waiting time at f if I and f were 
to be joined, and W be a parameter, i.e., if WY ew> WI 

then we do not use the link (1, f). 

1.2. A Time-Oriented, Nearest-Neighbor Heuristic 

The second heuristic we consider belongs to the class 
of sequential, tour-building algorithms. 

The nearest-neighbor heuristic starts every route by 
finding the unrouted customer "closest" (in terms of 
a measure to be described later) to the depot. At every 
subsequent iteration, the heuristic searches for the 
customer "closest" to the last customer added to the 
route. This search is performed among all the cus- 
tomers who can feasibly (with respect to time win- 
dows, vehicle arrival time at the depot, and capacity 
constraints) be added to the end of the emerging route. 
A new route is started any time the search fails, unless 
there are no more customers to schedule. 

The metric used in this approach tries to account 
for both geographical and temporal closeness of cus- 
tomers. Let the last customer on the current partial 
route be customer i, and let j denote any unrouted 
customer that could be visited next. Then the metric 
used, cij, measures the direct distance between the two 
customers, dij, the time difference between the com- 
pletion of service at i and the beginning of service at 
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j, Tij, and the urgency of delivery to customer], vij, as 
expressed by the time remaining until the vehicle's 
last possible service start. 

Formally, 

Tib= - (bi + si), 

vij =J I- (i + si + tij)? 

and 

cij = 51dij + 62Tij + 63Vij, 

is defined by weights satisfying 61 + 62 + 63 = 1, 61 > 0, 

62 > 0, 63 > 0. 

1.3. Insertion Heuristics 

This class of sequential, tour-building heuristics ini- 
tializes every route using one of several criteria to be 
described later (see Section 3.1). After initializing the 
current route, the method uses two criteria, cl(i, u, j) 
and c2(i, u, j), at every iteration to insert a new 
customer u into the current partial route, between two 
adjacent customers i and j on the route. 

Let (io, il, i2, . .., in) be the current route, with 
io = im = 0. For each unrouted customer, we first 
compute its best feasible insertion place in the emerg- 
ing route as 

Cl(i(u), U, 1(u)) 

= min[ci(iUP, U, ia)], p= 1, ..., m. 

As noted previously, inserting u between ip-1 and ip 
could potentially alter all the times to begin service at 
customers (i4, ..., i,,). In our computational tests, 
we have found our time feasibility conditions, i.e., 
Lemma 1.1, to be much faster than the explicit testing 
of time feasibility at each customer. Next, the best 
customer u to be inserted in the route is selected as 
the one for which 

C2(i(U*), U*,j(U*)) = optimum[c2(i(u), U.J(U))], 

u unrouted and feasible. 

Customer u* is then inserted in the route between 
i(u*) andj(u*). When no more customer with feasible 
insertions can be found, the method starts a new route, 
unless it has already routed all customers. 

We now consider three more specific approaches 
based on the general insertion criteria just described. 

i) clI(i, u, j) = diu + duj - gdij, g > 0; 
c12(i, u, j) = bj, - by 

where bju is the new time for service to begin at 

customer], given that u is on the route; 

C1(i, u, j) = aIcl(i, u, j) 

+ a2C12(i, U, j), a, + a2 = 1; 

a, >, 0, a 2 > 0; 

C2(i, U, j) = Xdou - c1(i, Uj), X > O. 

This type of insertion heuristics tries to maximize 
the benefit derived from servicing a customer on the 
partial route being constructed rather than on a direct 
route. For example, when gi = a, = X = 1 and a2 = 0, 

c2(i, u, j) is the savings in distance from servicing 
customer u on the same route with customers i and j, 
as opposed to individual, direct service. The best 
feasible insertion place for an unrouted customer is 
the one that minimizes the weighted combination of 
its distance and time insertion, i.e., the one that min- 
imizes a measure of the extra distance and extra time 
required to visit the customer. 

Clearly, different values of A and X lead to different 
possible criteria for selecting the customer for insertion 
and its best insertion spot. For example, if a2 = 0 and 
cot = dou, we obtain the Mole and Jameson (1976) 
approach introduced for the routing problem. There- 
fore, the class of heuristics described in this discussion, 
which considers insertion costs on both distance and 
time dimensions, is a generalization of Mole and 
Jameson's approach. 

The second type of insertion heuristics aims to select 
customers whose insertion costs minimize a measure 
of total route distance and time. 

ii) c1(i, u, j) is defined as before; 
c2(i, u,j) = f3Rd(U) + A2R4(u), A1 + /2 = 1, /1 > 0, 

02 >0, 

where Rd(u) and Rj(u) are the total route distance and 
time of the current partial route, if u is inserted. 

In our third approach, the temporal aspect of the 
criterion used for insertion also accounts for the ur- 
gency of servicing a customer. 

iii) c I1(i, u, j) and c12(i, u, j) are defined as before; 
c13(i, u, j) =l - btt; 
cl(i, u, j) a ai c ii(i, u, j) + a2C12(i, U, j) 

+ a3C13(i, U, A), 

where 

at + a2 + a3 = 1, a1 > 0, a2 ? 0, a3 > 0; 

C2(i, U, j) = C1(i, U, j). 

It is easy to see that, in fact, this class of heuristics is 
a generalization of the time-oriented, nearest-neighbor 
heuristic, in that we allow insertion of an unrouted 
customer in any feasible location between a pair of 
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customers on the route, rather than only at the end of 
the route. 

In all the approaches presented, the insertion of 
uncounted customers is guided by both geographical 
and temporal criteria. As a consequence, we expect 
that the waiting time in the schedules produced by 
these heuristics will be significantly lower than that 
produced by distance-driven criteria. 

1.4. A Time-Oriented Sweep Heuristic 

This heuristic can be viewed as a member of a broad 
class of approximation methods that decompose the 
VRSPTW into a clustering stage and a scheduling 
stage. In the first phase, we assign customers to vehi- 
cles as in the original sweep heuristic (Gillett and 
Miller 1974). In the second phase, we create a one- 
vehicle schedule for the customers in this sector, using 
a tour-building heuristic. The insertion heuristic of 
type (i) was used in our computer implementation. 
Due to the time window constraints, some customers 
in this cluster could remain unscheduled. 

After eliminating scheduled customers from further 
consideration, we repeat the clustering-scheduling 
process. To preserve geographical cohesiveness, one 
might consider different seed selection criteria for the 
next cluster. We use a simple rule that bisects the 
sector just considered and, assuming a counterclock- 
wise sweep in the more counterclockwise half-sector 
lets the seed for a new cluster be the unscheduled 
customer with the smallest angle formed by the 
ray from the depot through that customer and the 
bisector. 

The intuition for partitioning the unscheduled cus- 
tomers in the sector into two subsets is that the cus- 
tomers in the more clockwise half-sector will be rela- 
tively far away from the new cluster. By inserting these 
customers at a later stage, we hope to generate a better 
schedule. 

We then repeat the process until all customers have 
been scheduled. 

In order to evaluate the computational capabilities 
of the heuristics presented, we have developed a set of 
test problems. This approach is necessary given that 
no benchmark problem set is available in the literature 
for vehicle routing and scheduling problems with time 
windows. 

2. Development of the Problem Sets 

We generated six sets of problems; the actual data are 
available from the author. The design of these test 
problems highlights several factors that can affect the 

behavior of routing and scheduling heuristics. These 
factors include: geographical data; the number of 
customers serviced by a vehicle; and time window 
characteristics such as percentage of time-constrained 
customers, and tightness and positioning of the time 
windows. 

The data used for the customer coordinates and 
demands are based on the data for some of the prob- 
lems from the standard set of routing test problems 
given in Christofides, Mingozzi and Toth (1979). The 
geographical data are randomly generated by a ran- 
dom uniform distribution (denote the corresponding 
problem sets by R1 and R2), clustered (denote the 
corresponding problem sets by C l and C2), and semi- 
clustered (denote the corresponding problem sets by 
RC 1 and RC2). By a semiclustered problem, we mean 
one that contains a mix of randomly generated data 
and clusters. Problem sets R 1, C1, and RC 1 have a 
short scheduling horizon. The length of route-time 
constraint acts as a capacity constraint which, together 
with the vehicle capacity constraints, allows only a 
few customers to be serviced by the same vehicle. In 
contrast, the sets R2, C2 and RC2 have a long sched- 
uling horizon; this characteristic, coupled with large 
vehicle capacities, permits many customers to be 
serviced by the same vehicle. 

Given certain geographical and demand data, we 
created the VRSPTW test problems by generating 
time windows of various widths for different percent- 
ages of customers. In terms of time window density, 
that is, the percentage of customers with time win- 
dows, we created problems with 25, 50, 75 and 100% 
time windows. 

We now present a method we designed for the 
random generation of time window constraints. This 
method was used for the development of the problem 
sets R I, R2, RC 1, RC2. First, we select the percentage 
of customers to receive time windows, say f 0 < 

f < 1. We then generate n random numbers from 
the random uniform distribution over the interval 
(0, 1) and sort them. This approach creates a random 
permutation of customers, (i,, .. ., i), with ij being 
the position after the sort of the jth random number 
generated. Finally, we assign time windows to the 
customers i,, . . ., in, with n1 chosen to be the integer 
that most closely approximatesfn. The time windows 
have a randomly generated center and width. We 
choose the center of the time window for customer i4 
for j = 1, . . ., nI as being a uniformly distributed, 
randomly generated number in the interval (eo + toxic 
lo - tij o - si). To create the time window's width for 
i4, we generate half the width as a normally distributed 
random number. 
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We used a somewhat different method for the clus- 
tered problems, CI and C2. We first run a 3-opt 
routine (Lin 1965) on each cluster to create routes 
and then produce schedules by selecting an orientation 
for each cluster. The time window constraints are 
generated by choosing the center as the arrival time at 
each customer; the width and density are derived as 
before. 

Given the design method, problem sets CI and C2 
are composed of structured problems in the sense that 
the customers appear in clusters and the time windows 
are positioned around the arrival times at customers. 
This approach permits the identification of a very 
good, possibly optimal, cluster-by-cluster solution 
which, in turn, provides an additional means of eval- 
uating heuristic performance. 

It is worth mentioning that the best solution we 
found for CI requires 10 vehicles, for a total schedule 
of 9,829 units, a distance of 829 units and no waiting 
time. For C2, the best schedule we found requires a 
fleet of 3 vehicles, a total of 9,591 units of time, 591 
units of distance and no waiting time. 

All the test problems are 100-customer euclidean 
problems. This problem size is not limiting for the 
methods presented, since much larger problems could 
be solved. Travel times between customers are taken 
to equal the corresponding distances. Furthermore, a 
homogeneous fleet is assumed. 

3. Computational Study 

3.1. Computational Results 

Earlier computational experiments for the VRP 
(Christofides, Mingozzi and Toth 1979) indicate that 
the sweep algorithm performed much better than 
either the savings or the insertion heuristics on a 
number of randomly generated problems. For several 
structured problems, the reverse was true. Also, the 
insertion heuristic had a slightly better overall per- 
formance than the savings method. All the algorithms 
used 2-optimal refining procedures to improve the 
routes. 

To analyze the behavior of the VRSPTW heuristics 
described in Section 1, we programmed them in 
FORTRAN and performed computational tests on the 
problem classes described in the last section. In ob- 
taining the computational results, we did not use any 
k-optimal improvement procedures. 

Solution quality is measured in terms of the mini- 
mum number of vehicles, minimum schedule time, 
minimum distance, and minimum waiting time in 
that order, i.e., we use a lexicographic ordering of the 
solutions. Hence, a schedule with, for example, fewer 

vehicles and a higher total schedule time will be better 
than one utilizing more vehicles but having a lower 
total schedule time. 

In the tables that follow, for each heuristic, the 
numbers on the left-hand side of the column headed 
"Average solution values and CPU time" are the total 
schedule time, total distance and total waiting time, 
respectively, of the best of several runs using different 
parameter values and initialization criteria, averaged 
over the respective problem set. The total schedule 
time is the sum of the total travel time, total service 
time, and total waiting time, respectively. The num- 
bers on the right-hand side of this column are the 
number of routes of the best solution and the total 
CPU time for the different runs, averaged over the 
respective problem set. The solution times are in 
seconds on the DEC-10, and include the time to read 
the data and compute intercustomer distances and 
times. The column headed "Percent deviation from 
the best average solution value" presents the deviation, 
in percentages, of each heuristic's average solution 
value from the best average solution value, on each 
solution dimension. The specific computational 
results are available from the author. 

In obtaining the computational results reported, we 
used the following parameters: 

Savings. The results are the best of two runs, with 
p= 1,0.2. 

Savings with Waiting- Time Limit. On R 1, the com- 
putational results are the best of four runs: 1u = 1, 0.2, 
and the waiting time limited to 30 and 60 units, 
respectively. On Cl, two additional runs were made 
with the waiting time limited to 120 units. 

Insertion-Criterion (i). The results are the best of 
eight runs. The parameters used, (Au, X, a,, a2), are: 
(1, 1, 1, 0), (1, 2, 1, 0), (1, 1, 0, 1), and (1, 2, 0, 1). 
Two initialization criteria were tested: 

(a) the farthest unrouted customer, and 
(b) the uncounted customer with the earliest dead- 

line. 
Insertion-Criterion (ii). Eight runs were performed 

for this heuristic. The parameters used, (A, a,, a2, 01, 

32), are (1, 0.5, 0.5, 0.5, 0.5), (1, 1, 0, 0.5, 0.5), and 
(1, 0, 1, 1, 0). Three initialization criteria were used 
in conjunction with the first two sets of parameters: 
criteria (a) and (b), and 

(c) the unrouted customer with the minimum 
equally weighted combination of direct route-time and 
distance. 

Only criteria (a) and (b) were used with the third 
set of parameters. 

Insertion-Criterion (iii). The results here are the best 
of ten runs with (A, a,, a2, a3) = (1, 0.5, 0.5, 0), 



260 / SOLOMON 

(1, 0.4, 0.4, 0.2), and (1, 0, 1, 0). The initialization 
criteria (a), (b), and (c) were used with the first set of 
parameters. In addition to the previous three criteria, 
we used the actual heuristic criterion for initialization 
in conjunction with the second set of parameters. For 
the third set of parameters, criteria (a), (b) and the 
actual heuristic criterion were used for initialization. 

Sweep. The results for this heuristic are the best of 
eight runs with the parameters used for the insertion 
heuristic with criterion (i). The first seed was always 
chosen as the first customer encountered in the first 
quadrant in a counterclockwise sweep. 

Nearest Neighbor. The parameters used for this 
heuristic, (6%, 62, 63), are: (0.4, 0.4, 0.2), (0, 1, 0), 
(0.5, 0.5, 0), and (0.3, 0.3, 0.4). 

Tables I-VI compare the methods on each problem 
set, for solution quality and running time. 

With respect to solution quality, heuristic II per- 
formed the best. Its behavior was very stable across all 
problem environments, obtaining the best solution for 
27 out of the 56 problems tested; even when it did not 
beat the other methods, its deviation from the best 
solution was quite small. Additional support for these 

results is provided by further comparing, on Cl and 
on C2, this heuristic's values with the best known 
solution (see Section 2). Il was consistently close to 
the best known total schedule time on both problem 
sets; on C1, its smallest deviation was 0.3%, its largest 
deviation was 8.3%, with an average of 2.8%, while 
on C2, its deviation was within 5% in seven out of the 
eight problems tested. 

The insertion-based sweep strategy was found to be 
very good for problems with many customers per 
vehicle. This heuristic obtained the best solution in 13 
out of the 27 cases. This method performed very well 
on the clustered problem sets C I and C2, where it was 
superior to the other heuristics in 4 and 7 cases, 
respectively. When compared to the best known so- 
lution for these problem sets, its largest total schedule 
time deviation was only 9.7% on C1, and 3.8% on 
C2. While it did not behave well on R1 and RC 1, we 
believe its behavior on these problems could be im- 
proved by the consideration of each of the customers 
as initial seeds. 

The insertion heuristics 12 and 13 dominated the 
waiting time dimension for problems with a short 

Table I 
Comparison of the Algorithms on R1 

AverageS nValuesa 
Percent Deviation No. of Problems on 

Algorithm Average Solution e from Best Average Which Method Found and CPU Timeb Solution Value Best Solution 

Savings (SAV) 3116.3 16.6 15.6% 22% 0 
1498.9 4.3% 
617.4 2.4 138.6% 

Savings, waiting time limit 2925.2 15.1 8.5% 11% 0 
(SWT) 1517.2 5.6% 

408.1 4.7 57.7% 

Insertion criterion i (Ii) 2695.5 13.6 0.0% 0% 11 
1436.7 0.0% 
258.8 24.7 0.0% 

Insertion criterion ii (12) 2888.1 14.5 7.1% 6.6% 0 
1638.7 14.1% 
249.4 25.5 -3.6% 

Insertion criterion iii (13) 2855.1 14.1 5.9% 3.7% 1 
1651.7 15.0% 
203.3 31.7 -21.4% 

Nearest Neighbor (NN) 2968.7 14.5 10.1% 6.6% 0 
1600.1 11.4% 
368.0 8.9 42.2% 

Sweep (S) 2817.4 14.6 4.5% 7.3% 0 
1499.7 4.4% 
317.7 18.2 22.8% 

a Schedule time Number of routes 
Distance 
Waiting time CPU time. 

'CPU time in seconds on the DEC- 10. 
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Table II 
Comparison of the Algorithms on Cl 

AverageSolutio V al' Percent Deviation No. of Problems on 
Algorithm agd CPU tio e b from Best Average Which Method Found 

and CPU timeb Solution Value Best Solution 

SAV 11125.7 11.7 10.1% 17% 0 
976.2 2.5% 

1149.4 2.3 654.7% 

SWT 10469.1 10.7 3.6% 7% 5 
987.4 3.7% 
481.7 6.9 216.2% 

Ii 10104.2 10.0 0.0% 0% 0 
951.9 0.0% 
152.3 25.3 0.0% 

12 10174.3 10.1 .7% 1% 2 
1049.8 10.3% 
124.5 25.3 -18.2% 

13 10174.9 10.0 0.7% 0% 2 
1103.3 15.9% 

71.5 31.1 -53.0% 

NN 10472.5 10.2 3.6% 2% 0 
1171.2 23.0% 
301.3 8.4 97.8% 

S 10133.8 10.0 0.3% 0% 4 
940.8 -1.2% 
193.0 13.5 26.7% 

'Schedule time Number of routes 
Distance 
Waiting time CPU time. 

b CpU time in seconds on the DEC-10. 

Table III 
Comparison of the Algorithms on RC 1 

Average Solution Values' Percent Deviation No. of Problems on 
Algorithm and CPUTime' from Best Average Which Method Found and CPU Solution Value the Best Solution 

I1 2775.0 13.5 0.0% 0.0% 7 
1596.5 0.0% 

178.5 23.8 0.0% 

12 3029.5 14.2 9.2% 5.2% 0 
1874.4 17.4% 

155.1 24.4 -13.1% 

13 3014.0 14.0 8.6% 3.7% 1 
1849.7 15.8% 

164.2 30.3 -8.0% 

NN 3057.2 14.2 10.2% 5.2% 0 
1800.0 12.7% 
257.2 8.9 44.1 

S 3094.5 14.9 11.5% 10.4% 0 
1804.5 13.0% 
290.0 18.4 62.5% 

'Schedule time Number of routes 
Distance 
Waiting time CPU time. 

b CPU time in seconds on the DEC-10. 
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Table IV 
Comparison of the Algorithms on R2 

Averag Solutio Va a Percent Deviation No. of Problems on 
Algorithm agd CPUt Vles from Best Average Which Method Found 

and CPU Time" Solution Value Best Solution 

Ii 2578.1 3.3 -0.5% 3.1% 4 
1402.4 -3.2% 
175.6 62.6 24.2% 

12 2645.8 3.3 2.1% 3.1% 0 
1470.7 1.5% 
175.1 71.1 23.8% 

13 2676.4 3.4 3.3% 6.2% 0 
1474.6 1.8% 
201.7 81.7 42.6% 

NN 2719.6 3.4 5.0% 6.2% 3 
1472.3 1.6% 
247.4 7.7 75.0% 

S 2590.1 3.2 0.0% 0.0% 4 
1448.6 0.0% 
141.4 40.5 0.0% 

a Schedule time Number of routes 
Distance 
Waiting time CPU time 

'CPU time in seconds on the DEC-10. 

Table V 
Comparison of the Algorithms on C2 

Ave Solutio V alues' Percent Deviation No. of Problems on 
Algorithm and CPU Time' from Best Average Which Method Found 

Solution Value Best Solution 

I 1 9921.4 3.1 1.7% 3.3% 1 
692.7 -2.7% 
228.6 43.0 426.7% 

12 10151.4 3.4 4.1% 13.3% 1 
921.5 29.4% 
229.9 44.5 429.7% 

13 10118.5 3.5 3.7% 16.7% 1 
1072.7 50.7% 

45.7 52.9 5.3% 

NN 10785.9 3.5 10.6% 16.7% 1 
963.1 35.3% 
822.7 7.7 1795.6% 

S 9755.2 3.0 0.0% 0.0% 7 
711.9 0.0% 
43.4 18.5 0.0% 

'Schedule time Number of routes 
Distance 
Waiting time CPU time 

'CPU time in seconds on the DEC-10. 

scheduling horizon. Otherwise, they were rarely able 
to obtain the best solution. It seems that these heuris- 
tics will be successful for problems with idle time as 
the primary objective. 

The time-oriented, nearest-neighbor method also 
had limited success; this occurred in the long sched- 
uling horizon problems that permit many customers 
to be serviced by the same vehicle. 
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Table VI 
Comparison of the Algorithms on RC2 

Percent Deviation No. of Problems on 
Algorithm and CPU Time s from Best Average Which Method Found and CPU Timeb ~Solution Value Best Solution 

Il 2955.4 3.9 0.0% 0.0% 4 
1682.1 0.0% 
273.2 51.7 0.0% 

12 3128.4 4.1 5.8% 5.1% 0 
1797.6 6.9% 
330.7 54.0 21.0% 

13 3149.1 4.0 6.5% 2.6% 1 
1816.4 8.0% 
332.7 63.4 21.8% 

NN 3120.0 3.9 5.6% 0.0% 1 
1754.7 4.3% 
365.2 7.7 33.7% 

S 3007.9 4.0 1.8% 2.6% 2 
1735.7 3.2% 
272.1 31.6 -0.4% 

a Schedule time Number of routes 
Distance 
Waiting time CPU time 

b CPU time in seconds on the DEC-10. 

The savings heuristic with waiting-time limit, while 
a considerable improvement over the original savings 
method, did not perform well in general. After we 
examined its behavior on R 1 and C1, preliminary 
computational experiments on the rest of the problem 
sets indicated that this heuristic will, in general, re- 
quire more vehicles than the number utilized by the 
other heuristics. Therefore, we did not examine its 
behavior any further. Nevertheless, given that it found 
the best solutions to 5 problems of C1, it might 
conceivably be used with success in a sweep-type 
heuristic. 

In terms of computation time, all the heuristics 
seem to be very efficient. Algorithms SWT and SAV 
were the fastest. Our results indicate that the efficiency 
of the insertion methods increased with the increase 
in the percentage of time window constraints and their 
tightness. This result is due to a lower number of 
feasible insertions possible in such problems. 

3.2. Parametric Analysis 

Most of the heuristics presented are parameterized. It 
is thus of interest to know whether there are any 
relationships between the parameter values and the 
initialization criteria that produced the best solution 
values, and the corresponding problem structures. 
Given our computational results, we will focus on the 
heuristic I 1. 

We begin by examining the effect of distance inser- 
tion (a i = 1, a2 = 0) versus time insertion (ai = 0, 
a2= 1). For the problem sets involving long scheduling 
horizons, time insertion proved clearly superior to 
distance insertion. It was used in obtaining the best 
solution to 21 out of 27 problems. The few exceptions, 
two for each problem set, where distance insertion 
performed best, were problems with less than 100% 
time window density, or the least tight problems. 

For the problem sets with a short scheduling hori- 
zon, time insertion proved useful for most of the tight 
and high density problems of R 1 and RC 1. It was 
used for 5 problems of RC 1, and 4 problems of R1. 

Not surprisingly, time insertion was used for the 
less constrained problems of C 1, 4 problems, since it 
was able to provide more intelligence than distance 
insertion in directing the heuristic toward the optimal 
solution. 

In conclusion, time insertion proved superior to 
distance insertion, especially in problems involving 
many customers per vehicle, and/or high density and 
tight time windows. Distance insertion, by emphasiz- 
ing the geographical component, can lead to higher 
total schedule time from accumulated waiting time 
and, possibly, additional vehicles. We should note that 
we observed the same pattern for the insertion-based- 
sweep strategy. 

Examining now the choice of parameters X, we find 
that X = 2 was used in obtaining the best solution to 
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35 problems, while X = 1 was used in only 21 cases. 
On R 1, X = 2 was utilized for 9 out of 12 problems, 
while on RC2, it was used for 7 out of 8. Five out of 
9 Cl problems used X = 2. This parameter value was 
also used for 5 out of 8 RC 1 problems, 5 out of 11 
R2 problems, and 4 out of 8 C2 problems. 

The initialization criterion used for a heuristic can 
have a significant impact on its behavior. We used 
two initialization criteria for II: the farthest unrouted 
customer and the unrouted customer with the earliest 
deadline. The former criterion proved successful for 
the problem sets with short scheduling horizons. It 
was used in obtaining 23 out of the 29 best solutions 
to these problems: all RI problems except one, all 
RC1 problems, and 4 Cl problems. In contrast, the 
latter criterion was better on the long scheduling ho- 
rizon problems in which, given that only a few vehicles 
were used, it was of primary importance to service 
customers with early due dates at the beginning of the 
scheduling horizon so no additional vehicles would be 
necessary. In these experiments, the earliest deadline 
criterion was used in 16 out of the 27 best solutions: 
6 problems of R2, 6 problems of C2, and 4 problems 
of RC2. 

Note that most of these problems are characterized 
by 100% density and/or tight time windows. This 
initialization method was quite successful on the struc- 
tured problems since it was able to guide the heuristic 
search toward the optimal solution. 

4. Conclusions 

We have presented the development of heuristics and 
test problem sets and have reported our computational 
experiments for VRSPTW. Our results indicate that 
the insertion heuristic II proved to be very successful. 
A parametric analysis of this heuristic revealed the 
importance of time driven insertions for heavily time- 
constrained problems, particularly when many cus- 
tomers are to be scheduled for each vehicle. In the 
latter case, it seems that a very effective strategy is to 
embed this heuristic in a sweep-type approach. 

The excellent performance of the insertion heuristic 
II can be explained if we realize that, while routing 
problems seems to be driven by the assignment-of- 
customers-to-vehicles component-as indicated by 
the success of the Fisher and Jaikumar generalized 
assignment heuristic-the sequencing aspect of the 
problem seems to drive routing problems dominated 
by time windows. It is this aspect of the problem that 
the insertion heuristic II captures so well. 

We believe that our computational study provides 
some definite guidelines concerning the relative effec- 

tiveness of the various tour-building VRSPTW heu- 
ristics suggested. Furthermore, given the wide variety 
of routing and scheduling environments used in our 
study, we consider the relative performance of these 
heuristics on the test problems indicative of their 
relative performance in general. 

Based on our study, we recommend the use of the 
insertion heuristic Ii, possibly embedded in a hybrid 
sweep-insertion approach, to obtain excellent initial 
VRSPTW solutions in a reasonable amount of com- 
puting time. Given its very stable behavior, we believe 
that this heuristic will perform very well on practical 
problems. Further support for this conclusion is pro- 
vided by the recent work of Jaw et al. (1984) that 
showed the effectiveness of an insertion-based proce- 
dure in a time-window constrained real dial-a-ride 
environment. 
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