
iiii~(i

i~4,!i

(
/)

S. GORN, Editor; R. W. BEMER, Asst. Editor, Glossary & Terminology
E. LOHSE, Asst. Editor, Information Interchange
R. V. S M I T H , Asst. Editor. Programming Languages

J

A Correspondence Between
ALGOL 60 and Church's Lambda-
Notation: Part I*

its- P. J. I,~XDtN}

This paper describes how some of the semantics of ALGOL
60 can be formalized by establishing a correspondence
between expressions of ALGOL 60 and expressions in a
modified form of Church's n-notation. First a model for com-
puter languages and computer behavior is described, based on
the notions of functional application and functional abstraction,
but also having analogues for imperative language features.
Then |his model is used as an "abstract object language" into
which ALGOL 60 is mapped. Many of ALGOL 60's features
emerge as particular arrangements of a small number of struc-
tural rules, suggesting new classifications and generalizations.

The correspondence is first described informally, mainly by
illustrations. The second part of the paper gives a formal
description, i.e. an "abstract compiler" into the "abstract object
language." lhis is itself presented in a "purely functional"
notation, that is one using only application and abstraction.

/ii
C o l l t e n [S

(Part J)

Introduction
Motivatioi~

[,O lit-tel" Ill Prospects
Short-term Aims

[mper~ttive Applieativ(!]!]Xl)r(~ssions
A Gene r :d i za t i on of , Imnps
IIItrodlleillb~ (;Ollllii}~ilds in to a I"Llne-

tii/tlal S(:} i() IIL(~
Tim Sllaring Machine
A L G O l , 60 as Sugared I A E 8

I n f o r m a l Presentation of the Corre-
S !~)()II (]ellCe
Brief Ou'Hine
The DomMn of Reference of

AI,GOL 60

Fo>lists

Streams
Types

Tlhe (' o n s t a n t s a n d Primitives of
ALGOL 60

[[lustrat[otl~ of the (.~ortespon(lenee
Identifiers
Variables
Ex pressions
Blocks
Pseudo blocks
Declarations
Statements
Labels and Jumps
Own Identifiers

(Part H)

I"ormal Presentation of the Con'espoud~
ence

Abstract ALGOL
The Synthetic Syntax I"unction
The Soma, l i l l e IFtlltctioli

(: (mel l l s ion

I n t r o d u c t i o n

Anyone familiar with both (~hurch's X-calculi (see e.g.
[7]) attd ALTO], 60 [61 will have noticed a superticial re-
semblance t)etween the uay variables tie up with the X's
in a nest of X-expressions, and the way identifiers tie up
wiltt the headings in a nesl, of procedures and blocks. Some
may also have observed that in, say

{\f.f(a) + f(b)} [Xx.:c 2 + px + q]

the two X-expressions, i.e. the operator and the opcr~md,
play roughly the roles of Mock-body and procedure-
declaration, respectively. The present paper explores this
resemblance ii~ some detail.

The presenlal~ion falls into four sections. Tim first see-
Lion, f(illowing this introduegi(in, gives some moi;ivation
for examining lhe e(n'respondenee. The second section de-
scribes mt abstxaeL language based on Ctmreh's X-calculi.
This abstrae(language is a development of the AE/SECI)
system presented in [3] and sontc acquaintance with thai;
paper (hereinMter referred to as [SiEE]) is assumed here.
The third seclion describes inforlnally, mMnly by illus-
lral;ions, a correspondence between expressions of ALCOL
60 and expressions of the abstract language. The last
see(ion formalizes tiffs eorrespondenee; i(first describes
a sort of "abstracl~ ALcol, 60" and then presents Lwo func-
tiotts that map expressions of ~bstraet AL(alL 60 inlo, on
l;he one hand, AL(~OL 60 texl;s, and on the other hand
expressions of the abstrac{; language.

Mot iva t ion

It seems possible that the correspondence might: form
the basis of a formal description of the semantics of AL(;OL
60/ As presented here it reduces the problem of specifying
ALt,;OL 60 semani.ies t,o t.hal~ of specifying t)he semantics of
a sLrueturalty simpler language. The formal treaLment of
the latter problem is beyond the scope of this paper, and
hence likewise a formM t)roof l~hat~ the correspondence de-
scribed here is eorrecl). [1~ is hoped that~ the informM at-
count of the semantics of the abstract "object language"

* Part I [of this paper, which gives bite FormM Presenta-
tion of the Correspondence, will appear in the March, 1965 issue
of the Communications of the ACM.

Present address: Univac Divis ion of Sperry Rand Corpora-
lion, Systems Programming Research, New York, New York.

* This view is expanded in [10].

V o l u n , e 8 / N u m b e r 2 / Feb rua ry , 1965 C o n m u t n i e a t i o n s o f the ACM 89

will t)e enough to justify the choice of correspondence in all

but a few details.

LONG-TERM PROSPECTS

There at'(', two ways in which this work might be rele-
vant to the job of providing software.

(1) Formal syntax has been used to practical advan-
tage by language designers and implementers. There might
be analogous advantages in formal semantics.

(2) If several languages are being used concurrently by
the users of a computer, a common formal basis for them
might help in intermixing them (e.g. referring in one lan-
guage to program that originated in another).

Clearly, significance in these fields depends on the possi-
bility of applying to other languages the technique illus-
trated here in respect to ALGOL 60. So far only sketchy
trials have been made, since even for ALGOL 60 the present
state of the investigation is not satisfactory. Discussion of
otimr languages is largely beyond the scope of this paper,
but the sketchy trials confirm what will be obvious to the
present reader---that the method is at its best with lm>
guages that, rely mainly on elaborate "descriptive" forms,
and at, its worst with those that rely mainly on elaborate
"imperative" forlns. Thus it favours what currently tend
to be called "advanced" languages---those with good deft-
nition facilities, localized naming, and reeursive structure
of right-hand sides and programs. I t has little value with a
fixed-format, absolute-address language that makes exten-
sive use of sequencing and of state-indicators that modify
the effect of subsequently executed instructions.

SHORT-TERM AlMS

In [MEE] it was shown how certain features of program-
mint languages can be modeled in a modified form of
Church's X-notation. More precisely, a model language,
based on X-calculi, and called applicative expressions (AEs)
was described in abstract terms, that is to say, independ-
ently of any particular written representation. I t was
shown how AEs provide facilities essentially equivalent to
auxiliary definitions, conditional expressions and recur-
sion, and that with a suitable choice of written representa-
tion these facilities take on a familiar appearance. Further-
more, an abstract machine, called the SECD-machine, was
described capable of "interpreting" AEs. Still more pre-
cisely, there is a Jhmily of languages and a matching family
of machines, each characterized by an "environment," i.e.
a set of named objects that are related to one another by
rules concerning the results of applying them one to an-
other'. The present paper' is based on a development of this
scheme, intended to incorporate ALGOL 60.

The at tempt to fit ALGOL 60 into the AE/SECD frame-
work can be considered from two sides. On the one hand,
for someone familiar with ALGOL 60 it may clarify some of
the features of AEs. Firstly, the analysis of ALGOL 60 in
terms of AEs illustrates the distinction made in [MEE], be-
tween "applicative structure" and "syntactic sugar."

90 C o m m u n i c a t i o n s o f the ACM

Secondly, we shall give many examples of the usc~ of Al,;s
as a descriptive tool, and in particular some that exhibit in
AEs features that correspond (o the sequencing control of
conventional programming la ,guages.. lit emer,,'es. , ~ , lhat the
choice of an AE from a certain ('lass of similar AEs is
rather like the choice of an order for a set ot7 assign-
ments, and tlmt the issue of whether or itol. this choice
affects the outcome has an analogy in terms ot' AEs.

For example, it follows from the definition of tim "value"

of an AE that

~(a ~ O)(J, 1/a)

and

g (a =< 0)(X().a 2,a().1).~)()

are not necessarily equivalent; if a = 0 the first is u>
defined. This difference is reflected in ihe behavior of the
SECD-maehine. In evaluating the first it attempts to
evaluate bolh a 2 and l/a, whereas in evaluating the second,
both X()-expressions are evaluated but only one of thdr
bodies. The use of X, and in particular (to avoid an ir-
relevant bound variable) of h () , to delay and possibly
avoid evaluation is exploited repeatedly in our' model of
ALGOl, 60. A function that requires an argument-list of
length zero is called a none-adic function.

On the other hand, AEs illunfinate the structure of

ALGOL 60.
Firstly, the definitive description of ALGOL 60 is split

into sections headed "syntax" and "semantics." The syn-
tax is described formally, the semantics raainly by nm'ra~
tive. This paper provides a way of formalizing some of the
semantics by associating semantic features of AL(~OL 60
with syntactic features of AEs. (More precisely, we should
say structural features of AEs, since AEs have an existence
independent of any specific written representation.)

Secondly, the analysis leads to a classification of the
grammatical units of ALGOL 60 that provides a unified
framework for such features as (i) the fact. lhat array
bounds are necessarily specified in terms of nonlocals (and
hence, for instance, cannot use a procedure declared ill
parallel); and (it) the commonly observed similarity be-
tween procedures and actual parameters called by name.
More generally it shows that many features of AL(~OL 60,
including call by name, declarations, own, for-lists, and
labels, have parallels in a language that lacks assignment,
arid are hence not essentially related to "imperat ive" lar~-
guages. Also, mainly by default, it suggests a new view of
own 2

Thirdly, the analysis brings out certain respects in which
ALGOL 60 is "incomplete," in that it provides differing fa-
cilities in situations that are closely analogous. It dictates
what extensions (and small changes) are required to re-
move this incompleteness. Whether or not "eomplel(mess,"
in the technical sense that emerges below, is a desirable at-

2 Developed in [10].

Volume 8 / Number 2 / February, 1965

ll'il)ul(~ el p '()gralni~lits~ l~mgttag(. ~ will l iot be discussed
dirocily ill 1,his p:~por t)(,yo~ld lho following i.'elli{~rks.

In ils hi, vor i l c, ali })c said tSal, given (:olnplel(mess, many
Of lho prol)os~ls for ('xl(:~i/si()llS thai)are put forward with
r(~fel'ei~oe go ctirro/~ t pr()graitu~iing]angtiages become mere
s!/ntaclic pr<)pos~fls, i.(< proposals for wriling in al:l allegedly
illoFe eonvell iei it way sonic par t icu lar k, ind of expression
that is ~fli'eady ii~ the langu'~ge. There is art impor tant
(lualifiem ion io ti~is: such a proposal ni ight have some coo-
l ion/ i t ovor lones; i.c,. il; might be a sy'ntactic proposal Dliat
helps the machine to recognize when special "cheap" tech-
~tiques arc appropriate, or it; nfight deter the user from
writing forms of expression that at'(: expensive to imple-
ment.

The above c/aim for complete languages sounds like one
ellen made to rebut a proposed language ex tens ion- -"gou
can do that already merely by writing " The question
therofor(~ arises whether a complete language forestalls its
extens ions in a n y more s ignif icant sense t h a n do Turing
machines, M a r k e r algorithms, built-in instruction codes
of gei~eral-purpose computers, or programming languages
wiih Am~oL-like procedure facilities. We shall not pursue
this questior~ here.

Fourthly, the analysis of A LCOL 60 in terms of AEs sug-
gests a new way of comparing various run-time setups for
ALGOL 60, and displays the interactions between run-time
selup and l he exlensions mentioned above.

hn lpera t ive App l i ca t ive Express ions

We now describe the abstract language used later to
model ALto-eL 60. We give a formal account of its structure
(i.e. its "abstract syniax," to use McCarthy 's phrase [5])
trod an informal account of its semantics--very much what
the oftieial description does for ALGOL 60. The semantics of
this absl tact language are described in terms of art abstract
machine for interpreting it. This language consists of ex-
pressions we call imperative AEs (IAEs), and tim machine
is called the sha'~'ing machine. The IAE/sharing machine
system is a development, of the A E / S E C D system de-
scribed in [MEE]. However there is art important way in
which the relationship of IAEs to the sharing machine
differs from that of AEs to the SECD-machine. The se-
manlics of' AEs can 1)e specified formally without recourse
to a machine. In fact. this specification provides a criteriolt
for .iudging the "correctness" of a machine that purports to
evahmte AEs. The SECD-machine satisfies this criterion
but it is not the only (abstract) machine to do so. With
IAEs on (,lie other hand it appears impossible to avoid
specifying semantics in terms of a machine.

A relationship was established in [MEE] between AEs
and certain informally introdu('ed pieces of notation; for
example, we ('onsider

X w h e r e x = Z

as a way of writing the operator/operand combination
whose operand is Z and whose operator is a X-expression

Vo lume8 / NiJmber 2 / Feb rua ry , 1965

whose bound variable is x and whose X-body is X; this is
the AE thai: in a rnore rigid notation is written

{xz.x} [z]

In this paper we use another piece of "syntactic sugar"
for the same AE structure, namely,

l e t x = Z; X

or, letting layout obviate punctuation,

l e t x = Z
X

Here is a typical form of AE, presented both informally
and formally.

l e t a = A

and b = B
and f (x , y) = F
l e t t e e g(x) = G

a n d h(y, z) = H
l e t k(u , v) (x) = K
X

{x(a, b, f).
{X(g, h).

{Xk.X} {X(u, v).Xz.K})
[YX (e, h). (Xx.(L x (y, z).H} }

[A, B, X(x, y).F]

The only consideration in choosing between l e t and w h e r e
will be the relative eonvenienee of writing an auxiliary
definition before or after the expression it qualifies.

The use of comlnas for denoting lists, ~ for conditional
expressions, arid l e t arid w h e r e for auxilia W definitions,
provides a way of representing AEs on paper, i.e. one par-
titular "syntax" for' AEs. Though this syntax has not been
rigorously defined, enough has been said to ensure that
each formula could be rewritten in a rigid, prefixed oper-
ator, fully bracketed notation (rewritten, that is to say, in
at least one way arid possibly several equivalent ways).
Another way of saying this is that if we know how to trans-
late ALGOL 60 into a language based on just operator/
operand eombination, conditional expressions and auxiliary
definitions (including function definitions and recursive
definitions) then we effectively know how to translme
ALGOL 60 into AEs. We shall use this fact to make the in-
formal discussion here less technical than it otherwise

would be.
In the formulas of [MEE], AEs play two independent

roles. First they are part of the subject matter in the sense
that certain subexpressions denote AEs. Second they are
the language in use, since all the expressions are to be con-
sidered as written presentations of AEs. This dual role is
maintained in the present paper. I t is fortuitous in the
sense that we might have used some other means of ex-
pressing what we have to say about AEs, or we might: have
chosen some other topic and nevertheless have used AEs.
However, the coincidence is designed in the sense that our
interest in AEs springs partly from their success in de-

scribing their own features.

A GENERALIZATION OF JUMPS

We introduce into the SECl)-maehine an operation de-
noted by 'J', that is applicable to funclions, or more pre-

Communica t i ons of the ACM 91.

cisely Co closures, attd modifies their subsequent exit

behavior.
For example, consider a definition of j' as follows:

f(z) g (- . - , - . -) . , ,
w h e r e g = JX(u, v).

where Cite subexpression g (. . . , " ') may occur at any
X-depth within the right-hand side, and itt any context.
If during an application of f this subexpression is evalu-
ated, its value will immediately become the result pro-
duced by f. This is relniniscent of art alarnt exit from a
subroutine. In fact the generalization of labels to permit
arguments may be a useful way of providing for alarm
exits in At, GeL-like languages.

I*'urlher, to define precisely the meaning of 'J', we extend
the class of possible results of evaluation by inCroducing
a new kind of object, a bundle of information called a
"program-closure." When J is applied to a oh)sure it
transforlns int;o a program-closure.

The resulting program-closure, like a closure, includes
the current environment (for subsequeItt installation) and
an expression (for subsequenC evaluation). I{owever it also
includes the current dump, and when the bundle eventually
comes to be activated, this dump is also installed. This
process is to be contrasted with the activation of a closure,
in which the dump is used to record the current state in
order that it may be resumed later.

We call an expression of the form

a(xr , .S)

a "progrmn@oint. ''3 IloughIy speaking, ALGOl, 60'S labels
are a special case of program-points. They are paramete>
less, and the Kbody is typically a functional product whose
terms correspond to the statements following the label.
Moreover, references to both closures and program-clos-
ures are restricted in AL(~OL 60 in a way that prevents
them from being carried outside the scope in which they
are produced. (In LISP [4] references to closures are free
of this restriction, hence the need for a chained stack.
However program-closures ar t more severely constrained
in that they cannot t)e carried into an inner scope.)

INTROI)UCING. COY/MANI)S INTO A FUNCTIONAL SCHEME

Any a t t empt to tit most current programming languages
into the A E / S E C I) scheme involves the questions: Are
commands to be construed as subexpressions and, if so,
what do they denote? In particular, what does an assign-
merit denote and what does a jump denote? We postpone
these questions here (although claiming to leave them
rather more clearly formed than we found them) by using
another family of languages similar to the one associated
with the A E / S E C D system but differing as follows.

The notion of AE is extended to comprise one new for-
ma t that models assignment. We characterize the en-

a [think this term is due to Peter N~mr.

92 C o m m u n i c a t i o n s of the ACM

larged se~ as t'olkms.

AiD. h~perativ,~ applicative e×prcssi.o~ (IA E) is
either' ~m ident'tfier,
or t~ X-ea:pression (Xezp) and co:asist.s of

its boundva'riable part (by), which is :~. lisg.~strueture of idmlti.
tiers, a~,d

its X-body (bodg), which is an IAE,
or an assiqner, which consists of

i{;s leflhandside (lhs), which is a:a IAI!], and
its riohthan&ide (rhs), which is an IAE,

or a combination, which consists of
its operator (rater), whielh is an iliA]'], :rod
its operand (rar~d), which is aa IAE.

We adopt, informally, the following notatioH for as-
signers,

lhs ¢= rhs

This extension of the notion of all expression brings in its
train the problem of extending the notion of tile meaning o~'
an expression. The next subsection is an informal appr0aell
to this Cask. I t is hoped a more exact account will be set
forth for publicalioa elsewhere, and Chat enough is said
here to define all buC the details of the main purpose of this
pN:)er--explainirlg ALGOL 60 in terms of IAEs.

THE SHARING ~[ACIHNE

In [MEE] we described an abstract machine, the SECD-
machine, capable of evaluating an AE. Although the value
of an AE was defined independently of this machine, it was
given a more definite status by being backed up by
specific machine. The notion of the meaning of an IAE,
on the other hand, is completely dependent on an abstract
machine, the "sharing mactfine," for executiTtg IAEs -the
word "execute" seems more appropriate than "evaluate"
irt the case of IAEs. The sharing machine is an elaboration
attd an ext.ension of the SECD-maehine. The elaboration
is concerned with modeling the fact tha t distinct state-
positions having equal occupants might "share" the same
representation and hence get updated collectively. The
extension is concerned with the execution of the two new
feaCures, namely assigners attd ,l (covered above),

The Transition Rule oj" the Sharing Machine. The main
features of the elaboration are the following four specific
rules governing whether or not two state positions "share."
For, each state of the sharing machine is characterized by
an SECD-state together with an equivalence relation,
namely "sharing," among its component-positions. In the :
straightforward computer representation, each equivalence
class corresponds to an address. For each slep we must
say how this equivalence relation changes.

When at, identifier is scanned, the stack head is left shar-
ing with the environment position holding the identifier's
value. Also wheu a closure is apt)lied , the youngest level of
tlte new environnmnt shares wiCh any sm'viving "co-

sharers" of the old stack-head (i.e. the argument). As a

eonsequen('.e of these two provisions a function can achieve

nonlocal effects by assigning to its formals (i.('. argunle~ts

Volume 8 / N , . n l , e r 2 / Febr,,arY, 1965

m'(: c~Jlcd by "siz~q)h~ m~.l,m" [8] rechristened "reference"
Jut (]1)[, [I 15 this is tim tl~ode used for arguments of Ii~oa'rRAN "
fum:li(ms). 'Fh(T ~l, ls()e~lsure that no special provision is
re>coted for s(:mmil,g m, id(mli~ier when it occurs as the lhs
o.1' nit ~ssigamr. Since (:.Ira classitic~,~t;ion of identifiers into
(:o~sta, nis and variables is t~ot reNected in the behavior of
t;h(, machin% cot~slm,ls are not ir~vulnerable 1;o resetting.

A l lfir(1 rule is lhal wh(m a closure is applied, the eom-
poHet~{,s of older levels (ff tlm r~(,w e n v i r o n l n e n t share with
corresponding cemponenls of the ettvironment from which
it was derive(1. As :~ cons(,(tuetme of this provision, a func-
tiot~ can achieve noldo(',td effects by assigning to its free
iclet/liiiers (inclu(tir~g (o constants).

I/ourthly, whert a control string is exhausted the new
sl;ack-head is left sharing with any surviving co-sharers of
the old stack-head. This provision ensures that an appliea-
lion of a funclion cart be appropriate as a lhs, e.g.

{x:,,. 'i]' (:~ = 0) (x, b)} [a] ~= - - .
(x () . < . ~) () ~

characterized by (a) the result produced by applying it to
each abstract object that is amenable to it, and (b) the re-
sult yielded by subjecting it to each abstract object that is
applicable to it.

With [AEs the situation can be very much more compli-
cated. For each case of application the question arises, not,
merely what result is loaded onto the stack, but also, for
each possible pattern of sharing throughout the current
state, how it is changed, tIowever, in the case of the primi-
tives we use to model ALGOL 60, it is possible to overlook
most of this complication. All but two are straightforward
functions without side-effects. The two exceptions are sepa-
rate, and assignandhold, which is a dressed-up version of
the assigner format. For present purposes we can roughly
say that the meaning of an IAE has two aspects, a descrip-
tive and an imperative aspect, of which one or other may
be unimportant. The descriptive aspect corresponds to the
value, or denotation, of art AE. The imperative aspect cor-
responds to the change of machine state caused by execut-
ing the IAE.

7'he Function "separate". There is a function separate
that (mables us to avoid nonlocal effects at will. Tha t is to
say, suppose tim c, urrent stack-head has been obtained by
loading some environ men t component (e.g. the value of an
identifier of subscripted identifier); then if it is later in-
corporated in a new environment the above-mentioned
provisions ensure (:hat any assignment to its new position
will also reset its old position. This is avoided if it is sub~
je t ted to separate before incorporation in a new environ-
menl. (There are other suggestive names for separate that
are rejected here since ti~eir suggestiveness does not en-
tirely avoid misleading: copy is used in Lisp [4] to mean
copying all components "down to the level of" atoms, i.e.
components named by variables (as opposed to constants),
whereas we postulate that separate insulates every com-
ponent from future resetting; va lue as used in ALGOL 60
coincides with separate in the ease of operands that are
suitable lhs's, but has acquired too many mutually in-
con~patible connotations in discussing three relationships
that we wish to delineate clearly, namely the relation be-
tween expressions and their denotations, between functions
and their resulls, and between slate-positions and their
occupants.)

Executing an assigner. The lhs and rhs of an assigner
can be evaluated in the same way as each other. The only
difference is that, (o be appropriate on the lhs, an IAE
nnts{ denote some previously produced object, for example
a named object or component of a named objec|. Every
intermediate result of evaluation occupies a certain posi-
tion i~ the curret,l s(ate of the machine; hence a lhs ex-
pressi(m detern~ines a state-pnsition. Scanning an assigner
resets this stale position and also every state-position
sharing wilh it; it leaves a nugatory result on the stack,

. ame ly nullist.
51'Ire "meanb~g" of an [A E. In the AE/SECD system,

each A I!] denotes an abstract object that is completely

ALGOL 60 AS SUG~RED IAEs

The sharing machine provides a precise criterion for the
correctness of the correspondence between ALGOL 60 and
IAEs, namely that they should have corresponding effects
when executed in corresponding enviromnents. On account
of the absence of specified input/output facilities in ALGOL
60, the meaning of this criterion is less clear with regard to
whole programs than it is with regard to subbloeks, operat-
ing on, and producing, the values of declared variables.
However, input /output devices can be modeled as named
lists, with special, rather restricted functions associated.
Reading is modeled by a procedure (or function) that
operates o n a list, resets it by removing some initial seg-
ment, and also resets other variables with values derived
from the initial segment (or, if a function, produces these
values as its result). Writing is modeled by a procedure
that, operates o n a list, and appends a new final segment
derived from other variables. (Alternatively, a purely
functional approach can be contrived by including the
transformed list among the results.) So no new principle is
raised by input/output , nor hence by whole programs.

We give later a forinal presentation of a function that
associates an IAE with each ALGOL 60 program. This func-
tion is intended to satisfy the criterion stated above. Dis-
covering whether it does or not is a task that can be ap-
proached in two ways: either experimentally, using an
implementation of the sharing machine; or with pen and
paper, developing a proof. The length of what one accepts
as a satisfactory proof will depend on his intuitive grasp of

component ideas used in the formalization. -
This formalization determines the "syntax" of ALGOL t30

in the special sense explained above. The identifiers oc-

curring free in the IAEs that model ALaOL 60, will be the
"constants" of AL(~OL 60 in our special sense. They con>
prise the nine standard hmction identifiers, the score or so

Vol,,nc 8 / Numl}er 2 / Fel ,r ,ary, 1965 Conummications of the ACM 93

of such symbols as + , < arid A, the mnnerical, Boolean
and character-string constants, ~ handful of functions to
deal with AL(~OL 60'S array and iteration facilities, and
another handful that are so unproblem-oriented that they
are probably implicit in any tolerable language (in the
sense that they would be needed were it subjected to the
treatment that ALGOL 60 gets here).

By saying what each constant denotes, we shall be say-
ing what are the "primitiw~s" of ALGOl, 60. The closure 4
under application and abstraction of this set of primitives
is the "universe of discourse" of AL(~OL 60. Actually, the
syntax of ALGOL 60 is such that some IAEs have no written
representation, and even such thai) some meml:)ers of the
universe of diseoursc (for example flmction-produeing
f u n c t i o n s) a r e n o t d e n o t e d b y ar ty t ex t .

I n t b r m a l P r e s e n t a t i o n o f t h e C o r r e s p o n d e n c e

We now give a detailed but infornlal description of a
correspondence between expressions of Ar~eOL 60 and IAEs.
The interest of this particular correspondence is that it is
"correct" in the sense put forward above; i.e. correspond-
ing expressions executed in corresponding environments
have corresponding outcomes. Subsequently we formalize
the correspondence. However the informal treatment in-
eludes some material not covered by the formalization,
namely a description of the "basic AL(mL 60 environment",
i.e. the primitive objects whose names appear in the IAEs
that model ALGOL 60. If out' formalization were to not
merely specify the correspondence but also prove its c o l
rectness, then it would have to include a formM specifica-
tion of these primitives.

There is often considerable choice of IAEs to model a
particular ALGOL 60 expression. This is true even when the
primitives and the "constants" that name theln have been
chosen. In particular there is a conflict between using IAEs
that correspond naturally in each individual ease, and
using a uniform and easily specified rule. For this reason
the illustrations in our informal account sometimes de-
viate from the general rule presented it* the formal account
that follows it.

BI¢IEF OUTLINE

Table 1 gives a rough indication of the correspondence.
There are two featureg of ALaOL 60 that give rise to par-

tieularly clumsy IAEs.
1. Own identifiers declared other than in the head of the

body of a globally declared procedure.
2. Conditional statements that are entered unnaturally

(i.e. by a go to) and exited naturally (i.e. other than by
a go to).

THE DOMAIN OF REFERENCE OF ALGOL 60

The corres'pondence given in this paper associates with
each ALGOL 60 text an IAE whose principal significance is

4 In the usual algebraic sense, not the special sense a t t r i b u t e d
to this word by me here and in [MEE].

either denotational or state-transformational. If the former
it denotes either an integer, a real (we postulate two dis-
jtmet classes of absl?ract objects---so 3 and 3.0 are not
equivalent), a truth-value or a character-string; or a list,
array or function. State-transformational IAEs model
statements and labels; a switch is related to such IAEs it:
much the same way as a vector is related to numerical
expressions.

Declarations are considered as giving initial values to
the local identifiers. For instance integer and real identi-
tiers are initialized respectively to integer zero and real
zero. A Boolean is initialized to false. Switches and pro-
eedures are initialized to vectors and functions respec-
tively (and not subsequently reset).

Lists are characterized by the following structure deft-
nition.

A list is e i ther null,
or else it has a head (h),

and a tail (t) which is a list.

TABLE 1

IA Es

Identifiers
ALGOL 50

Identifiers, operator symbols,
also sonm special words and
configurations

Local identifiers

FormM parameters

Func t ion designator, sub-
scr ipted w~rial)le, and pro-
cedure s t a t ement

Procedure
Actual pa ramete r called by

n a f f l e

Occurrence of a formal called
by name

VMue part, of a procedure dee-
l a ra t ion

Specification par t

Block

S t a t emen t

Compound s t a t ement

Label

Labeled seglnent of program

go t o - - s t a t e m e n t

Switch
Condi t ional expression or

s t a t emen t

Variables bound in a X-expres-
sion occurring as opert~tor

Variables bound in a X-expres-
sion occurring as opcrand

Opera to r /ope rand combination

X-expression
()-expression

Appl icat ion to nul l operand
list

Auxil iary definit ion qualifying
the procedure body, rede-
fining some of the formals

Auxil iary definit ion qualifying
the procedure body, redefin-
ing sot,m of tile formals

Combina t ion whose operator is
the block-body, and whose
operand denotes the (pos-
s ibly concocted) in i t ia l val-
ues of the locals

Expression denot ing a none-
adie function, changing the
env i romnen t by side-effects

Func t iona l product of none-
adie funct ions

Identif ier defined by a none-
adic program point

Program poin t whose body, de-
notes a none-adic funct ion

Last (i.e. outer) t e rm of a time-
t iona l p roduc t

Vector of progranl closures
Selection of an i t em from a

l is t ing

:I
6(

!e

0[

:i
eu

i

94 Communica t ions o f tile ACM Volume 8 / Number 2 / Febrnarv. 1965

I~ our model every procedm'e, switch and array operates
<m a list of zero or more argume~tts. An expression that,
del~otes a lisl irl terms of subexpressions denoting each i tem
o~ tile list is called a listing. For' example,

(a+b, c+d, c+f)
(a+b, c+d)
!millist(a+b) or tt(a+b)
()

arc listings. In [MEE] the first of these was considered as a
convenient way of writing

p/'4i:I: (a + b) (prefix (c q- d) (prefix (e + f) 0))

This, coupled with the fact that operands are evaluated be-
fore el)craters, ensures that the items of a listing are
(,valuated in tile right-to-left order. Hence in transcribing
from AL(;OI, 60 to IAEs tire order of the items of every
listi~g (including the implicit listings of operands of + ,
=, eic.) must be reversed. This minor complication is
avoided here by adopting a different arralysis of listings, by
which

(a'+b, c+d, e-f-f)

is (:(msidered as a convenient way of writing

s~ Uix (e+ f) (sujlix (c+d) (su fflx(a-f-b) 0))

(1) mighl alternatively have been avoided by varying t h e

cvahlatiou me(:hanism so as to evaluate operators before
op(~rands. In view of the limited form of operalor occurring
i!~ AL(;OL (i0 such a change would have few other reper-
vus:dons.)

There is no fealure of the eorrespondence that "explains"
ilw [eft-lo-right rule of ALGOL 60. IIl this respec.t the
('or~'e('tness of tire model depends on a similar rule for
IAEs. We can put this another way. The correspondence
pr(stmted i~ this paper "explains" semantic features of
:\L(~o~, 60 i~ lerms of syntactic , or more precisely strue-
luraI, feaiures of IAEs. But the left-to-right rule is a
s<naniic feature of ALGOL 60 that relies for its explanation
o~ a se~antie feature of IAEs. The semantic feature we
us~ is that operands are evaluated before operators. (A
logically more economieal approach would use merely
1he faci that an operand to a X-expression is evaluated
before its X-body. Thus in evaluating (X x . a 2 + x 2) (b + e) ,
ihe subexpression b + e is evaluated before a 2, whether
~he machine evaluates an operand before, after or eon-
~urrently with its operator.)

A~ array is considered as a function whose domain is a
s~hset of the set of integer-lists. I t is initialized with the
appropriate domain (not subsequently,altered) and with
all its elements equal. Thus

exp(mdtoarray((O, m), (0, n)) (a)

det~otes an 0 n + l) X (n- t - l) array each of whose ele-
ments is a. An own array is initialized with the appropriate
dimensionality but with array bounds (- - ~ , - t -~) .

Volume 8 / N u m l) e r 2 / F e b r u a r y , 1965

These are "pared down" to finite vMues at the first entry
to the array's block. Thus if A is a two-dimensional array
then

parearray((O, m), (0, n)) (a, A)

denotes an (m-t-l) X (n-l- l) array whose elements are
the same as those of A insofar as their' domains overlap,
and otherwise a.

A switch is initialized by the function arrangeasarray,
that, transforms a given list structure into an array of
given domain, e.g.

arrangeasarray((O, 2), (0, 3))((a, b, c, d), (e, f , g, h), (i, j , k, l))

denotes a 3X4 array whose elements (row by row) are
a , b, c , . . . , k , l .

Fo lk -LI sTs

Let us use the term "control-list" to mean the list of suc-
cessive values assigned to the controlled vm'iable during
one execution of a for~statement. The point of departure of
our treatment of for-statements is that a for-list might
roughly be said to " d e n o t e " the control-list, with each :/br-
list-element denoting one segment of it. This suggests the
following incorrect rendering.

for v := a s t e p b u n t i l c, forty,
d, concatenate (step(a, b, c),
e w h i l e p unitlist (d),

do T while(e, p)),
T)

where jbr, concatenate, step and while are defined as follows. ~

r e e f o r (v , S , 7') = i f -7 n u l l S t h e n [v := hS;
7';

for (v, t,g, T)]
r e e concatenate S = null S --~ ()

null(hS) ~ concatenate (tS)
e lse --~ h2S :concatenate (t (hS) :tS)

r e e s t e p (a , b , c) = (a - e) X sign(b) > 0 --~ ()
e l s e -) a:step(a+b, b, c)

r e c while(e, p) = p --~ c:while(e, p)
e l s e ---, ()

However, these definitions fail to reflect the sequence of
execution prescribed for AL(~OL 60. When interpreted by
the sharing machine they would lead to an a t tempt to
evaluate the entire control-list before the first iteration of
the loop. The inadequacy of this approach is especially
flagrant in the case of while. We therefore consider for-
list-elements as denoting not lists but a particular kind of
function, called here a stream, that is like a list but has
special properties related to the sequencing of evaluation.
Principally, the items of an intermediately resulting
stream need never exist simultaneously. So streams might
have practical advantages when a list is subjected to a
cascade of editing processes. 6

Following [MEE], an infixed colon indicates prefixing. T h u s
" x : L " is equivalent to "prefix x L . "

6 It appears that in stream-transformers we have a functional
analogue of what Conway [12] calls " c o - r o u t i n e s . "

C o m m u n i c a t i o n s o f t h e ACM 95

ftowever, the user of a purely functional system (i.e.
AE/SI)X?D rather titan iAE/sharing machine) would have
no way of telling whether his intern lediately resulting lists
were in fact being streamed or not, since the only differ-
enccs in outcome arc concerned with the amount of store
used, or the range of jobs possible with a given size of
store. On the other hand, the introduction of imperatives
makes it possible to write list-expressions whose outcome
is affected by whether they arc represented as streams or
not. Hence it) t)ecomes necessary to introduce a new sat of
identifiers that play tile same role for streams that h, t,
etc. play fort' lists. The next subsection is concerned with
these operations.

STREAMS

There is a relationship t)etween lists and functions that
is used here in modeling for-statements (and would be used
to model input /output if ALGOL 60 included such). In this
relationship a nonnull list; L is mirrored by a none-adic
function S that produces a 2-list consisting of (1) the
head of L, and (2) the function mirroring the tail of L.
The common functions, etc. associated with lists are

mirrored as follows.

wullist X() . ()
null (b) null (S ())
head(L) 1st(S())
lail(L) 2nd(S())
pr~fix(x)(L) X().(x, S)
cons(x, L) x().(*, S)
unitli.st(x) x().(x,x().())

lit is easy to see tihat the first five expressions on the
right satisfy tim four relationships that characterize "nullist,

null , h, t and prefix.

null (nullist) null ({ X (). () } [])
-qnull(pr~fix xL) --nnull({X().(x,S) }[])
h(prefixxL) = x lst({X().(x,S)}[]) = x
t(p,'efix xL) = L 2nd({X().(x,S)}[l) = S

This correspondence serves two related purposes. I t
enables us to perform operations on lists (such as generat-
ing them, mapping them, concatenating them) without
using an " e x t e n s i v e , " item-by-item representation of the
intermediately resulting lists; and it enables us to postpone
the evaluation of the expressions specifying the items of a
list until they arc actually needed. The second of these is

what interests us here.
The expressions that make use of this technique can be

made slightly clearer by using the following definitions.

nullist* = X().()
null*(S) = nu l l (S ())
h*(S) = 1st(S())
U(S) = 2rut(S())

However, the analogous definilions for the constructors
cannot be used since they would not preserve the sequenc-

9 6 C o m m u n i c a t i o n s o f t h e A C M

ing of ewfiuation. The best that can be done is to introduce
a new syntactic device whereby for any two expressions L,

M

L:*M stands for X().(L,M)

We now define functions that correctly mirror A.LC0L
60'S three kinds of for-list-eleme~lt.

t e e step*(a, b, c) =
X () . [(a ' - c ') X sign(b') > 0] - , ()

e l s e ~ [a', step*(X() .a'+b' , b, c)]
w h e r e a', b', c' = a() ,b() ,c()

unitlist*(a) = a() :* nullist*
r e e while*(e, p) = X().p' ~ [e', while*(e, p)]

e l s e --~ ()
w h e r e # , p' = e () , p()

The matelfing definitions for concatenate* and Jbr* should
be obvious.

The above formulas reflect certain choices of AL(;OL 60'S
designers, e.g.

(a) that all parameters are evaluated "when they are
corme to," rather than e.g. evaluating the parameters of a
step-element (arithmetic progression) all together;

(b) that the decision whether the current iteration is
the last is taken after it, not before it;

(c) that arty resetting of the controlled variable during
the execution of the for-body affects its subsequent values.

That is to say, had different choices been made in these
matters, then a different IAE, or different definitions of
tile auxiliary functions involved, would have been needed
to mirror for-statements.

TYPES

Roughly speaking our model deMs with types "]nterpre-
tivcly." Specifiers in ALGOL 60 affect the prescribed out-
come of a program only by causing transfer between real
and integer, or by rejecting an argument outside the

specified class. We suppose that associated with each
specifiable (:lass there is a transfer function whose range

is within that class. For instance, f loat is defined for num-
bers, i.e. for reals and integers, and leaves reals unchanged;

similarly with unfloat, which is prescribed in the Ar~oo~, 60
report to be defined by

unfloat(x) = entier(x q- 0.5)

The transfer function for truthvalues is merely a very

limited form of the identity function that is defined by

rejectallbuttruthvalues(x) = Boolean(x) --~ x

(Here Boolean designates the class--or predicate, we do

not distinguish--whose members are the trutllvalues. A
conditional expression none of whose conditions hold is
taken as undefined.) More generally we define a functiortl
in as follows:

in(A) (x) = A (x) -~ x

V o l u m e 8 / N u m b e r 2 / F e b r u a r y , 1965

ro&i
ior~S

ho~£

so ~hat if ..t is tt (:lass the(, i'nA is a filter that rejects non-
members of A. For example bz(Boolean) is the function
rejectal~bullrutkvalue.s" defined above. So the transfer func-
tions for Booleatls and strings are respectively in (Boo lean)
and in (s t r ing) .

The ftm(',tion defined by

/ l o a t , e s . l t (f) (:~:) = / t e a t (f (:r))

t ransforms any number producing function into a real-
produ(:ing function. (This definition exploils the fact tha t
we consider any function as operat ing on a sz:ngle argument
allbeit a list.) More generally, it' t is the transfer function
for some class A, then the traHsfer function for A-pro-
ducers is Bt, where B (Curry ' s combinator B [2]) is de-
fined by

Bq?: = t@c)

~ 60 So for instance Bfloat is the function floatresult defined
above. The transfer functions for type-procedures are

y a therefore Bfloal, Burtfloat and B(in(Boolean)). Since ar-
0i: rays are t reated as functions these also serve as transfer

f t l l le t ions for a r rays .

o~} Impera t ives arc treated as nullist-producing furmtions;
so it would appear that the best we can do f e r n transfer

2i'i~: func t ion for lahels is B(bt(null)). H e n c e t h e t r ans fe r fune-

]t1~ (.ions for nontype procedures and for switches (which are
;|le! considered as arrays whose elements are program-closures)

is B(B(in(null))).
M~, The effect of the at)eve provisions for checking argu-

ments is tht~t a mismatched procedure, array, label or
switch is not itself immediate ly rejected. Ins tead it is modi-
fied so that any result it produces, whenever and if ever it
is applied, is rejected. Hence our model is overtolerant in

pr~ tha t a mismatch will not lead to rejection if the procedure
at1*:- is never applied, or if it is exited unnatural ly and thus
tea evades producing a result. Fur thermore , a label denotes a
t,~i,: program-closure and so even when its result, namely
a,5: nullist, is produced, the context is never resumed and so
n~: the cheek never occurs. Hence tile ident i ty function serves
tli equally well as transfer function.

ed:

i;

THE CONSTANTS AND PRIMITIVES OF ALGOL 60

The correspondence given in this paper associates with
each ALGOL 60 text an I A E in which the identifiers occur-
ring free are drawn fi'om the following three groups.

Group I consists of the arithmetical, Boolean and string con--
slants. An arithmetical constant is an unsigned number as defined
in the AlmoL 60 report, and designates an integer or a (rationM)
real. However the integers also include ' - ~ ' and '+ co ', used in
the initiM array bounds of own arrays. The Boolean constants are
' t r u e ' and ' f a l se ' and designate the truthvMues. The string
constants are certain character-strings whose first and last items
are ' ~ ' and ' " ' , respectively; such a constant designates the
string obtained by removing its first and last items. (It would be

possible to avoid an infinity of primitives by considering each
written tmmbcr and each charaeter-string as having internal

applicative structure. These might conveniently use such nmnber-

Volume 8 / N u m b e r 2 / F e b r u a r y , 1965

fornling and string-forming functions as: dec ima l (re ,n)= lOre
+ n; qttoge(s) = concatenate(u' r , ~, 'u' " ').)

Group 2 consists of symbols and identifiers whose meaning ~s
laid down in the ALGOL 60 report, and also a number of identifiers
coined by us and explained above. We assunm that any collisions
between these coinages and Ar~aor, 60 identifiers are avoided by
some device such as the use of a different typeface, e.g. italic
instead of roman.

+ , - , X , / , + , T, +~r , - ~ z , <, =<, =, ~ , >, ~ , -~, A, V,

abs, sign, sqrt, sin, cos, a,'etan, In, exp, e'ngier
The infixed operators are taken as (applying to 2-lists, either 2-
nulnbcr-lists or 2-Boolean-lists. Numerical functions are applic-
able to both reals, and integers; if n andf loat (n) are both amenable
to a fimetion then they yield the same result. The coinages are

for, concatenate*, step*, anitlist*, wh.ile*, expandtoarray,
arrange~asarray, parearray, float, .w~tJtoal~ [n> real , i n t ege r ,
Boolean , s t r ing , atom

Gro~tp 3 consists of names for very basic objects.
null , nul l is t , suffi.x, {f, B, K, [, Y, separate, assignandhold

nul l is the predicate that tests whether a list has zero length.
nul l is t is a list of length zero.
s'u~x makes a list one longer, e.g.

s'aflix(x) (a,b,c) = (a,b,c,x}
i f satisfies the following:

i f (t r u e) = 1st
i f (false) = 2nd

B forms a functional product
B(t) (f) = hx.tff(z))

It is used lit dclaying transfer functions for type t)roeedures
and formals called by name.

K produces "cons tan t functions"
K (x) (:/) = x

So for instance K3 is a function whose result is 3 for any argu-
ment; it is used to tidy up assignments.

I is the identi ty function, defined by
[(x) = x

i t plays tim role of dummy statenlents.
Y is the "fixed-point finder." In so fat' as it is reasonably repre-

sentable it can be defined by
Y(F) = l e t z = separale(nullisl)

le t z' = F (z)

2 n d ((z ~ z ') ,z)
This definition relies on the fact tha t when a function-trans-

former is applied to the (arbitrarily chosen) argument nMl is t ,
rejection does not occur unless, or until, the argumcnt is
actually applied.

separate avoids unwanted side-effects; it is used when parameters
are called by value.

assigmtndhold is defined by
assignandhold(x) (y) = l e t x = real y -~ float x

i n t eg e r y --~ unfloat a:
Boolean y --~ in(Boolean)x

2 n d ((y ~ x) , x)

In this subsection and the four preceding ones we have
characterized the abs t rac t objects compris ing the "domain

of reference" tha t our analysis imputes to AL(~OL 60. T h e

characterization has been part ly formM and par t ly in-
formal, taking for granted such things as numbers , propo-
sitional relations, ere? I a the next subsection we turn to the
main (.epic of this paper, namely how ekLGOL 60 texts can
be construed as IAEs referring to these abs t rac t objects.

r In [9], BShm is concerned with the formal t rea tment of this
topic.

C o m m u n i c a t i o n s o f t he ACM 97

ILI,USTI{ATIONS OF THE (JORRESI?ONI)ENCE

l';aci~ example bek)w illustrates the correspondence be-
1we(',t a pariicular fealuve of MX;OL 60 and a p~rticular
f(~alm'e of IAEs. Tha t is to say, each example illustrates a
rule tk)r eliminating a particular feature of ALGOL 60 in
(('rms nf IAEs. In order (o turn a piece of Aix~oL 60 into all
IAE it will usually be necessary to make marw successive
applications (if (hesc rules. Ii,1 some of the examples the
lr.at~sformalion iulo an IMi; has been only partiMly per-
for,ned lo [)el,ler emphasize the particular poin(~ being
made by th(' examt)l('. So (he right-hand half of aft illustra-
lion nla.y not always c(mtail~ au [AE, but, it always con-
lains somelhing ihat is nearer to one of the four forms of
I : \E lh:m the h,fl-hm~d, A[:a~L 60 expression.

[deat(fic:r.~. Exeepl; for the (realment of individual oc-
curr(~,mes ()f idenlifiers, the correspondence is context in-
depend(~n[. Th(,, IAE corresponding to each occurrence of
an Aid(at[, 60 i(le,difier dep(mds oft (he way the identifier
is declared or otherwise introduced, as follows.

I. Whe,,eve,' a local declared to identify a type pro-
cedure occurs as a leftdumd side wilhin its declaration, it
is tel)laced by a vm'iant i(lcntifier, indicated here by dote-
ruling it with an aslevisk. We call this the result variant of
lhe procedure i(le~lilier.

2. Every ocem'r(qme of a formal not specified by value,
or of a h)cal dechu'ed (.o identify a parameterless pro-
cedure, is (pt'ovided I does no(app ly) modified by at tach-
ing an emply op(!rand listing to i(. This is indicated hero by
a , empt.y bracket pair. Thus we t rea(actual parameters
ca/led by t,tttue, and l)arant(~t(wh~ss procedures, as Ii()ll(}-
adie hmctio ,s .

3. ()wns m'e {;rea{ed as globally declared and are replaced
by var iams to a v c d collision between two (:lcclara.tions of
the same identifier. These wwianIs ~r(~ eMled own variants
of the identifier appearing in (:he (cxt and are indicated
here by decorating il. with (me or more daggers. (This is
one of the two (msat;isfacl;ory fealures of (;he correspond-
enee between A L(am 60 and IAEs. Which par ty is to blame
is a (tuesliot~ we return Io later.)

[[ere is an example of these substitutions,

begin begin
own iul:eger a; ow~t integer ai;
real proeedurefOc,y,g); own real aH;

value x; real :c; real procedure f(x,y,g);
begin va lue x,y,g;

o w n real a; beg in
:~,:=*+g(y)+a; y() : = z + g ()(y())+act ;
.f:-=k(f,(l,f(z,Y,J)) f*:=k(f,g(),f(x,y(),j))

end e,~d
real proee(lure h; real procedure h() ;

h:=k(f,j,h); h*:=k(f,j,h());
a:=fO,h,f) at:=f(at,h (),f)

end end

With the exception of these provisions each subsequent
example is self-contained; timt is to say- the given bit of

AL,OL 60 corresponds to the givea IAE whatever its
context (provided it is grouped sensibly--for instance,

9 8 C o m n t u n i e a t i o n s of t h e ?kC~t,|

not every occurrence of the charael~er-striug ' a ÷ b ' i~t
Ai:OOL 60 corresponds Io (he IAE " + (, , , b)" -witness
' c X a + b X d ') .

Variables. The (,rea(ment~ of individual idea(fliers has
already been explained. In s u m m a r y

Iformal called by name x()
{type procedure as lhs x*

x Jparameterless procedure x()
~own identifier xt,x +), etc.

if ~ tb

~0 tb(

*k se
/;lo,

~d~0se

i id~0s(
(strMghtforward z i L?as~ I

If all the identifiers i~lvolved are s t ra ighl forward the { c0flc0
t rea tment of subscripted idetttifiers and funet, ion desig- ~ eedtlr

' itliiia;
nators is as follows.

A [i + j , k} A l l + j , k) nle~lt~
f(a;+y, Z) f(k().X@-y, X().Z))d'[

Tt 'e.~. le t ransformation of actuM paramete r s into none-adie ~'
array

functions is associated with the possibil i ty tha t a pro- 0at,1
ccdure might call its formMs by name. I t is conqfiemcnted locals
by a peculiarity in the t r ea tmen t of proeedure decla'a-

Heat
tions as noted below, de~JI

If the identifiers involved are all formals called by name
then the transcription (o .t~ r~s is

ihey

A () (i () + . i () , :c()) "self
~leeO

f()(x().x() + y () , x() .~()) d~,~
¢leel~

In the las(~ example, 'X().z() ' can be replaced by 2'. h~
future illustrations all occurrences of' identifiers are as-

a~ia,
sumed to be straightforward unless the reason for non-
s(,raightforwardness is contained in the example. Any ~0~

B
nonstraightforwardaess would involve superimposing the
appropriate t rea tment on any other t rans format ions that
are. needed, are

Expressions. tile3
ii0~)

a + b + (su.Nz b (suEz a ())) I)r0,

In future illustrations (as in previous ones) the trcatmet/t ?l~(
of argument lists, as also usually of infixed operators, will beg
be taken for granted.

--a + b +(--M(a), b)

T h e symbol --M designates the monadic funct ion %egate." L
/ ,}. a + b - c + d + (- (+ (a,b),c),d)

This example shows how "left assoc ia t ion" is reflected '
12.

(as opposed to the left-to-right rule which is quite in-
dependent) . The following examples show how the "pre-
cedence" rules are reflected.

cXa+bXd + (X (c.,a), X (b,d))

a - b / c ~ d - (a,/(b, T (c,d))) 'l'I
iol a T b / c - d - (/ (~ (a,b), c), d) ~0]

pAqVrAs V(A (p,q), Aft,s)) (~1

Conditional expressions use the funeti(m if, such that /'e

if t r u e = 1st i~
if false ~ 2rid

Volume 8 / Number 2 / February, 19~i5 I~

i f p I h , m a e l s e b (V p) (k() .a , , a l l . b) ()

So (b(, ('valu:~,ti<)J~ (>l' tl)(~ :/bov(~ /AI,; irlVOlVeS selecting ()n(~
from a lisl <>l' lw() i~()H(>~Mic [un(:li()ns arm tlmll applying
the s(q('('i(,d (m(, t() the mtllis[.

li&c/,.w. Eacll (t(,(:/~rali()tl is (~or~sirued as a definition
whos(~ (l(qi,~(,(~ consist s of (me or more local i(tc,d.ifi(~rs and
whose (t(,IiHic~s (h,t~ol(>s i~fitial values for (henl. In the
case of l y p c a t l (l arrtty (hwAarations die initiM value is
conco(.~(~<l with z(,r()s. It~ (he (:ase of switches and pro-
ccdur(!s th(? (l(~tiMel~s is alr(~a(ty in Mx;()L 60. (In fact the
initial vaha~ is ~)cver changed since there are no assign-
ments I(> swil(:h and pro(:e(ture ideatitiers.)

Array decl:~rations are ini(ializcd in terms of nonlocals
(e.g. a procedure identifier declared in parallel with an
array carmel be used in the array bound expressions).
On the other hand swilches and procedures may refer to
locals, i.c. to arrays, reMs, etc., and also to each other.
t tence tsrray defiuiiions (tualify switch and procedure
definiiions (as well as tit(, blo('k body). Whereas switch
and proce(ha'e delinitiotts do nol quMify array definitions,
they do qualify themselves; that is to say they may be
"sclf-referetdial," i.e. "circular" or "recursive." We
accordingly speak of "recursive" and "nonrecursive"
definiiions or declarations. This dichotomy leaves type
declarations uncommitted since they contain no initializ-
ing expressiom If {hey (lid it would be difficult to meeh-
allize sclf-referet~tial :initializations (e.g. t ee x = x~--k });
SO We c l a s s (,tleIll a s nortrecursive.

1)efinitions can also arise front the block-body----their
definees being (he labels that are local to tim block. These
are defit~ed itt terms of locals, inehtding each other, and
they may be referred to by procedure and switch declara-
tions. Hence labels ,nust be grouped with switches and
procedures as a single simultaneously re('ursive definition.
The overall t reatment of a block is therefore as follows.

b e g i n r e a l a ; l e t : a = qst

a r r a y A 6~ ; a n d A = ~2

p r o c e d u r e t" 4,a ; l e t t e e P = ~a

s w i t c h S r& ; a n d S = 44
¢~ ; a n d L = q~6

L : ¢~ ; a n d M = ¢7

M: ¢7 ¢~

i.e.

{X(a,A). {X (I',S,L,M).@,}

[YX (P,S,L,M). (6~,0.,,0~,00] }

[¢~,6d

q'he d(qailed structure of the 4's is ttle subject of the
followi~g sections. In the last example, and in some that
follow, the [AE was prese, d('d twice, in a less and more
formal ~aota/iou. This emphttsizes the fact that the cor-
respon(hmce being illustrated is between ALl, eL 60 texts
and (.,erlmn abstract ()t)jects, not written representations of
them.

l'seudoblocks. ~Fhere are three contexts that may or
may not be occupied by blocks, but are in any case like
bloeks in the treatment of labels. These contexts are pro-
cedure-bodies, tbr-bodies and whole programs. We call
them pseudoblo&s. Whole programs must also be qualified
by a conglomeration of all the own-declarations that, occur
in the program. Their role in a pseudobloek is the same as
that of the nonrecursive declarations in a block.

Declarations.

r e a l x l e t x = sepa~nte (0 . 0)

i n t e g e r i , j l e t i = separate (0)
and j = separate (0)

B o o l e a n p l e t p = separate (f a l s e)

By initializing every local identifier, IAEs impute meaning
to certain ALl,eL 60-like programs to which the ALGOL 60
report prescribes no lneaning. The use of separale prevents
subsequent assignments from altering the environmental
objects designated by '0.0', '0' and 'false ' .

r e a l a r r a y all:j, k:l] l e t a = expandtoarmy((i,j), (k,1))
(o.o)

i n t e g e r a r r a y a, b, c[i:jll l e t (a,b,c) =
(separate A, separate A,

separate A)
w h e r e A = expandtoarray

(u (i , j)) (0)

a r r a y a, b, e l l : n] , d[l:r,l:s] l e t ((a,b,c),u(d)) =
((separate A, separate A,

separate A)
w h e r e A = expandtoarray

(u (1,n)) (z),
unitlist (separate A)
w h e r e A = expandtoarray

((1 , r) , (1,8))

(x))
w h e r e x = 0.0

s w i t c h S : = L, M, N l e t S = arrangeasarray l u l l , 3))
(L,M,N)

A procedure declaration is treated as a definition whose
defiifiens is a X-expression. Our treatment of actual param-
eters matches that of formals called by name. So if a
formal is called by value the procedure body needs some
decoration.

p r o c e d u r e f@,y,z); l e t f(x,y,z) = l e t x = separate@())
v a l u e x , z ; a n d z = separate (z())

i.e. let f = X(x,y,z).
{x(x,z).¢l
[separate (x ()), separate (z ())]

If separate were omitted the effect would be that of "calling
by simple name."

Specifiers also involve decorating the body.

p r o c e d u r e f(x,r,p) ; l e t f(x,r,p) =
w d u e x, r , p; l e t x = separate@())
r e a l x; a n d r = sepmute(r())
i n t e g e r r ; a n d p = separate(p())
B o o l e a n p; l e t x = float(x)
S (x + r , p) a n d r = unfloat(r)

a n d p = i n (B o o l e a n) (p)

S(x().x+r, x().p)

~ o l u m e 8 / N u m l) e r 2 / F e l) r u a r y , 1965 C o m m u n i c a t i o n s o f t h e A C M 99

The specification of a formal called by name involves
preparing to transfer its result.

p r o c e d u r e f(x,r,s,P); let f(x,r,s,P) =
v a l u e x; l e t z = separate@())
real x; l e t x = float(x)
i n t e g e r r; a n d r = Bu,nfloal(r)
s t r i n g s; a n d s = 13(in s t r i n g) (s)
rea l procedure P; attd P = B(13float)(P)
p(x+~., .9 t ' ()(x() , z+r () , x().,X))

This t r ea tmen t of procedures as arguments might be clari-
fied by observing tha t it suggests a part icular extension of
ALGOL 60, by which, for example

if a<b then sin else cos

would be a permissible actual parameter . There would then
be a na lura l sense in which one might distinguish calling
procedures by name or value.

This extension raises a special question concerning
parame&rless proce(hlres, sitice a t first sight the designers
of AL(~OL 60 appear to have forestalled it by giving an in-
compat ib le meaning to calling a parameter less procedure
by value. However , the s i tuat ion is saved by other l imita-
t ions it, AL(a)L 60. For, it uses the identifier of a parameter -
less procedure, say 'p', as an abbrev ia t ion for its result,
i.e. for 'p()'. It: is thus ilnpossiblc in ALGOL 60 tO refer
to a parameter less procedure except in the context; of ap-
plying it. T h u s all "genuine" cases of procedtn'es as argu-
men i s are called by name. And, as it happens, for all such
operands that ALGOL 60 allows (namely identifiers) calling
by name and calling by value have the same outcome, since
proc(~dure identifiers camtot be assigned to in ALGOL 60.

A parameter less procedure gives rise to an I A E with an
explicit null opcrand listing, as in

procedure p; a := b l e t p = X().(a := b)

The aex t example shows how a type procedure can be
ma tched 1)y an IAE.

real procedure f(y)
v a l u e y;
f := aNy'~ 2 + bXy + c

l e t f(y) = 2*M [(f* := aye+by+c),
f*l

where y = separate(y())
w h e r e f* = 0.0

Not ice the way in which the I A E distinguishes the two
roles p layed by the type procedure identifier. I t is il-
lmnina t ing to compare the above expression with the fol-
lowing equivalent :

l e t f (y) = ay ~ + by + c

There are two provisions needed in general for rendering
AIXrOL 60 tha t are otiose in this par t icular example: (i)
the abi l i ty to reassign to the result var iable and to include
ass ignments to other variables, arid (it) the abi l i ty to call
p a r a m e t e r s by name.

Slatements. Each s t a t ement is rendered as a 0-list-
t ransformer , i.e. a none-adic funct ion producing the nullist
for its result. I t achieves by side-effects a t ransformat ion of
the currenl s tate of evaluation.

Since the execution of the I A E assigner f o r m a t makes no ! thee
provis ion for type t ransfer , ass ignment s ta tements are beinl
rendered in terms of assignandhold.

a := b-{-c x().K() (assignandhold(b+c) (at)
a[i,j,k] := b÷c X().K()(assignandhold(b+c)(a(i,j,]c)))

T h e opera tor K() is needed to ensure tha t an assignment
produces nullist.

a := b := c := d+e X().a :=
assignandhold(assig'mt~thold(d+e)c)b

Compound s ta (ements are considered as functional
products (which we indicate informally by infixed dots).

b e g i n R; S; T end X() .T(S(R()))
i.e. T.S.R

I t should be observed tha t the dot nota t ion, e.g. in
T (x) . S (u , v, w) . g , is used here as an abbrevia.t ion fora
X()-expression, and not, for

I~(R(rx) (S(u, ,~, w)) (R) (1)

For, while (1) and

x().T(:~)(S(u, ,,, w)(~¢())) (2)

are equivalent AEs, they are not equiva len t IAEs. hi
fact the execution of (1) involves the execution of
S (u , v , w) and T (x) , whereas in (2) they will not be
executed until (if ever) the result ing funct ion is applied.

D u m m y s ta tements are construed as compounds con-
taining no items.

begirt e n d X() . ()

For - s t a t emen t s involve several auxil iary definitions,
a l ready explained.

for v := a s t e p b u n t i l c,
d,
e w h i l e p

do S

for (v,
concatenate*

(step*(X().a, X().b, X().c),
unidisH (X () .d),
whilc*(X().e, X().p)),

S)

l?rocedure s t a t emen t s are t rea ted as funct ion designa-
tors occurring as te rms in the funct ional product .

S; P(x,y); 7' T.P(x,y).S

In a condit ional s t a t ement the t r ea tmen t for conditional
expressions is super imposed on tha t for s ta tements .

if p then begin P; Q end i f (p)(x() .x() .Q(p()) ,
e l s e b e g i n R; S e n d X().X(),S([~()))

()

Here some abbrev ia t ion is possible, name ly

if(p) (x().Q(P()),
x() , s (~ ()))

But this is not a lways so. For example in

if p t h e n P(x,y) i f (p)(X() .P(X() .x, X() ,y) ,
e l s e R(u,v) X().R(X() .u , X() .v))

()

Volume 8 / Number 2 / February, 1965

i 01
see0]

ifp

L~
h'0n~
iS re,
t0 s',
ad

~oih
iS "e

a pr
pr0c

pr0e
if

L'.,

..f(

It n
hate
pr0g
hene

TI
NIlI]

it in
one
tI0~
cedu
dose
eedu
dim

A.s
by t
llatu
f0rn:

0t
00118

ALG(

tile]
gl0b;
(luir(

TI
had
bloel
ail~(
Z~r0

of t:t

8 I
%k

l O 0 Comnmnica t ions of t h e ACM f01/,

a ~:: tile eorresponding f~bbreviation would result in both arms
mi:,~ bei~g exeeut:ed.

: ()tie-armed conditionals are filled out with dummy
S~'COlld gI'lllS ;

if p then begin P; Q end if(p)(X().Q(P()), I)

g~, l,c~bela and J'ump.s'. The t reatment of jumps springs
from the observation that the symbol 'go t o ' in AL(~OL 60
is redundant, and could be ignored by a processor. Tha t is
{~) say, there is a considerable similarity between labels
grad the identifiers of parameterless not,type procedures.

i{i} I~ is possible to use the same "calling mechanism" for
..o;!~ t,oih, leaving any differenees lo be made by the thing that,

is "called." Thus there is a natural meaning to be given to
a program that, at, different |in-ms, substitutes labels and
procedures for the same formal, e.g.

el:2 pr(e e d u r e P;
ria i f p t h e n go to M;

L:. .
.... f(P) .,.f(L)...

l i might therefore be supposed ~hat labels can be elimi-
~mled formally by considering each labelled segment of
pl 'ogram as a t)arameterless procedure declaration (and

7e, helme as a definition whose definiens is a X()-expression).
?, The present purpose is semantic specification, not cheap
~.~ rulming. So this device is not invalidated by the fael that

i~ involves aeeumulating a pile of "resmnption points,"
o~le for every exeeuted jump, that are never taken up.
t lowever, the device only yietds a valid t reatment of pro-
(>(lure exits at the cost of abandoning the facility for
(:losed subroutines that is embodied in Arx;o,, 60's pro-

:i~ c(~(lm'es. We are thus le(l s to "program-poinls ." Labels are
eliminated in favour of program-point declarations.

As mentioned earlier, a further complication is presented
by lhe possibility that a s ta tement (:art t)e entered un-
~:miurally and then exited naturally This is met by the,
{:'orma[t reatment below.

Oum ldent'~iers. The t reatment of o w n ,.'s can best be
('~msidered as involving a preliminary transforlnatiou of
.\~(:~OL 60, which eliminates o w n declarations except in
t he head of a whole program or the head of the body of a
~lobally declared procedure. This transformation may re-
quire systematic changes of identifiers to avoid collisions.

The t reatment of o w n ' s would have been more elegant,
had they been. associated with procedures instead of with
blocks, and had their active life been prescribed a s cote>
ruinous with the life of their procedure (which may include
zero of more activations of the procedure). One consequence
()f this would have been that two nesting activations of a

s In [11] van Wijngaarden meets this point by using an explieib
) k " : ~ as an extra parameter to each procedure.

procedure would share their own ' s or not, accorditLg as
they were activations of the same life of {lie procedure or
of two nesting lives. This meaning of own almost exactly
coincides wilh lhe generally accepted meaning, if o w n ' s
are restricted to the heads of (he bodies of procedures
declared in the head of the whole program.'-'

C o n c l u s i o n

Oile little SUl/g use of ALGOL 60 has been as a standard
with which to describe and compare olher languages. I ts
suitability for this role arose fi'om being described with
remarkable precision, and from its greater power and
elegmme, so that its own idiosyneraeies and limila|ious
did not overshadow those of the languages being measm'ed
against it.

The language of IAEs is put forward here for eonsidera
lion as a further step in this direction, and the supporting
evidence is a detailed mapping of A[~(a)L 60 into IAEs. So
far in this paper we have Iaid the groundwork for the
mapping, namely a description of the "primitive objects"
it refers to, and we have given specific instances of ils
application. The remainder of lhe paper is devole(t lo its
formal characterization.

REFEI~ENCES

1. BArtRON, I). W., BUXTON, J. N., H~t. lt'rI,l.',y, 1). F., Nlxox. F,.,
+~ml) STI{ACItE'(, C. The night features nf ('1+1,. Co+~+p++t, +1+
6, 2 (July 1963), 134-143.

2. C[~[tlCC, H. B., AND FE'~'S, l{. Combinalortl Logic, l'~d. 1.
North [lolL'm(1, Amsterd~un, 1:)58.

B. LANDtN, P. J. The mechanical ewdu:tt.i<m of expressions.
Comput. J. 6, 4 (Jim. 1964), 308--320.

(1. McCAwrJt~y, J., :ET Ai,. L[SI' ;l.5 l'rogrammer's Mamml.
MIT, Cambridge, 1962.

5. ---~-. Towards a nmtlmmatica! science of e(mq)utation.
IF[P Munich Conference 1962. North tIolland, Amsterd:LIn.
1963.

6. Na~;i~, P., ET AL. Revised lleport (m the Algorithmic I,at~
gu~:~ge ALGOL 60. Comm. ACM 6, l (Jan. 1963), 1-17.

7. ROSENBLOOM, 1). The Elements of Mathemalical Lofic. I)ow~r,
New York, 1950.

~, STRACtIEY, C.~ ANI) WILKES, M, V. Sonic proposals for im
proving the efficiency of ALGOl, 6(I. (;cram. ACM 4, 11
(Nov, 1961), 488-49l.

9. BOHM, C. The CUCH as a formal and descriptive language.
Presented at IF[P Working Conf,, Baden, Sept. 19(;k

10. LANDIN, P.J . A formal dcseription of AL(R)L 60. l'r(~s(q~ted
at IFIP Workiltg Conf., Baden, Sept. 1964.

11. VAN WIJNGAARDI~N, A. Recursive definition of symax and
semantics. Presented at IFIP Working Conf., Baden, Sept.
1964.

12. C()NWAY, N'[.]!'~. I)csign of a separable trartsition..diagram
compiler. Comm. ACM 6, 7 (July 1963), 396-408.

9 For fuller discussion of the present approach to labcls ~nd
own's see [10l.

~, o h t m c 8 / N u m b e r 2 / F e b r u a r y , 1965 C o m m u n i c a t i o n s of t h e ACM 1 0 /

