Fast Multiple-baseline Stereo with Occlusion

Marc-Antoine Drouin Martin Trudeau Sébastien Roy {drouim,trudeaum,roys}@iro.umontreal.ca

June 2005

Overview

- Introduction.
- Previous Works.
- Observation.
- Our Algorithm.
- Experimental Results.
- Conclusion.

Dense Stereo

2 cameras

- For each pixel in the left image we try to find the corresponding pixel in the right image.
- The resulting displacement for that pixel (disparity) relates to the distance between the object and the reference camera.

Dense Stereo

$$E(f) = \sum_{\mathbf{p} \in \mathcal{P}} \underbrace{e(\mathbf{p}, f(\mathbf{p})) + smoothing.}_{likelihood}$$

- 2 cameras
 - \mathcal{P} : set of reference pixels.
 - f : disparity map.
 - Hypothesis : for each reference pixel corresponds a supporting pixel.

Camera Configuration

- 5 cameras in cross configuration.
- Disparity map is computed for the central camera.
- In red, examples of occlusion.

Disparity and Visibility Maps

Reference camera

- One disparity for each pixel.
- One visibility mask for each pixel.
- i.e. mask (0, 0, 0, 1).

Multi-camera and Occlusion

$$E(f,g) = \sum_{\mathbf{p}\in\mathcal{P}} e(\mathbf{p}, f(\mathbf{p}), g(\mathbf{p})) + smoothing.$$

with

$$g(\mathbf{p}) = V(\mathbf{p}|f(\mathbf{p}), f) \quad \forall \mathbf{p} \in \mathcal{P}$$

- f disparity map.
- g visibility mask map.

Nakamura96

Occlusion

- Some masks are very probable.
- Some masks are improbable.
- We can pre-compute a sub-set \mathcal{M}_h of plausible masks.

Nakamura96, Park97, Kang01 and Besnerais04

$$g_f^*(\mathbf{p}) = \arg\min_{\mathbf{m}\in\mathcal{M}_h} e(\mathbf{p}, f(\mathbf{p}), \mathbf{m}) w(\mathbf{m})$$

then,

$$E(f, g_f^*) = \sum_{\mathbf{p} \in \mathcal{P}} e(\mathbf{p}, f(\mathbf{p}), g_f^*(\mathbf{p})) + smoothing$$

Occlusion

- Hypothesis : photo-consistency \Rightarrow correct visibility.
- Visibility is heuristic.

Occlusion Zones in Stereo

Cumulative histogram of likelihood term

- Black : non-occluded pixels.
- Red :occluded pixels.

- Photo-consistency \neq geo-consistency.
- Show the limitation of heuristic approaches.

Geo-consistency

All masks are consistent with the scene geometry.

$$g(\mathbf{p}) \leq V(\mathbf{p}|f(\mathbf{p}), f) \quad \forall \mathbf{p} \in \mathcal{P}$$

Nakamura96

- Using an occluded camera \Rightarrow important artifact.
- Not using a visible camera \Rightarrow no impact.

Kolmogorov02, Faugeras98 and Drouin05

$$E(f,g) = \sum_{\mathbf{p} \in \mathcal{P}} e(\mathbf{p}, f(\mathbf{p}), g(\mathbf{p})) + smoothing$$

with

$$g(\mathbf{p}) \le V(\mathbf{p}|f(\mathbf{p}), f) \quad \forall \mathbf{p} \in \mathcal{P}$$

Occlusion

- Kolmogorov : jumps from one geo-consistent configuration to another.
- Faugeras : level set (continuous framework).
- Drouin : starts from a non geo-consistent solution and converges to one which is.
- One common feature : hard to solve.

Disparities and Occlusions

Continuous representation

• Occlusion : $x_i + d_i \ge x_j + d_j$

Discontinuous representation

• Occlusion :
$$x_i + d_i = x_j + d_j$$

Disparities and Occlusions

Continuous representation

• Occlusion occurs when

$$\max_{0 \le k < j} (k + d_k) \ge j + d_j$$

- Occlusion at j depends on visibility at < j.
- Efficiently computed.

Dynamic Programming

Visibility Masks

Occlusion

- Cameras can be split in 2 sets C_G and C_H .
- 2 sets of masks are build \mathcal{M}_G and \mathcal{M}_H .
- Sets depend on the order in which lines are processed.

Visibility Masks

Occlusion

- Camera order (left, right, top, bottom).
- In bold : cameras belonging to C_g .

Energy Function

$$E(f,g) = \sum_{\mathbf{p} \in \mathcal{P}} e(\mathbf{p}, f(\mathbf{p}), g(\mathbf{p})) + smoothing$$

with

$$g(\mathbf{p}) = \begin{cases} \text{a mask in } \mathcal{M}_g & \text{if a camera in } \mathcal{C}_g \text{ is visible} \\ \arg\min_{m \in \mathcal{M}_h} e(\mathbf{p}, f(\mathbf{p}), m) & \text{otherwise} \end{cases}$$

Configuration of low energy.

Disparity and Visibility smoothing

- Difference of depth between two neighbor pixels.
- Change in the set of masks $(\mathcal{M}_h \text{ and } \mathcal{M}_g)$.
- Smoothing function may have any shape.

2 Steps Smoothing

Active SmoothingPassive Smoothing

Iterative Dynamic Programming (Leung04)

Tsukuba Head and Lamp

- 384×288 with 16 disparity steps.
- 5 images in cross shape configuration were used.

- An error of 1 could be the result of discretization.
- Standard metric.

Algorithms	Error
Ours + IDP (16 iterations)	1.57%
Ours + IDP (4 iterations)	1.67%
Nakamura96+ Graph Cut	1.77%
$Ours + IDP \ (1 \ iteration)$	1.82%
Kolmogorov02	2.30%
Nakamura96 + IDP (12 iterations)	2.35%
Drouin05 +BNV	2.46%

Middlebury sequence

- 334×383 with 20 disparity steps.
- 6 scenes with 7 images each in single baseline configuration were used.

	Middlebury sequence						
algorithms	barn1	barn2	bull	poster	venus	sawtooth	average
Graph Cut (no occlusion)	3.5 %	3.1 %	0.7 %	3.7 %	3.4 %	3.3%	3.0%
IDP (no occlusion)	3.0 %	4.9%	1.2%	6.0 %	5.8%	3.7%	4.1%
Drouin05 +Graph Cut	0.8 %	0.6 %	0.4 %	1.1 %	2.4 %	1.1 %	1.3%
Nakamura96 + Graph Cut	1.4 %	1.5 %	0.9 %	1.1 %	4.0 %	1.5%	1.7%
Ours +IDP	0.7 %	3.9 %	0.8 %	4.0 %	5.3%	1.0 %	2.6%
Nakamura96 + IDP	1.6 %	6.0 %	1.9 %	4.5 %	7.4%	2.2 %	3.9%

• The camera configuration is not favorable to our approach.

Tsukuba sequence

- 320×240 with about 24 disparity steps.
- 5 images in cross shape configuration were used.

Conclusion

Summary

- Hybrid between geo-consistent and heuristic approaches.
- Fast and can easily be parallelized.
- Code can be download from :

www.iro.umontreal.ca/~drouim/

Future work

• Generalizing to arbitrary camera configurations.

Wish list

• Designing an hardware implementation in FPGA.

Ordering Constraint

- The order in which two objects are encounter along an epipolar line does not change.
- Not always true.

Ordering Constraint

- Continuous mesh \Rightarrow ordering constraint.
- On the masks but **not** on the geometry.

Resistance to change of the smoothing parameter.