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Abstract

We propose a new and flexible hierarchical multi-
baseline stereo algorithm that features a non-uniform spa-
tial decomposition of the disparity map. The visibility com-
putation and refinement of the disparity map are integrated
into a single iterative framework that does not add extra
constraints to the cost function. This makes it possible to
use a standard efficient stereo matcher during each iter-
ation. The level of refinement is increased automatically
where it is needed in order to preserve a good localization of
boundaries. While two graph-theoretic stereo matchers are
used in our experiments, our framework is general enough
to be applied to many others. The validity of our framework
is demonstrated using real imagery with ground truth.

1. Introduction

The goal of binocular stereo is to reconstruct the 3D
structure of a scene from two views. Occlusion occurs when
part of a scene is visible in one camera but not the other (see
figure 1). In this paper, we use a cross-shaped configuration
with 4 cameras equidistant to the center one which is the
reference. The difficulty of detecting occlusion comes from
the fact that it is induced by the 3D structure of the scene,
which is unknown until the correspondence is established,
as it is the final goal of the algorithm.

In this paper, we propose a new and flexible hierarchical
stereo algorithm that features a non-uniform spatial resolu-
tion. The visibility computation and refinement of the dis-
parity map are integrated into a single iterative framework
that does not add extra constraints to the cost function. The
level of refinement is increased automatically where it is
needed in order to preserve a good localization of bound-
aries. Our algorithm uses the occlusion model proposed
by [7]. This model relies on geometric inconsistencies in
the disparity map to detect occlusions. As will be shown,
our hierarchical algorithm provides major speedups over
the non-hierarchical one of [7] while preserving the qual-
ity of the final solution. In this paper, we use graph-cut[4]

Figure 1. Example of occlusion. Occluded pixels appear
in black, occluders in white.

and maximum flow formulation with a linear smoothing
term[37]. As in [7], our framework is general enough to
be used with other stereo algorithms. A survey paper by
Scharstein and Szeliski [41, 40] compares various standard
algorithms.

The rest of this paper is divided as follows: in Section 2,
previous work will be presented. Section 3 describes the
visibility modeling framework. Our proposed framework is
described in Section 4. Experimental results are presented
in Section 5.

2. Previous Works

In Egnal [9], five basic strategies to overcome occlu-
sion for two cameras are presented: left-right checking, bi-
modality test, goodness Jumps constraint, duality of dispar-
ity discontinuity and occlusion, and uniqueness constraint.
Some algorithms rely on one or more of these strategies,
and are often based on varying a correlation window posi-



tion or size [20, 14, 49, 21]. Other algorithms use dynamic
programming [32, 18, 5] or graph-cut [19, 23]. In [46], vis-
ibility and disparity are iteratively minimized using belief
propagation.

Many algorithms are specially designed to cope with oc-
clusion in multi-baseline stereo. They can be coarsely di-
vided into three categories [8]. Some approaches are based
on visibility heuristics [21, 31, 39, 35, 15, 44, 8]. Others
guarantee a solution that is geo-consistent [7, 26, 43, 11,
24]. These approaches preserve the consistency between
the recovered visibility and the geometry [7]. Our algorithm
belongs to this category. Finally, some algorithms are mixes
between heuristic and geo-consistent algorithms [6, 53, 16].

Many hierarchical approaches have been introduced to
speed up computation of stereo matching [30, 33, 36, 54,
30, 45, 2, 33, 52, 25, 42, 17, 28, 34]: multiple levels of
image reduction are used to reduce the search space. Un-
fortunately, some matching errors made in an early stage
can never be repaired in the following steps. These errors
appear mostly near object boundaries. Many approaches
have been proposed to cope with errors induced by pyra-
mids [17, 10, 13, 13, 38, 28, 29, 17]. Some methods ex-
tend the search interval where large disparity variations are
present. Some of them use feature extraction to improve
border localization, whilst others used a non-uniform de-
composition of the disparity map. Some approaches use
multi-resolution techniques to speed up the convergence of
an energy function minimization [1, 12].

3. Visibility framework

In this section, we review the visibility framework that
will be used and that comes from [7]. When doing stereo
matching, there is a set P of reference pixels, for which we
want to compute disparity, and a set D of disparity labels.
A D-configuration f : P �→ D associates a disparity la-
bel to every pixel. In order to simplify the discussion, we
will always consider the disparity as a positive value inde-
pendently of the supporting camera used. We also assume
that the supporting images are at an equal distance from the
reference. To model occlusion, we must compute the vol-
umetric visibility Vi(p, d, f) of a reference pixel p located
at disparity d from the point of view of a camera i, given a
disparity configuration f defined for all other pixels. It is
set to 1 if the point is visible and 0 otherwise. The visibility
information is collected into a vector, the visibility mask

V (p, d, f) = (V1(p, d, f), . . . , VN (p, d, f))

where N is the number of cameras outside the reference.
We call M the set of all possible visibility masks; an
M-configuration g : P �→ M associates a mask to ev-
ery pixel. Let us define the special configuration g0 with

g0(p) = (1, . . . , 1) for all p ∈ P ; this corresponds to the
case where all cameras are visible by all points. The prob-
lem is the minimization in f and g of

E(f, g) =
∑
p∈P

e(p, f(p), g(p))

︸ ︷︷ ︸
pixel

likelihood

+
∑
p∈P

∑
r∈Np

s(p, r, f(p), f(r))

︸ ︷︷ ︸
pixel smoothing

(1)
with the constraint

g(p) ≤ V (p, f(p), f) (2)

for each component of these vectors and all p ∈ P . The
constraint of Eq. 2 is named geo-consistency and the in-
equality allows the mask to contain a subset of the visible
cameras[7]. The removal of some extra cameras has been
observed to have little impact on the quality of the solution
and is used in many multi-baseline stereo algorithms[31, 7,
6, 8, 21, 31, 39, 35, 15]. The pixel likelihood term is defined
as

e(p, d,m) =
m · C(p, d)

|m| for p ∈ P , d ∈ D, m ∈ M

where C(p, d) = (C1(p, d), . . . , CN (p, d)) is the vector of
matching costs of the pixel p at disparity d for each cam-
era. We use |m| to represent the l1-norm which is just the
number of cameras used for pixel p at disparity d.

In [7], it was proposed to reduce the dependency be-
tween f and g by making it temporal: we let f0 be the
D-configuration minimizing E(f0, g0) in f and for t > 0,
let iteratively f t be the function minimizing E(f t, gt) with
gt defined as

gt(p) = H(p, f t(p), t − 1) (3)

and
Hi(p, d, t) =

∏
0≤k≤t

V ′
i (p, d, fk) (4)

where H is a visibility history mask and V ′ is the pseudo-
visibility described below. Because of the way gt is defined,
cameras that are removed at one iteration cannot be kept at
the next. This greedy approach guarantee convergence (or
stabilization) in a polynomial number of steps. The case
where |gt(p, d)| = 0 is discussed in [7].

In [7] a significant bias was measured in the localization
of depth discontinuities. Front objects are enlarged and this
discourages the direct use of visibility to update the visibil-
ity history mask. Instead, a pseudo-visibility

V ′(p, d, f) = (V ′
1(p, d, f), . . . , V ′

N (p, d, f))

was introduced, which compensates for the bias by labeling
both occluders and occludees as invisible. Discussion about

2



21 3

Figure 2. The division of blocks. Blocks 1 and 3 are
labeled as occluder and occludee respectively. Assuming
horizontal epipolar lines, the node 2 must also be split.

the computation of the pseudo-visibility is postponed until
section 4.1. In this framework, the disparity map is repre-
sented as a continuous mesh, this guarantees the preserva-
tion of the ordering constraint between the reference and
any supporting camera.

In the next section, we will present the integration of
our non-uniform hierarchical decomposition of the dispar-
ity map with the iterative visibility framework presented in
this section.

4. Our framework

We propose the use of a non-uniform iterative decompo-
sition of the disparity map. The energy minimization does
not associate a disparity to every pixel, but it associates a
single disparity to all the pixels included in a block. Each
pixel has a visibility mask and it is thus possible to have
two pixels in the same block having different masks. At
each iteration t, the disparity map is represented as a graph
Gt = (Vt, Et) where Vt is the set of nodes representing the
blocks of pixels and Et is the set of edges. An edge between
two nodes indicates that smoothing is applied between them
(see Fig. 2). The D-configuration f t : Vt �→ D associates
a disparity label to every block in Vt. The problem is the
minimization in f t of

EGt(f t, gt) =
∑
p∈Vt

eGt(p, f t(p), gt(p)) +
inter-block

smoothing

(5)
where gt is the M-configuration as defined in Eq. 3. The
block likelihood term eGt is simply the sum of the like-
lihoods of pixels included in the block. The inter-block
smoothing is simply defined as the sum of the pixel smooth-
ing costs.

In this paper, we used as the initial graph G0 a regular
grid with a user-defined block size. The initial graph could
also be obtained from a segmentation of the reference image
[27]. Discussion about the block size of the initial graph is
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Figure 3. Nodes 2 and 3 are occludees and node 4 is an
occluder.

postponed until section 5.3. The initial masks g0(p) have
all cameras visible for all p. Once f t is found, gt+1 and
Gt+1 can be computed using rendering techniques that will
be described in section 4.1. The pseudo-code of our algo-
rithm is shown in Figure 4. Since the blocks that are split
at one iteration cannot be merged at a later one, the con-
vergence (or stabilization) is guaranteed. This is achieved
in a polynomial number of steps. Indeed, |Vt| is monoton-
ically increasing with t and is at most |P| and H(p, d, t) is
monotonically decreasing in t for all p and d. Moreover,
if Gt = Gt+1 and H(p, d, t − 1) = H(p, d, t) for all p
and d, then f t = f t+1 since both are solutions to the same
minimization problem, and the process has stabilized. The
algorithm converges (or stabilizes) to a geo-consistent solu-
tion, but can go through intermediate ones that are not.

NON-UNIFORM HIERARCHICAL GEO()
1 Build G0

2 g0(p)← (1, ..., 1) ∀p ∈ P
3 t← 0
4 fGt ← arg minf EGt(f, gt)
5 Render fGt in all supporting cameras
6 Compute gt+1 and Gt+1 using render buffers of previous line
7 if gt = gt+1and Gt = Gt+1

8 then return fGt

9 t← t + 1
10 goto 4

Figure 4. Algorithm overview

4.1. Pseudo-visibility and block division

A block is called occluder when one of its pixels oc-
cludes a pixel from anther blocks (called occludee). When
the blocks contain many pixels, the discontinuity between
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an occluder and an occludee is probably poorly located.
Both blocks must be split in order to improve the localiza-
tion of the depth discontinuity at the next iteration. The
labeling of blocks as occludee and occluder is done concur-
rently with the pseudo-visibility computation. The pseudo-
visibility masks V ′

i are computed by using rendering tech-
niques. Two renderings of the current disparity map f are
done from the point of view of each supporting camera i:
one with an regular Z-buffer and one with a reverse Z-buffer
test. Two disparity maps Sf

i and Lf
i are thus obtained and

they contain the minimal and maximal pixelwise disparity
observed by the supporting camera i. In [7], the pseudo-
visibility function V ′

i (p, d, f) is computed as

V ′
i (p, d, f) = δ

(
Sf

i (Ti(p, d)) − Lf
i (Ti(p, d))

)

where δ is 1 at 0 and 0 elsewhere and Ti(p, d) is the projec-
tion pixel p at disparity d in the supporting camera i. This
approach might not detect all the occluded pixels. As an ex-
ample, using this rendering technique, blocks 2 and 4 of fig-
ure 3 are correctly labeled as occludee and occluder. Nev-
ertheless, this technique does not detect the occluded block
3. We propose an approach that identifies all the occluded
blocks. The color channels are used to encode the index of
each node in Gt. Since a visibility mask is assigned to every
pixel, the index of a pixel in the block is also encoded using
one of the color channel. When St

i (r) and Lt
i(r) are dif-

ferent, we can used the color buffer to identify the occluder
and occluded blocks having the smallest disparities. Since a
continuous mesh representation is used, all blocks (and pix-
els) between those two along the epipolar line must be boths
occluder and occludee; the blocks must be split and the vis-
ibility masks associated to their pixels must be updated (see
Fig. 2). Note that when using our camera configuration, this
rendering process can be sped up by replacing it by a line
drawing using depth buffers.

4.2. Stereo matcher

At each iteration of our algorithm, a disparity map is
computed. Many algorithms are capable of computing
non-uniform disparity maps, for instance belief propagation
[47], reweighted message passing [22], dynamic program-
ming on tree[50, 27], graph-cut [4] and maximum flow for-
mulation with a linear smoothing term [37].

When belief propagation is used, the local evidences can
be initialized using the values of the previous iteration. In
this case, our algorithm is an occlusion modeling exten-
sion of the hierarchical belief propagation presented in [12]
where the uniform decomposition is replaced by our non-
uniform one. Note that bipartite scheduling is no longer
possible, but the distance transform can still be used.

Note that search space reduction techniques that reduce

Figure 5. Reference images for the Head and Lamp (top
left) and ground truth (top right). Disparity map obtained
from NU-GEO-MF after first (middle left) and last itera-
tions (middle right). The result of applying border-cut to
NU-GEO-MF (bottom left) and the result of GEO-MF (bot-
tom right) are shown as well.

the number of disparity labels that must be examined could
also be used [51, 38].

5. Experimental results

In all our experiments, the matching cost function was
the same for all algorithms, that of [24] which is based on
[3]. We used color images but only gray scale ones are
shown here. As for the pixel smoothing term, we used the
experimentally defined smoothing function that also comes
from [24]:

s(p, r, f(p), f(r)) = λh(p, r) l(f(p), f(r))

where h is defined as

h(p, r) =
{

3 if |Iref (p) − Iref (r)| < 5
1 otherwise

with l(d, d′) = |d − d′| for the maximum flow with a lin-
ear smoothing term (MF) [37] and l(d, d′) = δ(d − d′) for
graph-cut (BNV)[4]. A pixel disparity is considered erro-
neous if it differs by more than one disparity step from the
ground truth. This error measurement is used by two com-
parative studies for 2-camera stereo [48, 41]. Note that a
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Algorithm Error (whole image) Error (mask)

KZ1 2.3 -
KZ1’ 1.3 -
ASYM-KZ1 1.3 -
REL-DP 1.9 -
NAKA-BNV 1.7 -
HYBRID-IDP 1.7 -
GEO-BNV pt 2.2 1.5
GEO-BNV 2.5 1.6
GEO-MF 2.9 2.0
BC (average) 1.1 -

NU-GEO-MF 2.4 1.5
NU-GEO-BNV 2.5 1.7

Table 1. Percentages of error of the different algorithms
for Head and Lamp scene, using 5 images.

better smoothing term and cost function are now available
[55]. We did not used them to simplify comparisons.

As in [7], we keep a single visibility history mask for
each pixel p regardless of the disparity d. The Eq. 4 be-
comes

Hi(p, t) =
∏

0≤k≤t

V ′
i (p, fk(p), fk).

This saves memory but the convergence is no longer guar-
anteed. We simply stop iterating when Gt = Gt+1 and
H(p, t) = H(p, t − 1) for all p ∈ P .

Recently, a new type of post-processing algorithms
named border-cut (BC) was proposed[8]. Rather than as-
sociating a disparity label to every pixel, it associates a
position to every disparity discontinuity. This method ob-
tains sharp and well-located disparity discontinuities start-
ing from the output of a wide range of stereo matchers. We
provide results with and without this post-processing step.
In our experiments, we used the dataset from the Multiview
Image Database from the University of Tsukuba.

5.1. Head and Lamp scene

This dataset is composed of a 5×5 image grid. Each im-
age has a resolution of 384 × 288 (see Fig. 5). The search
interval was between 0 and 15 pixels and we used 16 dis-
parity steps. Some disparity maps are shown in Fig. 5 and
error percentages are given in Table 1. Since we use a visi-
bility framework that preserved the ordering constraint, we
also computed the error after removing the pixels breaking
the ordering constraint, in particular part of the arm of the
lamp. We use the same mask as in [7], the one determined
by re-projecting the ground truth in each supporting cam-
era. We provide results for our non-uniform framework us-
ing the stereo matcher BNV and MF. We label them NU-
GEO-BNV and NU-GEO-MF. The non-hierarchical ver-
sions are labeled GEO-BNV and GEO-MF and come from
[7]. The entries ASYM-KZ1 and KZ1’ come directly from

0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100
0.110

104 105 106 107 108

NU-GEO-MF with BC
GEO-MF with BC

NU-GEO-MF
GEO-MF

Figure 6. Variation of the error rate as a function of the
number of elementary operations.

Algorithm Smoothing parameter
1 2 4 8 16 32 64 128

NU-GEO-MF 2.61 2.51 2.51 2.51 2.71 3.04 3.27 5.90

Table 2. Resistance to change of the smoothing parameter
for the Head and Lamp scene. The parameter increases by a
factor of 128, while the error rate varies by less than 3.29%.

[53]. KZ1 and REL-DP come from [24] and [16] respec-
tively. HYBRID-IDP and NAKA-BNV come from [6]. The
error rate associated with border-cut (BC) comes from [8]
and is the average of the error rates obtained using different
initializations. GEO-BNV and GEO-BNV pt come from
[6]. We also compared with GEO-MF and our implementa-
tion of GEO-MF, that achieved a lower error rate than pre-
sented in [7]. The error rate of NU-GEO-MF is 2.4% while
GEO-MF obtained a higher error rate of 2.9%. The num-
ber of iterations is respectively 12 and 6 for NU-GEO-MF
and GEO-MF. The total number of elementary operations is
1.5 million for NU-GEO-MF and 7.1 million for GEO-MF.1

The running time for NU-GEO-MF and GEO-MF are 55
and 161 seconds respectively using an AMD Athlon(tm) 64
Processor 3500+. Figure 6 shows the number of elementary
operations giving the error rate for NU-GEO-MF and GEO-
MF. After 7 iterations, NU-GEO-MF achieved a lower error
rate than GEO-MF at a fraction of the cost of computing a
single iteration of GEO-MF. The border-cut algorithm was
run using the disparity maps obtained after each iteration of
GEO-MF and NU-GEO-MF. Using both initialization, the
error rates after a few iterations are similar to those obtained
in [8]. The parameters for the border-cut are those used in
[8].

1We count the number of Discharge operations in the preflow-push-
relabel algorithm.
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Figure 7. Reference image for the City scene (top left).
The partial discontinuity ground truth (top right). Dispar-
ity map obtained from NU-GEO-MF (middle left) and im-
proved by border-cut (bottom left). Final graph for NU-
GEO-MF (middle right). Disparity map obtained by border-
cut starting from the result of Hybrid-IDP (bottom right).

The initial block size used in our experiments is 10× 10
and the initial disparity map is shown in figure 5. For NU-
GEO-MF and NU-GEO-BNV the non-uniform decomposi-
tion allow a reduction of approximatively 80% of the prob-
lem space. Table 2 shows the stability to change of the
smoothing parameter of NU-GEO-MF, giving the error per-
centage for 8 values of this parameter.

5.2. City scene

This dataset contains 81 640 × 480 images in a 9 × 9
grid (Fig. 7). We only used 5 images in a cross configura-
tion. Each disparity map was computed using 44 disparity
steps and the search interval was between 0 and 43 pixels.
The initial block size was 30 × 30. A partial discontinu-
ity ground truth that comes from [8] is shown in Fig. 7.
A discontinuity location is considered erroneous if it dif-
fers by more than one pixel from the ground truth. The
results are presented in Table 3 and some disparity maps
are shown in Fig. 7. We also show the result obtained
using Hybrid-IDP [6] with the border-cut post-processing.
The latter algorithm is fast, however it introduces artifacts
that are not eliminated by border-cut. The disparity maps
obtained by NU-GEO-MF before and after border-cut are

Algorithm Before B-C (best γ) After B-C (fixed γ)

NU-GEO-MF 18.8 11.8
GEO-MF 23.2 10.4
GEO-BNV 15.4 11.4
NU-GEO-BNV 15.6 12.6
Hybrid-IDP 28.2 14.7

Table 3. Percentage of error in the discontinuity location,
according to the partial ground truth, of the different algo-
rithms for City scene, before and after border-cut.

0 2 4 6 8 10 12 14%

FULL�MF

NAKA�BNV

KZ1

NAKA�MF

GEO�MF

GEO�NU�MF 1x vs 2x
2x vs 3x
3x vs 4x
1x vs 4x

Figure 8. Resistance to baseline change for 6 algorithms
for the Santa scene; each bar represents a percentage of in-
compatible pixels between depth maps obtained for two dif-
ferent baselines.

shown in Fig. 7. The percentage of pixels with a difference
in disparity greater than one for GEO-MF and NU-GEO-
MF is only 0.5%. After applying border-cut on each dis-
parity map, this difference drops to .2%. These different
pixels are highlighted in Fig. 7 by saturating the red chan-
nel. Although the disparity maps obtained are almost iden-
tical, the reduction in graph sizes is significant. The final
non-uniform decomposition of the disparity map is shown
in Fig. 7. The reduction of the search space is approxima-
tively 75%.

5.3. Santa scene

This dataset contains 81 images in a 9 × 9 grid (see fig-
ure 10). We only used 5 images in a cross-shaped configu-
ration. As the baseline increases, the amount of occlusion
in the scene increases as well. To measure the level of resis-
tance to change of the baseline, we used the incompatibility
metric introduced in [7]. Figure 8 contains bar charts of
the percentages of pixels incompatible between the depth
maps obtained for two baselines. Images were reduced by
a factor of 2 to achieve a resolution of 320 × 240 and 23
disparity steps were used. In addition to GEO-MF and NU-
GEO-MF, results from 4 algorithms coming from [7] were
included. Our hierarchical approach is slightly less resis-
tant to changes of baseline. The reduction in search space
for baselines 1x to 4x is 65%, 62%, 29% and 30% respec-
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Figure 9. Ratio of incompatible pixels between GEO-MF
and NU-GEO-MF as a function of the initial block size for
the city (left) and the Santa scenes (right). The block size
varies from 4 to 4096 pixels.

Figure 10. Reference image for the Santa scene and dis-
parity maps after different iteration of NU-GEO-MF.

tively. The small reduction for the largest baselines is ex-
plained by the geometric inconsistencies introduced by by
non-lambertian surfaces. Indeed, these surfaces move sig-
nificantly when the baseline is large. Figure 10 shows dis-
parity maps obtained using initial blocks of 130×130 pixels
on the full size image using 45 disparity steps. The incom-
patibility between GEO-MF and NU-GEO-MF for different
initial block sizes is shown in figure 8 for both the city and
Santa scenes. A pixel is considered incompatible when its
disparities are different (= 0) or differ by more than one
(> 1).

5.4. Conclusion

We proposed a new and flexible hierarchical stereo al-
gorithm that features a non-uniform spatial resolution. The
visibility computation and refinement of the disparity map
are integrated into a single iterative framework. The dis-
parity map is represented as a graph and the nodes are split
using the visibility information. The levels of refinement is
increased automatically where they are needed most to pre-

serve accurate localization of object boundaries. Our frame-
work does not add extra constraints to the cost function and
is very indifferent to the choice of the initial block size. As
has been shown, our algorithm allows major speedups and
preserves the quality of the final solution. While two graph-
theoretic stereo matchers are used in our experiments, our
framework is general enough to be applied to many others.

As for future work, the extension of our approach to
full volumetric reconstruction, where occlusion becomes
the dominant problem, should be investigated.
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