Fast Multiple-baseline Stereo with Occlusion

Marc-Antoine Drouin
Martin Trudeau
Sébastien Roy
\{drouim,trudeaum,roys\} @iro.umontreal.ca

June 2005 de Montréal

Overview

- Introduction.
- Previous Works.
- Observation.
- Our Algorithm.
- Experimental Results.
- Conclusion.

Dense Stereo

2 cameras

- For each pixel in the left image we try to find the corresponding pixel in the right image.
- The resulting displacement for that pixel (disparity) relates to the distance between the object and the reference camera.

Dense Stereo

$$
E(f)=\sum_{\mathbf{p} \in \mathcal{P}} \underbrace{e(\mathbf{p}, f(\mathbf{p}))}_{\text {likelihood }}+\text { smoothing }
$$

2 cameras

- \mathcal{P} : set of reference pixels.
- f : disparity map.
- Hypothesis : for each reference pixel corresponds a supporting pixel.

Camera Configuration

- 5 cameras in cross configuration.
- Disparity map is computed for the central camera.
- In red, examples of occlusion.

Disparity and Visibility Maps

Reference camera

- One disparity for each pixel.
- One visibility mask for each pixel.
- i.e. mask $(0,0,0,1)$.

Multi-camera and Occlusion

$$
E(f, g)=\sum_{\mathbf{p} \in \mathcal{P}} e(\mathbf{p}, f(\mathbf{p}), g(\mathbf{p}))+\text { smoothing } .
$$

$$
\begin{gathered}
\text { with } \\
g(\mathbf{p})=V(\mathbf{p} \mid f(\mathbf{p}), f) \quad \forall \mathbf{p} \in \mathcal{P}
\end{gathered}
$$

- f disparity map.
- g visibility mask map.

Nakamura96

Occlusion

- Some masks are very probable.
- Some masks are improbable.
- We can pre-compute a sub-set \mathcal{M}_{h} of plausible masks.

Nakamura96, Park97, Kang01 and Besnerais04

$$
\begin{gathered}
g_{f}^{*}(\mathbf{p})=\arg \min _{\mathbf{m} \in \mathcal{M}_{h}} e(\mathbf{p}, f(\mathbf{p}), \mathbf{m}) w(\mathbf{m}) \\
\text { then, } \\
E\left(f, g_{f}^{*}\right)=\sum_{\mathbf{p} \in \mathcal{P}} e\left(\mathbf{p}, f(\mathbf{p}), g_{f}^{*}(\mathbf{p})\right)+\text { smoothing }
\end{gathered}
$$

Occlusion

- Hypothesis : photo-consistency \Rightarrow correct visibility.
- Visibility is heuristic.

Occlusion Zones in Stereo

Cumulative histogram of likelihood term

- Black: non-occluded pixels.
- Red :occluded pixels.

- Photo-consistency \nRightarrow geo-consistency.
- Show the limitation of heuristic approaches.

Geo-consistency

All masks are consistent with the scene geometry.

$$
g(\mathbf{p}) \leq V(\mathbf{p} \mid f(\mathbf{p}), f) \quad \forall \mathbf{p} \in \mathcal{P}
$$

Nakamura96

- Using an occluded camera \Rightarrow important artifact.
- Not using a visible camera \Rightarrow no impact.

Kolmogorov02, Faugeras98 and Drouin05

$$
\begin{gathered}
E(f, g)=\sum_{\mathbf{p} \in \mathcal{P}} e(\mathbf{p}, f(\mathbf{p}), g(\mathbf{p}))+\text { smoothing } \\
\text { with } \\
g(\mathbf{p}) \leq V(\mathbf{p} \mid f(\mathbf{p}), f) \quad \forall \mathbf{p} \in \mathcal{P}
\end{gathered}
$$

Occlusion

- Kolmogorov : jumps from one geo-consistent configuration to another.
- Faugeras : level set (continuous framework).
- Drouin : starts from a non geo-consistent solution and converges to one which is.
- One common feature : hard to solve.

Disparities and Occlusions

Continuous representation

- Occlusion : $x_{i}+d_{i} \geq x_{j}+d_{j}$

Discontinuous representation

- Occlusion : $x_{i}+d_{i}=x_{j}+d_{j}$

Disparities and Occlusions

Continuous representation

- Occlusion occurs when

$$
\max _{0 \leq k<j}\left(k+d_{k}\right) \geq j+d_{j}
$$

- Occlusion at j depends on visibility at $<j$.
- Efficiently computed.

Dynamic Programming

Visibility Masks

Occlusion

- Cameras can be split in 2 sets \mathcal{C}_{G} and \mathcal{C}_{H}.
- 2 sets of masks are build \mathcal{M}_{G} and \mathcal{M}_{H}.
- Sets depend on the order in which lines are processed.

Visibility Masks

Occlusion

- Camera order (left, right, top, bottom).
- In bold : cameras belonging to \mathcal{C}_{g}.

Energy Function

$$
\begin{gathered}
E(f, g)=\sum_{\mathbf{p} \in \mathcal{P}} e(\mathbf{p}, f(\mathbf{p}), g(\mathbf{p}))+\text { smoothing } \\
g(\mathbf{p})=\left\{\begin{array}{l}
\operatorname{argith} \\
\underset{m \in \mathcal{M}_{h}}{\arg \min _{\operatorname{mask}} e(\mathbf{p}, f(\mathbf{p}), m)} \quad \text { if a camera in } \mathcal{C}_{g} \text { is visible } \\
\text { otherwise }
\end{array}\right.
\end{gathered}
$$

Configuration of low energy.

Disparity and Visibility smoothing

- Difference of depth between two neighbor pixels.
- Change in the set of masks $\left(\mathcal{M}_{h}\right.$ and $\left.\mathcal{M}_{g}\right)$.
- Smoothing function may have any shape.

2 Steps Smoothing

- Active Smoothing
- Passive Smoothing

Iterative Dynamic Programming (Leung04)

Experimental Results

Tsukuba Head and Lamp

- 384×288 with 16 disparity steps.
- 5 images in cross shape configuration were used.

Experimental Results

- An error of 1 could be the result of discretization.
- Standard metric.

Experimental Results

Algorithms	Error
Ours + IDP (16 iterations)	1.57%
Ours + IDP (4 iterations)	1.67%
Nakamura96+ Graph Cut	1.77%
Ours + IDP (1 iteration)	1.82%
Kolmogorov02	2.30%
Nakamura96 + IDP (12 iterations)	2.35%
Drouin05 +BNV	2.46%

Experimental Results

Middlebury sequence

- 334×383 with 20 disparity steps.
- 6 scenes with 7 images each in single baseline configuration were used.

Experimental Results

algorithms	Middlebury sequence						average
	barn1	barn2	bull	poster	venus	sawtooth	
Graph Cut (no occlusion)	3.5%	3.1%	0.7%	3.7%	3.4%	3.3%	3.0%
IDP (no occlusion)	3.0%	4.9%	1.2%	6.0%	5.8%	3.7%	4.1%
Drouin05 +Graph Cut	0.8%	$\mathbf{0 . 6} \%$	$\mathbf{0 . 4} \%$	$\mathbf{1 . 1} \%$	$\mathbf{2 . 4} \%$	1.1%	1.3%
Nakamura96 + Graph Cut	1.4%	1.5%	0.9%	$\mathbf{1 . 1} \%$	4.0%	1.5%	1.7%
Ours +IDP	$\mathbf{0 . 7} \%$	3.9%	0.8%	4.0%	5.3%	$\mathbf{1 . 0} \%$	2.6%
Nakamura96 + IDP	1.6%	6.0%	1.9%	4.5%	7.4%	2.2%	3.9%

- The camera configuration is not favorable to our approach.

Experimental Results

Tsukuba sequence

- 320×240 with about 24 disparity steps.
- 5 images in cross shape configuration were used.

Conclusion

Summary

- Hybrid between geo-consistent and heuristic approaches.
- Fast and can easily be parallelized.
- Code can be download from : www.iro.umontreal.ca/~drouim/
Future work
- Generalizing to arbitrary camera configurations.

Wish list

- Designing an hardware implementation in FPGA.

Ordering Constraint

- The order in which two objects are encounter along an epipolar line does not change.
- Not always true.

Ordering Constraint

- Continuous mesh \Rightarrow ordering constraint.
- On the masks but not on the geometry.

Experimental Results

Resistance to change of the smoothing parameter.

