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Abstract

This paper addressesthe stereo correspondence
problemwheretheimagesarelargeenoughto make
stereomatchingdif�cult. In order to reducethe
problemsize,we proposea new non-uniform hier-
archicalschemewith theability to handle different
coarsenesslevels simultaneously. Our framework,
basedon a maximum �o w formulation, allows a
muchbetterlocalizationof objectboundarieswhere
large depth discontinuitiesare present. The uni-
form decomposition fails to localizepreciselysuch
bordersbecauseit makes the assumptionthat sur-
facesaresmoothin orderto correcttheerrorsfrom
onecoarsenesslevel to thenext. Our disparityesti-
mationaccuratelylocalizeslargedepthdiscontinu-
ities andthenfocuson increasingthe resolutionof
smoothsurfaces.Resultson syntheticandreal im-
agesdemonstratethevalidity of our framework.

1 Intr oduction

Modern digital camerascan generateimagesso
largethatmany of thetraditionalpixel basedstereo
algorithmscannot processthem. In a recentcom-
parativestudyof suchalgorithmsby Scharsteinand
Szeliski[1] the imageswerereducedby a factorof
16 in order to make themusableby all the tested
algorithms.Hierarchicalapproacheshave beenin-
troducedto dealwith thosehigh resolutionimages
[2–10]. In thoseschemesmultiple levels of image
reductionareusedto reducethesearchspace.Un-
fortunately, somematchingerrorsmadein anearly
stagecannever be repairedin the following steps.
Thoseerrorsappearmostlynearobjectsboundaries.
In order to minimize the error, we mustprovide a
mechanismthat canautomaticallycompensatefor
errorsintroducedat lower resolutions.

Many approacheshave beenproposed to cope

with errorsinducedby pyramids. In the context of
terrainmodelreconstruction, Hunget al. [11] sug-
gestedusingedgesdetectionto help correcterrors.
Lotti and Giraudon[12,13] proposeda pyramidal
schemebasedon cross-correlationwhereedgede-
tection is used to determinethe size of the cor-
relation window. Park and Inoue [14] used an
occlusion-overcomingstrategy basedon the useof
5 camerascoupledwith a hierarchicalschemeto
achieve preciselocalization of object boundaries.
The coarse-to-�nehierarchicalschemespresented
in [11,12,14] all use a uniform grid decomposi-
tion making themvulnerableto error propagation.
Szeliski and Shum[15], in the context of optical
�o w, useda quadtreedecompositionof the dispar-
ity map with a splitting criteria basedon normal
�o w. The motion map is then obtainedusing the
pre-computedpixel grid. Falkenhagen [16] useda
standardpyramidal schemeandextendsthe search
interval wherelargedisparityvariationsarepresent.
Leloglu et al. [17] alsousesa standardpyramidal
schemewhereerrorpropagationis limited by using
a spherearoundeachmatchin the searchvolume.
Thesearchis thenlimited in the region coveredby
the different spheres.In [4,7] a complex discrete
wavelet transformis usedto improve the matching
cost function at eachpyramid level. Nevertheless,
thesemethodsareverysensitive to errorsthatoccur
at thecoarsestlevels.Alvarezetal.[18] usedahier-
archicalschemeto speedup theconvergenceof an
energy functionminimization.

In this paper, we proposea new andmore�e xi-
blehierarchicalstereoalgorithmthatfeaturesanon-
uniform spatialresolution,so levels of re�nement
can be appliedselectively where they are needed
most in order to preserve a good localization of
objectsboundaries. Our pyramid approachrelies
on the maximum-�ow formulation of the match-
ing problem [19] which allows an arbitrary non-
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Figure1: Thestereomatchingspace.The
���������

plane is
thedisparity mapwith blocksof size 	�
 . The � axisis the
disparity to assignovera range ��
 anddisparity step ��
 .

uniform pixels grid decomposition, independently
of the epipolar constraint. This concept is simi-
lar to the rectangle presentedby Sun [5] where
sub-imageswith low varyingdisparityareindepen-
dentlymatchedusingdynamicprogramming which
restricts the non-uniformity to be along epipolar
line anddoesnot allow smoothingbetweensucces-
sive epipolarlines. Furthermore,the non-uniform
grid decomposition in [5] is only usedto speedup
computationand not to reduceerror propagation.
Mancini andKonrad[20] introducedaquadtreede-
compositionsimilar to our scheme.Their criteria
to split a pixel block is basedon the value of the
matchingcost function and doesnot model depth
discontinuitiesexplicitly. Sethuramanet al. [21,
22] proposedanotherquadtreedecompositionof the
disparitymapin the context of stereoscopicimage
compression.The criteria to split a pixel block is
basedon the variation of disparity in the 4 inner
blocksanddoesnot considerneighborhoodblocks
asour methodsuggest.Their schemeis aimedat
low bit transmissionof stereopairs and doesnot
provide largeandhighly detaileddisparitymaps.

Theconceptof non-uniform pyramidwill bede-
scribedin Section2, thenthecompletepyramidal-
gorithmwill bepresentedin Section3. Experimen-
tal resultswill follow in Section4.

2 Non-Uniform Pyramid

Whenworking with largeimagesthesizeof theso-
lution spaceis so hugethat the problembecomes
untracable.Theproblemspaceis illustratedin Fig-
ure1. The � and � axisrepresentthedisparitymap
itself, while the � axis representsthe disparityas-
sociatedto each ��������� pixel of the disparitymap.
Sincethe resolutionof the disparitymapdoesnot
necessarilycorrespondto the original imagereso-
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Figure2: Classical pyramidapproach. Fromonelevel to
thenext, noticeanincreasein spatial anddisparity resolu-
tion combined to a reduction of thedisparity range.

lution, eachdisparity map pixel is in fact a block
of size ��
 (alongeachof its sides,assumingit is
square)in imagepixels (seeFigure1). The same
goesfor eachdisparityvalue,wheregoingfrom one
disparityvalueto the next corresponds to a stepof

�


 pixels in theoriginal image.Also, thedisparity
valueshave a range

�


 thatdescribestheextentof
displacement allowed for eachblock ��������� of the
disparitymap.Thegoal is to assignfor each ���������

blockof thedisparitymapadisparity� by searching
all possibledisparitiesin the range

�


 usingsteps
of

�


 pixels. In orderto solve very largeproblem
instances,many algorithmsuseapyramidapproach
wherereduced versionsof the problemspaceare
successively solved at increasingresolutionswhile
keeping the searchspaceat a reasonablesize [2–
5,11,23].

Those classical pyramid algorithms generally
start by applying a large reductionof both spatial
anddisparityresolutions(seeFigure2, level 0). Af-
ter a �rst solution is obtainedusing a full dispar-
ity range(absolutephase),it graduallyincreasesthe
spatialanddisparityresolutionswhile reducingthe
disparityrangeto keeptheproblemsizeundercon-
trol (relative phase;seeFigure2, levels1 and2). At
variouspyramid levels,it is expectedthat thecom-
puteddisparitymapwill differ from thetruedispar-
ity map.We classifytheerrorsin two types.

The �rst type is smoothsurfaceerrors, which
areinducedby thereducedresolutionof thesearch
space.Thereductionsusedby classicalpyramidap-
proaches aresetup to compensatefor smoothsur-
face errors from the previous level. Thoseerrors
areprogressively eliminatedastheresolutionis in-
creasedfrom onepyramidlevel to thenext. For ex-
ample,it is assumedthat for a disparity stepof 8
pixels, the disparity solutionarewithin �! pixels
of thetrue disparity. Theerrorscanberemovedby
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Non Uniform gridCoarse pixel grid

Figure3: Non-uniform spatial reduction. Eachgrid is
shown with superimposedneighborhoodgraph( ���


����

).
On the right, the resulting non-uniform problem space
( ���


����
	

�

��� 

�

).

settingtherangeof thenext stepto �! aroundthis
solutionwhile the disparity stepis decreasedto 4
pixels. For the purposeof this algorithm, we de-
�ne a smoothsurfaceasonethat featuresdisparity
discontinuitiessmalleror equalto thedisparitystep

�


 usedata givenpyramidlevel.
The secondtype is large discontinuity errors

which occur when the true disparity solution lies
outsideadisparityrangethatdoesnotcover thefull
extent of allowed disparities,as in Figure2 levels
1 and 2. Errors of this type cannotbe recovered
in a classicalpyramidapproach andarepropagated
throughthenext levelsunaltered.Largedepthdis-
continuitiesaretypically observedat objectbound-
aries. At suchboundary, the disparityerror canbe
aslargeasthefull disparityrange.This kind of er-
rorcanoccuratany pyramid level,but ismuchmore
prevalentwhengoingfrom a full disparityrangeto
a reducedone.

The non-uniform framework

In order to better localize object boundaries,we
proposeto increasenon-uniformly the spatialres-
olution only whereit is needed,that is wherelarge
discontinuitiesareoccurring.This reductionallows
to runaproblemagainwith thesamedisparityrange
with anegligible increasein problemsize,makingit
possibleto reduceor remove thelargediscontinuity
localizationerrors.

A non-uniform reductionconsistsin applyinga
reductionto only a selectedsubsetof the problem
space.Thecasewhereonly spatialresolutionis af-
fectedis of particularinterestfor solving largedis-
continuity errors. As illustratedin Figure3, some
blocks(heretheonein thecenter)areselectedand
thenexplodedinto 4 new smallerblocks.

The fact that blocksof many differentsizescan

be presentin a single level of the pyramid creates
new requirementson the problemspacerepresen-
tation and the algorithm usedfor solving it. The
following sectionsdescribetheseissuesin detail.

A Graph formulation

Whensolving for a disparitymapover someprob-
lem space,mostalgorithmstry to applysomeform
of smoothingconstraintbetweenneighboring pixels
of thedisparitymap[19,24]. Thisisusuallyapplied
as direct searchwith a large correlationwindow
[25], dynamic programming[26], or maximum-
�o w [19,27]. Themaximum-�ow methodwith lin-
ear penalty costs[19] can be easily adaptedto a
non-uniform disparitygrid by simply changing the
topology of the �o w graph. It allows to solve ef�-
ciently the whole disparitymap in a singleglobal
minimizationandfeaturedavery �e xible neighbor-
hoodrepresentation.

The graph � is de�ned, as in [19], asthe prod-
uct �����

�


������

�

��� 

�

of two basicgraph, �

�


����

expressingthedisparitymap,and �

��� 

�

expressing
the disparity range. In the graph �

�


����
, eachdis-

parity map block is a nodeand is connected by a
smoothness edge to neighboringblocks. We con-
sider two blocks to be neighbors when they have
an adjacent face,regardlessof their size. Figure3
illustratesthe graph �

�


����
as it undergoes a non-

uniformtransformation.Theblackpointsarenodes
and the lines joining them are smoothnessedges.
Usually, a globalsmoothness�o w capacityis given
to all smoothnessedgesof thegraph.Dueto their-
regular natureof neighborhoods,eachsmoothness
edgeis now de�ned asa commonsmoothness �ow
capacity multiplied by the size of the sharedside
of the neighboring blocks. In Figure3, this is il-
lustratedby the thicker lines linking large blocks
andthinnerlines linking a smallblock to its neigh-
bor sincethey sharea smallercommonedgethan
two large blocks. This use of weightedsmooth-
nessallows the enforcement of a uniform degree
of smoothness acrossa mixture of blocks of arbi-
trary sizes. The disparitygraph �

��� 

�

is the same
asin theregulargrid case.It spansthefull disparity
rangeasa chainof nodes,one for every disparity
step

�


 . However, the�nal graph � will besparse
sinceonly a fractionof thefull disparityrangewill
remainafterthesolutionis computed.

This sectionhas presentedhow a non-uniform
pyramid level can be representedas a graph and
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solved usinga maximum-�o w algorithm. The se-
quenceof reductionsusedto generateall the pyra-
mid levelsis describedin thefollowing section.

3 The algorithm

All pyramidalgorithmsmuststartwith anabsolute
phasewherethey solveoverthefull disparityrange,
andthenproceedwith a relativephasewherethey
graduallyreducethedisparityrangeuntil it reaches
thedesiredresolution,usuallyonepixel.

Table1 illustratesour non-uniform pyramid al-
gorithm. As introduced in Figure1, we de�ne � 


as the smallest block size presentin the problem
space,

�


 as the disparity stepsizeused,and
�




the disparity range. For the purposeof expressing
the range, � ���

���������
�	��
���
 representsthe full ab-

soluterangeof allowed disparitywhile � � � rep-
resentsa rangeof plus or minus � pixels relative
to a previous disparitysolution � . A particularre-
ducedprobleminstance�

� is describesby thevec-
tor �

�

� � �

�




�

�

�




�

�

�




� .
Theclassicalalgorithmsolvesthesmallestprob-

lem instanceover thefull rangeof disparity. It then
proceedsto graduallyre�ne the solutionwhile re-
ducing the disparity range. The non-uniform al-
gorithmproceeds similarly but containsextra steps
which areshown in Table1 anddescribednext.

Absolutephase

The �rst phase(steps1, 2, 2a, 2b) is labeledab-
solutebecauseit searchesfor a matchover the full
disparity rangeat a �x ed disparity stepsize. De-
signedto reducethelocalizationerrorof largedepth
discontinuities,it proceedsby graduallyincreasing
thespatialresolution(step2a),but only wherelarge
variationsof disparityareobserved. This is accom-
plishedby selectively splitting cellsthataresigni�-
cantlydifferentin disparityfrom theirneighbors.

After splitting, a new disparity map is re-
computedusingthesamedisparityrange(

�


 ) and
disparity stepsize (

�


 ). This processis repeated
(step2b) until thecellssizecanreacha singlepixel
in size( �



��� ), therebymatchingtheoriginal im-

ageresolutionand allowing object contoursto be
accuratedown to a singlepixel.

A disparity differenceis considered signi�cant
whenit is largerthananuserde�ned threshold� . If

� is toosmallthenit couldhaveasigni�cant impact

1 Createcoarsestpyramidlevel
�����

�

	

�




�

�

�




���

�

� ���������

����
�� �

�

where 	

�




and �

�




arebased
on memoryandtime constraints
Select a threshold ! for discontinuities

2 Set "

�$#

, thenSolve
problem

�

� to obtain solution %

�

2a Setupnext pyramid level
�

�'&)(

�

�

(

*

	

�




�

�

�




�

�

�




�

(augmentnon-uniformly spatialresolution
at discontinuities +,! in %

�

)
Set "

�

"	-/. , thenSolve
problem

�

�

to obtain solution %

�

2b If 	

�




+$. then Repeatstep2a

3 Setupnext pyramid level
if �

�




is theFull AbsoluteRangethen
�

��&0(

�

�

.

�

(

*

�

�




�

%

�21

!

�

(augment non-uniformly spatial resolution
at discontinuities 3,! in sol %

�

,
augment disparity resolution uniformly,
reduce relative disparity range)

else
�

��&0(

�

�

.

�

(

*

�

�




�

%

�21

�

�




�

(augment non-uniformly spatial resolution
at discontinuities 3 �

�




in sol %

�

,
augment disparity resolution uniformly,
reduce relative disparity range)

Set "

�

"	-/. , thenSolve
problem

�

�

to obtain solution %

�

3a Setupnext pyramid level
�

�'&)(

�

�

.

�

�

�




�

�

�




�

(augmentnon-uniformly spatialresolution
at discontinuities + �

�




in sol %

�

,
no change to disparity resolution andrange)

Set "

�

"	-/. , thenSolve
problem

�

�

to obtain solution %

�

4 If �

�




+$. thenRepeatsteps3 and3a

Table1: Non-uniform pyramid algorithm. The double
line separatestheabsolutephase(steps1,2,2a,2b)andthe
relative phase(steps3,3a,4).

on the memoryrequirementof the absolute phase,
but it would not in�uence the quality of the �nal
solution. If � is to big thenseriousartifactscould
compromisethe quality of the �nal solution. Nev-
ertheless,thechoiceof anacceptablevalueis quite
intuitive.

Relative phase

Thesecondphaseis designedto reducethesmooth
surfaceerrorsand occasionalnew depthdisconti-
nuity errorsthat may appear. This phasedoesnot
searchover the full disparity range. It ratheruses
a small rangerelativeto the previous disparityso-
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lution (step3). This allows a dramaticreductionof
the number of disparitysteps,makingpossiblethe
simultaneousincreaseof both spatialanddisparity
resolutions(therebydecreasing� 
 and

�



) while

keepingthe memoryrequirementat an acceptable
level. This simultaneous increaseis requiredin or-
der to remove smoothsurfaceerrorsand explains
why thesesurfacesare not considered during the
absolutephase.

Theuseof a relativedisparityinterval introduces
an importantdrawback. It makesit impossiblefor
a disparity to changeby a larger amount than the
relative interval used. This is why it is so impor-
tant to remove any large depthdiscontinuityerror
beforehandin theabsolutephase.

It is possiblethat new large depth discontinu-
ities will appearduring the relative phase. These
new discontinuities representnew object contours
thatmaybebadly localizedandmustbe improved.
Thepixel blocksinvolved in thenew contourswill
be split andthe disparitymapwill be re-computed
while keepingthesamedisparityrange

�


 anddis-
parity stepsize

�


 (step3a).
At agivenpyramidlevel duringtherelativephase

a disparityinterval twice asbig astheprevious dis-
paritystepis used.Whenthealgorithmgo from ab-
soluteto relativephasewe exceptionally usea dis-
parity interval

�


 thatis twice asbig asthethresh-
old value. Using a smaller interval could intro-
duceseriousartifactsby wrongly classifyingpixels
blocks.

An example

A synthetic stereo image pair ( �����

�

�����

�

���

disparities),shown in Figure4, illustrateshow
the algorithm is able to recover very good dispar-
ity mapswith excellent object boundary localiza-
tion. In this example,96%of thecomputeddispar-
ities arewithin � � pixel of the groundtruth, with
mostof the errorsin the occludedareaon the left
sideof thesphere(errorsareexpectedsincewe do
not model occlusions). The bottom rightmostre-
sult of Figure4 is from the MRRS methodof Sun
[5]. Theresultof a uniform pyramidschemeusing
themaximum-�o w formulationis alsoillustratedto
demonstratetheusefulnessof non-uniformdecom-
position. With this schemeonly 67% of the com-
puteddisparitiesarewithin ��� pixel of theground
truth. Like most uniform pyramid methods,both
uniform approachfeaturelarge disparity errorsat

MRRSNon-Uniform Pyramid result Uniform Pyramid result

Right Left True disparity

Figure 4: Samplereconstruction. At the top, a syn-
thetic stereo pair with largediscontinuity at object bound-
aryandthetruedisparity map.At thebottom,theresultof
thenon-uniform pyramid(left),theresultof uniform pyra-
mid (middle) ,andthe result of MRRS classical pyramid
(right).

the objectboundariessinceit propagatesdisconti-
nuity errorsfrom eachpyramidlevel to thenext.

Thestepsof thealgorithmareillustratedin Fig-
ure 5 for a horizontal slice of the disparity map.
The�rst six slices(Fig.5 a-f) representtheabsolute
phase,wherethespatialresolutionis non-uniformly
increasedwhile the disparity resolutionand range
remainunchanged.The largediscontinuities at the
objectboundaryaregraduallygettingaccuratelylo-
calized,especiallyon the right sideof the sphere.
Theleft sideis notasaccurateastheright onesince
it is occludedandtherebyimpossibleto match.

The last four steps(Fig. 5 g-j) illustratethe rel-
ative phasewheredisparityandspatialresolutions
are increasedwhile the disparity rangeis reduced.
The gradual improvement of the smooth surface
of the sphereis obvious. Notice how the absolute
phaseis only concernedwith accuratelocalization
of discontinuitiesanddoesnot improve thesolution
alongsmoothsurfaces.Inversely, therelativephase
canonly improve smoothsurfacessincelarge dis-
continuitiesareoutsideof its operational range.

Limitations

This paperis aimedat showing the usefulnessof
non-uniform grid decomposition in the context of
large and highly detaileddisparity map computa-
tion. In this context, we isolatethe effect of our
framework by always using a single simple cost
function that doesnot modeledocclusion. Never-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure5: Algorithm stepsfor a horizontal slice of im-
age,displayedwith groundtruth. Vertical axisis disparity,
horizontal axis is

�

dimensionof disparity map.Thedots
representthedisparity solutionsunderconsideration.

theless,by post-processingit would be possibleto
extractanocclusionmapdirectly from thedisparity
map.

Our framework has two potential weaknesses:
First, if the initial pixel block size is too large, a
block containinga largedisparityin its middlemay
neverbesplit duringtheabsolutephaseandthereby
introduceanartifact.Second,if thethresholdis too
large,smoothsurfaceswill bedif�cult to recover. A
very effective way1 of reducingthe impactof both
limitationsis to repeatstep3abeforeproceedingto
step4 in thealgorithmof Table1. At a givenpyra-
mid level with amaximumblock sizeof �

�

� pix-
els,step3awould berepeatedatmost

�����

� times.

1We did not usesucha strategy in theresultspresentedin this
paper.

4 Experimental Results

We testedour non-uniform pyramid stereoalgo-
rithm on a variety of stereoimages. On synthetic
images,suchastheresultspresentedin Figure4 of
Section2, the algorithm achieved its goal of very
gooddiscontinuitylocalizationandoverall quality
of the disparitymap. The typical running time, on
a 1.4 Ghz AMD Athlon with non optimizedcode,
is about10 seconds for a problemspaceof 17 mil-
lion ( �����

�

�	� �

�

���

) possiblematches.It requires
200 thousandelementaryoperations2 to complete
while the full sizeproblemis estimatedto require
about100million elementaryoperations(thequar-
tersizeproblemtakesabout20 million operations).
The saving of the pyramid approach is quite sub-
stantial. Uniform andnon-uniform pyramidshave
similar runningtime, but thequality is muchbetter
in the non-uniform case.The experimentalresults
on real imageryarepresentedin the next two sec-
tions. The costfunction usedin the following sec-
tion is basedon simpleblock matchingandSSD.

Teapot

This data-set,courtesyof Jean-YvesBouguetat In-
tel, featureshigh resolution (2048x1536) images
(seeFigure 6) that containssomeinterestingfea-
tures such as a slantedsurfaceswith few texture
details,and a large disparity rangeof 400 pixels.
Thegroundtruth wasprovided in theform of a 3D
modelobtainedwith astructuredlight scanner. The
truedisparitymapis computedfrom thecalibration
dataandthis 3D model. It itself containssomeer-
rorsandprovidesdepthonly for theteapotitself and
not thetable,but still providesa goodreferencefor
comparison.

The full disparitymapof the teapotis shown in
Figure6. Theresultof dynamicprogramming[28]
is addedfor comparison.In general,dynamic pro-
grammingis moresensitive to lack of texture and
suffersfrom its inability of propagatingsmoothness
acrossepipolar lines. The slantedtable was well
recoveredby our methodgiven its lack of texture.
Most object boundariesare sharpand well local-
ized. Right boundariesaremoreaccuratethanleft
boundaries becauseof occlusions, which are not
currentlydetected.

2We countthenumberof Dischargeoperationsin thepre�ow-
push-relabelalgorithm.
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Left

N.-U. Pyramid MaxflowDynamic Programming

Right

Details of N.-U. Pyramid MaxflowGround Truth

Figure6: Teapot disparity map. Middle left, result ob-
tained with dynamicprogramming [28] . Middle right,
thenon-uniform pyramid disparity map.Thefull disparity
rangeis

� �

�
#�#

�����

���

#�#

� pixels. Bottom left, details of
thetruedisparity mapobtainedfrom a scanned3D model
of the teapot. Bottom right, details of the non-uniform
pyramid disparity map. The displayed disparity rangeis

� ���

�
#

�����

���	�

#

� pixels.

Baseball

Thebaseballstereopair, courtesyof Bill Hoff at the
University of Illinois, is shown in Figure7. It fea-
turesvery highly texturedsurfaces,exposure vari-
ationsbetweenthe two images,andvery sharpob-
ject contours.The top left disparitymapis the re-
sult of a fastpyramid stereoalgorithm by C. Sun
[5]. While it runsvery fast,this algorithmdoesnot
recover very sharpcontour sinceit doesnot explic-
itly model them. The bottom resultsareobtained
respectively with thefull sizemaximum-�o w algo-
rithm from Roy [19], the non-uniform maximum-
�o w pyramid andthe non-uniform maximum-�ow
pyramidworking in thesub-pixel domain. Both re-
sultsfrom pyramidal maximum-�ow arecompara-
ble, if not better, thanthe full sizemaximum�o w
result.Also, asexpected,therunning time is about
30 timesfasterwith thepyramid.

5 Conclusion

This paperpresenteda new non-uniform approach
to hierarchicalstereomatching,aimedtoward ef-
�ciently matchinglarge images. Oneobjective of
themethodis thatit detectsandaccuratelylocalizes
largedepthdiscontinuitiestypical of objectbound-
aries,which is usuallyhardto accomplish usinga
classicalpyramidapproach.

The algorithm reduces the spatial resolutionof
the disparity map non-uniformly so different lev-
els of coarsenesscanbe presentat the sametime,
therebydrasticallyimproving theresultswhile lim-
iting the memory requirements. It usesa graph
formulation to representthe problem space,thus
enablingthe useof the maximum-�ow algorithm.
Comparedwith the non-pyramid Maximum-Flow
approach, our resultsshow good speedimprove-
mentsandtheability of our methodto tacklemuch
larger problems. It solve ef�ciently and globally
thematchingproblemat varioushierarchicallevels
with arbitrarily complex neighborhood structures
independentof the epipolarconstraint. Moreover,
it provides good stability when intensity variation
arepresentin thestereopair.

As for future research,are goal is to obtain a
pyramidschemethatcanbeprovedto never propa-
gateerrorsbetweensuccessive levels,which corre-
spondsto obtainingthesolutionof theoriginalnon-
pyramidproblem.
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