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A Correspondence Between 
ALGOL 60 and Church's Lambda- 
Notation: Part I* 

its- P. J. I,~XDtN} 

This paper describes how some of the semantics of ALGOL 
60  can be formalized by establishing a correspondence 
between expressions of ALGOL 60 and expressions in a 
modified form of Church's n-notation. First a model for com- 
puter languages and computer behavior is described, based on 
the notions of functional application and functional abstraction, 
but also having analogues for imperative language features. 
Then |his model is used as an "abstract object language" into 
which ALGOL 60 is mapped. Many of ALGOL 60's features 
emerge as particular arrangements of a small number of struc- 
tural rules, suggesting new classifications and generalizations. 

The correspondence is first described informally, mainly by 
illustrations. The second part of the paper gives a formal 
description, i.e. an "abstract compiler" into the "abstract object 
language." lhis is itself presented in a "purely functional" 
notation, that is one using only application and abstraction. 
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I n t r o d u c t i o n  

Anyone familiar with both (~hurch's X-calculi (see e.g. 
[7]) attd ALTO], 60 [61 will have noticed a superticial re- 
semblance t)etween the uay variables tie up with the X's 
in a nest of X-expressions, and the way identifiers tie up 
wiltt the headings in a nesl, of procedures and blocks. Some 
may also have observed that in, say 

{\f.f(a) + f(b)} [Xx.:c 2 + px + q] 

the two X-expressions, i.e. the operator and the opcr~md, 
play roughly the roles of Mock-body and procedure- 
declaration, respectively. The present paper explores this 
resemblance ii~ some detail. 

The presenlal~ion falls into four sections. Tim first see- 
Lion, f(illowing this introduegi(in, gives some moi;ivation 
for examining lhe e(n'respondenee. The second section de- 
scribes mt abstxaeL language based on Ctmreh's X-calculi. 
This abstrae( language is a development of the AE/SECI)  
system presented in [3] and sontc acquaintance with thai; 
paper (hereinMter referred to as [SiEE]) is assumed here. 
The third seclion describes inforlnally, mMnly by illus- 
lral;ions, a correspondence between expressions of ALCOL 
60 and expressions of the abstract language. The last 
see(ion formalizes tiffs eorrespondenee; i( first describes 
a sort of "abstracl~ ALcol, 60" and then presents Lwo func- 
tiotts that map expressions of ~bstraet AL(alL 60 inlo, on 
l;he one hand, AL(~OL 60 texl;s, and on the other hand 
expressions of the abstrac{; language. 

Mot iva t ion  

It seems possible that the correspondence might: form 
the basis of a formal description of the semantics of AL(;OL 
60/  As presented here it reduces the problem of specifying 
ALt,;OL 60 semani.ies t,o t.hal~ of specifying t)he semantics of 
a sLrueturalty simpler language. The formal treaLment of 
the latter problem is beyond the scope of this paper, and 
hence likewise a formM t)roof l~hat~ the correspondence de- 
scribed here is eorrecl). [1~ is hoped that~ the informM at- 
count of the semantics of the abstract "object language" 

* Part I [  of this paper, which gives bite FormM Presenta- 
tion of the Correspondence, will appear in the March, 1965 issue 
of the Communications of the ACM. 

Present address: Univac Divis ion of Sperry Rand Corpora- 
lion, Systems Programming Research, New York, New York. 

* This view is expanded in [10]. 
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will t)e enough to justify the choice of correspondence in all 

but a few details. 

LONG-TERM PROSPECTS 

There at'(', two ways in which this work might be rele- 
vant to the job of providing software. 

(1) Formal syntax has been used to practical advan- 
tage by language designers and implementers. There might 
be analogous advantages in formal semantics. 

(2) If several languages are being used concurrently by 
the users of a computer, a common formal basis for them 
might help in intermixing them (e.g. referring in one lan- 
guage to program that originated in another). 

Clearly, significance in these fields depends on the possi- 
bility of applying to other languages the technique illus- 
trated here in respect to ALGOL 60. So far only sketchy 
trials have been made, since even for ALGOL 60 the present 
state of the investigation is not satisfactory. Discussion of 
otimr languages is largely beyond the scope of this paper, 
but the sketchy trials confirm what will be obvious to the 
present reader---that the method is at its best with lm> 
guages that, rely mainly on elaborate "descriptive" forms, 
and at, its worst with those that rely mainly on elaborate 
"imperative" forlns. Thus it favours what currently tend 
to be called "advanced" languages---those with good deft- 
nition facilities, localized naming, and reeursive structure 
of right-hand sides and programs. I t  has little value with a 
fixed-format, absolute-address language that makes exten- 
sive use of sequencing and of state-indicators that modify 
the effect of subsequently executed instructions. 

SHORT-TERM AlMS 

In [MEE] it was shown how certain features of program- 
mint  languages can be modeled in a modified form of 
Church's X-notation. More precisely, a model language, 
based on X-calculi, and called applicative expressions (AEs) 
was described in abstract terms, that is to say, independ- 
ently of any particular written representation. I t  was 
shown how AEs provide facilities essentially equivalent to 
auxiliary definitions, conditional expressions and recur- 
sion, and that with a suitable choice of written representa- 
tion these facilities take on a familiar appearance. Further- 
more, an abstract machine, called the SECD-machine, was 
described capable of "interpreting" AEs. Still more pre- 
cisely, there is a Jhmily of languages and a matching family 
of machines, each characterized by an "environment," i.e. 
a set of named objects that are related to one another by 
rules concerning the results of applying them one to an- 
other'. The present paper' is based on a development of this 
scheme, intended to incorporate ALGOL 60. 

The at tempt  to fit ALGOL 60 into the AE/SECD frame- 
work can be considered from two sides. On the one hand, 
for someone familiar with ALGOL 60 it may clarify some of 
the features of AEs. Firstly, the analysis of ALGOL 60 in 
terms of AEs illustrates the distinction made in [MEE], be- 
tween "applicative structure" and "syntactic sugar." 
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Secondly, we shall give many examples of the usc~ of Al,;s 
as a descriptive tool, and in particular some that exhibit in 
AEs features that correspond (o the sequencing control of 
conventional programming la ,guages.. lit emer,,'es. , ~ ,  lhat the 
choice of an AE from a certain ('lass of similar AEs is 
rather like the choice of an order for a set ot7 assign- 
ments, and tlmt the issue of whether or itol. this choice 
affects the outcome has an analogy in terms ot' AEs. 

For example, it follows from the definition of tim "value" 

of an AE that 

~(a ~ O)(J, 1/a) 

and 

g ( a  =< 0)(X( ).a 2,a( ).1).~)( ) 

are not necessarily equivalent; if a = 0 the first is u> 
defined. This difference is reflected in ihe behavior of the 
SECD-maehine. In evaluating the first it attempts to 
evaluate bolh a 2 and l/a, whereas in evaluating the second, 
both X( )-expressions are evaluated but only one of thdr 
bodies. The use of X, and in particular (to avoid an ir- 
relevant bound variable) of h ( ) ,  to delay and possibly 
avoid evaluation is exploited repeatedly in our' model of 
ALGOl, 60. A function that requires an argument-list of 
length zero is called a none-adic function. 

On the other hand, AEs illunfinate the structure of 

ALGOL 60. 
Firstly, the definitive description of ALGOL 60 is split 

into sections headed "syntax" and "semantics." The syn- 
tax is described formally, the semantics raainly by nm'ra~ 
tive. This paper provides a way of formalizing some of the 
semantics by associating semantic features of AL(~OL 60 
with syntactic features of AEs. (More precisely, we should 
say structural features of AEs, since AEs have an existence 
independent of any specific written representation.) 

Secondly, the analysis leads to a classification of the 
grammatical units of ALGOL 60 that  provides a unified 
framework for such features as (i) the fact. lhat array 
bounds are necessarily specified in terms of nonlocals (and 
hence, for instance, cannot use a procedure declared ill 
parallel); and (it) the commonly observed similarity be- 
tween procedures and actual parameters called by name. 
More generally it shows that many features of AL(~OL 60, 
including call by name, declarations, own,  for-lists, and 
labels, have parallels in a language that  lacks assignment, 
arid are hence not essentially related to "imperat ive" lar~- 
guages. Also, mainly by default, it suggests a new view of 
own 2 

Thirdly, the analysis brings out certain respects in which 
ALGOL 60 is "incomplete," in that  it provides differing fa- 
cilities in situations that are closely analogous. It dictates 
what extensions (and small changes) are required to re- 
move this incompleteness. Whether or not "eomplel(mess," 
in the technical sense that emerges below, is a desirable at- 

2 Developed in [10]. 
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ll'il)ul(~ el p '()gralni~lits~ l~mgttag(. ~ will l iot be discussed 
dirocily ill 1,his p:~por t)(,yo~ld lho following i.'elli{~rks. 

In ils hi, vor i l c, ali })c said tSal, given (:olnplel(mess, many 
Of lho prol)os~ls for ('xl(:~i/si()llS thai )are put forward with 
r(~fel'ei~oe go ctirro/~ t pr()graitu~iing ]angtiages become mere 
s!/ntaclic pr<)pos~fls, i.(< proposals for wriling in al:l allegedly 
illoFe eonvell iei it way sonic par t icu lar  k, ind of expression 
that is ~fli'eady ii~ the langu'~ge. There is art impor tant  
(lualifiem ion io ti~is: such a proposal ni ight  have some coo- 
l ion/ i t  ovor lones; i.c,. il; might  be a sy'ntactic proposal Dliat 
helps the machine to recognize when special "cheap" tech- 
~tiques arc appropriate,  or it; nfight deter the user from 
writing forms of expression that at'(: expensive to imple- 
ment. 

The above c/aim for complete languages sounds like one 
ellen made to rebut a proposed language ex tens ion- -"gou  
can do that already merely by writing .... " The question 
therofor(~ arises whether a complete language forestalls its 
extens ions  in a n y  more  s ignif icant  sense t h a n  do Turing 
machines, M a r k e r  algorithms, built-in instruction codes 
of gei~eral-purpose computers, or programming languages 
wiih Am~oL-like procedure facilities. We shall not pursue 
this  questior~ here. 

Fourthly, the analysis of A LCOL 60 in terms of AEs sug- 
gests a new way of comparing various run-time setups for 
ALGOL 60, and displays the interactions between run-time 
selup and l he exlensions mentioned above. 

hn lpera t ive  App l i ca t ive  Express ions  

We now describe the abstract language used later to 
model ALto-eL 60. We give a formal account of its structure 
(i.e. its "abstract  syniax,"  to use McCarthy 's  phrase [5]) 
trod an informal account of its semantics--very much what 
the oftieial description does for ALGOL 60. The semantics of 
this absl tact language are described in terms of art abstract 
machine for interpreting it. This language consists of ex- 
pressions we call imperative AEs (IAEs), and tim machine 
is called the sha'~'ing machine. The IAE/sharing machine 
system is a development, of the A E / S E C D  system de- 
scribed in [MEE]. However there is art important  way in 
which the relationship of IAEs to the sharing machine 
differs from that  of AEs to the SECD-machine. The se- 
manlics of' AEs can 1)e specified formally without recourse 
to a machine. In  fact. this specification provides a criteriolt 
for .iudging the "correctness" of a machine that  purports to 
evahmte AEs. The  SECD-machine satisfies this criterion 
but it is not the only (abstract) machine to do so. With 
IAEs on (,lie other hand it appears impossible to avoid 
specifying semantics in terms of a machine. 

A relationship was established in [MEE] between AEs 
and certain informally introdu('ed pieces of notation; for 
example, we ('onsider 

X w h e r e  x = Z 

as a way of writing the operator/operand combination 
whose operand is Z and whose operator is a X-expression 
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whose bound variable is x and whose X-body is X;  this is 
the AE thai: in a rnore rigid notation is written 

{xz.x} [z] 

In this paper we use another piece of "syntactic sugar" 
for the same AE structure, namely, 

l e t  x = Z; X 

or, letting layout obviate punctuation, 

l e t  x = Z 
X 

Here is a typical form of AE, presented both informally 
and formally. 

l e t a  = A 

and b = B 
and f ( x ,  y) = F 
l e t  t e e  g(x)  = G 

a n d  h(y,  z) = H 
l e t  k(u ,  v ) (x)  = K 
X 

{x(a, b, f). 
{X(g, h). 

{Xk.X} {X(u, v).Xz.K}) 
[ YX (e, h). (Xx.(L x (y, z).H} } 

[A, B, X(x, y).F] 

The only consideration in choosing between l e t  and  w h e r e  
will be the relative eonvenienee of writing an auxiliary 
definition before or after the expression it qualifies. 

The use of comlnas for denoting lists, ~ for conditional 
expressions, arid l e t  arid w h e r e  for auxilia W definitions, 
provides a way of representing AEs on paper, i.e. one par- 
titular "syntax" for' AEs. Though this syntax has not been 
rigorously defined, enough has been said to ensure that 
each formula could be rewritten in a rigid, prefixed oper- 
ator, fully bracketed notation (rewritten, that is to say, in 
at least one way arid possibly several equivalent ways). 
Another way of saying this is that if we know how to trans- 
late ALGOL 60 into a language based on just operator/  
operand eombination, conditional expressions and auxiliary 
definitions (including function definitions and recursive 
definitions) then we effectively know how to translme 
ALGOL 60 into AEs. We shall use this fact to make the in- 
formal discussion here less technical than it otherwise 

would be. 
In the formulas of [MEE], AEs play two independent 

roles. First they are part  of the subject matter  in the sense 
that  certain subexpressions denote AEs. Second they are 
the language in use, since all the expressions are to be con- 
sidered as written presentations of AEs. This dual role is 
maintained in the present paper. I t  is fortuitous in the 
sense that  we might have used some other means of ex- 
pressing what we have to say about AEs, or we might: have 
chosen some other topic and nevertheless have used AEs. 
However, the coincidence is designed in the sense that  our 
interest in AEs springs partly from their success in de- 

scribing their own features. 

A GENERALIZATION OF JUMPS 

We introduce into the SECl)-maehine an operation de- 
noted by 'J', that  is applicable to funclions, or more pre- 
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cisely Co closures, attd modifies their subsequent exit 

behavior. 
For example, consider a definition of j' as follows: 

f(z) . . . .  g ( - . - ,  - . - ) . , ,  
w h e r e  g = JX(u, v). 

where Cite subexpression g ( . . . ,  " ' )  may occur at any 
X-depth within the right-hand side, and itt any context. 
If  during an application of f this subexpression is evalu- 
ated, its value will immediately become the result pro- 
duced by f. This is relniniscent of art alarnt exit from a 
subroutine. In fact the generalization of labels to permit  
arguments may be a useful way of providing for alarm 
exits in At, GeL-like languages. 

I*'urlher, to define precisely the meaning of 'J', we extend 
the class of possible results of evaluation by inCroducing 
a new kind of object, a bundle of information called a 
"program-closure."  When J is applied to a oh)sure it 
transforlns int;o a program-closure. 

The resulting program-closure, like a closure, includes 
the current environment (for subsequeItt installation) and 
an expression (for subsequenC evaluation). I{owever it also 
includes the current dump, and when the bundle eventually 
comes to be activated, this dump is also installed. This 
process is to be contrasted with the activation of a closure, 
in which the dump is used to record the current state in 
order that  it may be resumed later. 

We call an expression of the form 

a(xr , .S )  

a "progrmn@oint.  ''3 IloughIy speaking, ALGOl, 60'S labels 
are a special case of program-points. They are paramete> 
less, and the Kbody  is typically a functional product whose 
terms correspond to the statements following the label. 
Moreover, references to both closures and program-clos- 
ures are restricted in AL(~OL 60 in a way that  prevents 
them from being carried outside the scope in which they 
are produced. (In LISP [4] references to closures are free 
of this restriction, hence the need for a chained stack. 
However program-closures ar t  more severely constrained 
in that  they cannot t)e carried into an inner scope.) 

INTROI)UCING. COY/MANI)S INTO A FUNCTIONAL SCHEME 

Any a t t empt  to tit most current programming languages 
into the A E / S E C I )  scheme involves the questions: Are 
commands to be construed as subexpressions and, if so, 
what  do they denote? In particular, what does an assign- 
merit denote and what does a jump denote? We postpone 
these questions here (although claiming to leave them 
rather  more clearly formed than we found them) by using 
another  family of languages similar to the one associated 
with the A E / S E C D  system but differing as follows. 

The  notion of AE is extended to comprise one new for- 
ma t  that  models assignment. We characterize the en- 

a [ think this term is due to Peter N~mr. 
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larged se~ as t'olkms. 

AiD. h~perativ,~ applicative e×prcssi.o~ (IA E) is 
either' ~m ident'tfier, 
or t~ X-ea:pression (Xezp) and co:asist.s of 

its boundva'riable part (by), which is :~. lisg.~strueture of idmlti. 
tiers, a~,d 

its X-body (bodg), which is an IAE, 
or an assiqner, which consists of 

i{;s leflhandside (lhs), which is a:a IAI!], and 
its riohthan&ide (rhs), which is an IAE, 

or a combination, which consists of 
its operator (rater), whielh is an iliA]'], :rod 
its operand (rar~d), which is aa IAE. 

We adopt, informally, the following notatioH for as- 
signers, 

lhs ¢= rhs 

This extension of the notion of all expression brings in its 
train the problem of extending the notion of tile meaning o~' 
an expression. The next subsection is an informal appr0aell 
to this Cask. I t  is hoped a more exact account will be set 
forth for publicalioa elsewhere, and Chat enough is said 
here to define all buC the details of the main purpose of this 
pN:)er--explainirlg ALGOL 60 in terms of IAEs.  

THE SHARING ~[ACIHNE 

In  [MEE] we described an abstract  machine, the SECD- 
machine, capable of evaluating an AE. Although the value 
of an AE was defined independently of this machine, it was 
given a more definite status by being backed up by 
specific machine. The notion of the meaning of an IAE, 
on the other hand, is completely dependent on an abstract 
machine, the "sharing mactfine," for executiTtg IAEs -the 
word "execute" seems more appropriate  than  "evaluate" 
irt the case of IAEs.  The sharing machine is an elaboration 
attd an ext.ension of the SECD-maehine.  The elaboration 
is concerned with modeling the fact tha t  distinct state- 
positions having equal occupants might "share"  the same 
representation and hence get updated collectively. The 
extension is concerned with the execution of the two new 
feaCures, namely assigners attd ,l (covered above), 

The Transition Rule oj" the Sharing Machine.  The main 
features of the elaboration are the following four specific 
rules governing whether or not two state positions "share." 
For, each state of the sharing machine is characterized by 
an SECD-state  together with an equivalence relation, 
namely "sharing," among its component-positions. In the : 
straightforward computer representation, each equivalence 
class corresponds to an address. For each slep we must 
say how this equivalence relation changes. 

When at, identifier is scanned, the stack head is left shar- 
ing with the environment position holding the identifier's 
value. Also wheu a closure is apt)lied , the youngest level of 
tlte new environnmnt shares wiCh any sm'viving "co- 

sharers" of the old stack-head (i.e. the argument). As a 

eonsequen('.e of these two provisions a function can achieve 

nonlocal effects by assigning to its formals (i.('. argunle~ts 
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m'(: c~Jlcd by "siz~q)h~ m~.l,m" [8] rechristened "reference" 
Jut (]1)[, [I 15 this is tim tl~ode used for arguments of Ii~oa'rRAN " 
fum:li(ms). 'Fh(T ~l, ls()e~lsure that no special provision is 
re>coted for s(:mmil,g m, id(mli~ier when it occurs as the lhs 
o.1' nit ~ssigamr. Since (:.Ira classitic~,~t;ion of identifiers into 
(:o~sta, nis and variables is t~ot reNected in the behavior of 
t;h(, machin% cot~slm,ls are not ir~vulnerable 1;o resetting. 

A l lfir(1 rule is lhal wh(m a closure is applied, the eom- 
poHet~{,s of older levels (ff tlm r~(,w e n v i r o n l n e n t  share with 
corresponding cemponenls  of the ettvironment from which 
it was derive(1. As :~ cons(,(tuetme of this provision, a func- 
tiot~ can achieve noldo(',td effects by assigning to its free 
iclet/liiiers (inclu(tir~g (o constants). 

I/ourthly, whert a control string is exhausted the new 
sl;ack-head is left sharing with any surviving co-sharers of 
the old stack-head. This provision ensures that an appliea- 
lion of a funclion cart be appropriate as a lhs, e.g. 

{x:,,. 'i]' (:~ = 0)  (x,  b )} [a ]  ~= - - .  
( x ( ) .  < . ~ ) ( )  ~ . . . . .  

characterized by (a) the result produced by applying it to 
each abstract object that is amenable to it, and (b) the re- 
sult yielded by subjecting it to each abstract object that is 
applicable to it. 

With [AEs the situation can be very much more compli- 
cated. For each case of application the question arises, not, 
merely what result is loaded onto the stack, but also, for 
each possible pattern of sharing throughout the current 
state, how it is changed, tIowever, in the case of the primi- 
tives we use to model ALGOL 60, it is possible to overlook 
most of this complication. All but  two are straightforward 
functions without side-effects. The two exceptions are sepa- 
rate, and assignandhold, which is a dressed-up version of 
the assigner format. For present purposes we can roughly 
say that the meaning of an IAE has two aspects, a descrip- 
tive and an imperative aspect, of which one or other may 
be unimportant. The descriptive aspect corresponds to the 
value, or denotation, of art AE. The imperative aspect cor- 
responds to the change of machine state caused by execut- 
ing the IAE. 

7'he Function "separate". There  is a function separate 
that  (mables us to avoid nonlocal effects at will. Tha t  is to 
say, suppose tim c, urrent  stack-head has been obtained by 
loading some environ men t component (e.g. the value of an 
identifier of subscripted identifier); then if it is later in- 
corporated in a new environment the above-mentioned 
provisions ensure (:hat any assignment to its new position 
will also reset its old position. This is avoided if it is sub~ 
je t ted  to separate before incorporation in a new environ- 
menl. (There are other suggestive names for separate that 
are rejected here since ti~eir suggestiveness does not en- 
tirely avoid misleading: copy is used in Lisp [4] to mean 
copying all components "down to the level of" atoms, i.e. 
components named by variables (as opposed to constants), 
whereas we postulate that  separate insulates every com- 
ponent  from future resetting; va lue  as used in ALGOL 60 
coincides with separate in the ease of operands that  are 
suitable lhs's, but has acquired too many mutually in- 
con~patible connotations in discussing three relationships 
that we wish to delineate clearly, namely the relation be- 
tween expressions and their denotations, between functions 
and their resulls, and between slate-positions and their 
occupants.) 

Executing an assigner. The lhs and rhs of an assigner 
can be evaluated in the same way as each other. The only 
difference is that, (o be appropriate on the lhs, an IAE 
nnts{ denote some previously produced object, for example 
a named object or component of a named objec|. Every  
intermediate result of evaluation occupies a certain posi- 
tion i~ the curret,l s(ate of the machine; hence a lhs ex- 
pressi(m detern~ines a state-pnsition. Scanning an assigner 
resets this stale position and also every state-position 
sharing wilh it; it leaves a nugatory result on the stack, 

. ame ly  nullist. 
51'Ire "meanb~g" of an [A E. In the AE/SECD system, 

each A I!] denotes an abstract object that is completely 

ALGOL 60 AS SUG~RED IAEs 

The sharing machine provides a precise criterion for the 
correctness of the correspondence between ALGOL 60 and 
IAEs, namely that  they should have corresponding effects 
when executed in corresponding enviromnents. On account 
of the absence of specified input/output  facilities in ALGOL 
60, the meaning of this criterion is less clear with regard to 
whole programs than it is with regard to subbloeks, operat- 
ing on, and producing, the values of declared variables. 
However, input /output  devices can be modeled as named 
lists, with special, rather restricted functions associated. 
Reading is modeled by a procedure (or function) that 
operates o n  a list, resets it by removing some initial seg- 
ment, and also resets other variables with values derived 
from the initial segment (or, if a function, produces these 
values as its result). Writing is modeled by a procedure 
that, operates o n  a list, and appends a new final segment 
derived from other variables. (Alternatively, a purely 
functional approach can be contrived by including the 
transformed list among the results.) So no new principle is 
raised by input/output ,  nor hence by whole programs. 

We give later a forinal presentation of a function that 
associates an IAE with each ALGOL 60 program. This func- 
tion is intended to satisfy the criterion stated above. Dis- 
covering whether it does or not is a task that  can be ap- 
proached in two ways: either experimentally, using an 
implementation of the sharing machine; or with pen and 
paper, developing a proof. The length of what one accepts 
as a satisfactory proof will depend on his intuitive grasp of 

component ideas used in the formalization. - 
This formalization determines the "syntax" of ALGOL t30 

in the special sense explained above. The identifiers oc- 

curring free in the IAEs that  model ALaOL 60, will be the 
"constants" of AL(~OL 60 in our special sense. They  con> 
prise the nine standard hmction identifiers, the score or so 
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of such symbols as + ,  < arid A,  the mnnerical, Boolean 
and character-string constants, ~ handful of functions to 
deal with AL(~OL 60'S array and iteration facilities, and 
another handful that are so unproblem-oriented that  they 
are probably implicit in any tolerable language (in the 
sense that they would be needed were it subjected to the 
treatment that  ALGOL 60 gets here). 

By saying what each constant denotes, we shall be say- 
ing what are the "primitiw~s" of ALGOl, 60. The closure 4 
under application and abstraction of this set of primitives 
is the "universe of discourse" of AL(~OL 60. Actually, the 
syntax of ALGOL 60 is such that some IAEs have no written 
representation, and even such thai) some meml:)ers of the 
universe of diseoursc (for example flmction-produeing 
f u n c t i o n s )  a r e  n o t  d e n o t e d  b y  ar ty  t ex t .  

I n t b r m a l  P r e s e n t a t i o n  o f  t h e  C o r r e s p o n d e n c e  

We now give a detailed but infornlal description of a 
correspondence between expressions of Ar~eOL 60 and IAEs. 
The interest of this particular correspondence is that it is 
"correct" in the sense put forward above; i.e. correspond- 
ing expressions executed in corresponding environments 
have corresponding outcomes. Subsequently we formalize 
the correspondence. However the informal treatment in- 
eludes some material not covered by the formalization, 
namely a description of the "basic AL(mL 60 environment",  
i.e. the primitive objects whose names appear in the IAEs 
that model ALGOL 60. If out' formalization were to not 
merely specify the correspondence but also prove its c o l  
rectness, then it would have to include a formM specifica- 
tion of these primitives. 

There is often considerable choice of IAEs to model a 
particular ALGOL 60 expression. This is true even when the 
primitives and the "constants" that name theln have been 
chosen. In particular there is a conflict between using IAEs 
that correspond naturally in each individual ease, and 
using a uniform and easily specified rule. For this reason 
the illustrations in our informal account sometimes de- 
viate from the general rule presented it* the formal account 
that follows it. 

BI¢IEF OUTLINE 

Table 1 gives a rough indication of the correspondence. 
There are two featureg of ALaOL 60 that give rise to par- 

tieularly clumsy IAEs. 
1. Own identifiers declared other than in the head of the 

body of a globally declared procedure. 
2. Conditional statements that are entered unnaturally 

(i.e. by a go to) and exited naturally (i.e. other than by 
a go  to). 

THE DOMAIN OF REFERENCE OF ALGOL 60 

The corres'pondence given in this paper associates with 
each ALGOL 60 text an IAE whose principal significance is 

4 In the usual algebraic sense, not  the  special sense a t t r i b u t e d  
to this  word by  me here and  in [MEE]. 

either denotational or state-transformational. If the former 
it denotes either an integer, a real (we postulate two dis- 
jtmet classes of absl?ract objects---so 3 and 3.0 are not 
equivalent), a truth-value or a character-string; or a list, 
array or function. State-transformational IAEs model 
statements and labels; a switch is related to such IAEs it: 
much the same way as a vector is related to numerical 
expressions. 

Declarations are considered as giving initial values to 
the local identifiers. For instance integer and real identi- 
tiers are initialized respectively to integer zero and real 
zero. A Boolean is initialized to false. Switches and pro- 
eedures are initialized to vectors and functions respec- 
tively (and not subsequently reset). 

Lists are characterized by the following structure deft- 
nition. 

A list  is e i ther  null,  
or else it has a head (h), 

and a tail (t) which is a list. 

TABLE 1 

IA Es 

Identifiers 
ALGOL 50 

Identifiers,  operator  symbols, 
also sonm special words and 
configurations 

Local identifiers 

FormM parameters  

Func t ion  designator,  sub- 
scr ipted w~rial)le, and pro- 
cedure s t a t ement  

Procedure 
Actual  pa ramete r  called by 

n a f f l e  

Occurrence of a formal called 
by name 

VMue part, of a procedure dee- 
l a ra t ion  

Specification par t  

Block 

S t a t emen t  

Compound s t a t ement  

Label  

Labeled seglnent of program 

go t o - - s t a t e m e n t  

Switch 
Condi t ional  expression or 

s t a t emen t  

Variables bound in a X-expres- 
sion occurring as opert~tor 

Variables bound in a X-expres- 
sion occurring as opcrand 

Opera to r /ope rand  combination 

X-expression 
( )-expression 

Appl icat ion to nul l  operand 
list 

Auxil iary definit ion qualifying 
the  procedure body,  rede- 
fining some of the  formals 

Auxil iary definit ion qualifying 
the  procedure body,  redefin- 
ing sot,m of tile formals 

Combina t ion  whose operator  is 
the  block-body, and  whose 
operand denotes  the  (pos- 
s ibly concocted) in i t ia l  val- 
ues of the locals 

Expression denot ing  a none- 
adie function,  changing the 
env i romnen t  by side-effects 

Func t iona l  product  of none- 
adie funct ions 

Identif ier  defined by  a none- 
adic program point  

Program poin t  whose body, de- 
notes  a none-adic funct ion 

Last  (i.e. outer)  t e rm  of a time- 
t iona l  p roduc t  

Vector of progranl  closures 
Selection of an  i t em from a 

l is t ing 

:I 
6( 

!e 

0[ 

:i 
eu 

i 
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I~ our model every procedm'e, switch and array operates 
<m a list of zero or more argume~tts. An expression that, 
del~otes a lisl irl terms of subexpressions denoting each i tem 
o~ tile list is called a listing. For' example, 

(a+b, c+d, c+f) 
(a+b, c+d) 
!millist(a+b) or tt(a+b) 
() 

arc listings. In [MEE] the first of these was considered as a 
convenient way of writing 

p/'4i:I: (a + b) (prefix (c q- d) (prefix (e + f) 0 ) ) 

This, coupled with the fact that operands are evaluated be- 
fore el)craters, ensures that  the items of a listing are 
(,valuated in tile right-to-left order. Hence in transcribing 
from AL(;OI, 60 to IAEs tire order of the items of every 
listi~g (including the implicit listings of operands of + ,  
=, eic.) must be reversed. This minor complication is 
avoided here by adopting a different arralysis of listings, by 
which 

(a'+b, c+d, e-f-f) 

is (:(msidered as a convenient way of writing 

s~ Uix (e+ f) (sujlix (c+d) (su fflx(a-f-b ) 0))  

(1) mighl alternatively have been avoided by varying t h e  

cvahlatiou me(:hanism so as to evaluate operators before 
op(~rands. In view of the limited form of operalor occurring 
i!~ AL(;OL (i0 such a change would have few other reper- 
vus:dons. ) 

There is no fealure of the eorrespondence that "explains" 
ilw [eft-lo-right rule of ALGOL 60. IIl this respec.t the 
('or~'e('tness of tire model depends on a similar rule for 
IAEs. We can put this another way. The correspondence 
pr(stmted i~ this paper "explains" semantic features of 
:\L(~o~, 60 i~ lerms of syntactic , or more precisely strue- 
luraI, feaiures of IAEs. But the left-to-right rule is a 
s<naniic feature of ALGOL 60 that relies for its explanation 
o~ a se~antie  feature of IAEs. The semantic feature we 
us~ is that operands are evaluated before operators. (A 
logically more economieal approach would use merely 
1he faci that an operand to a X-expression is evaluated 
before its X-body. Thus in evaluating ( X x . a 2 + x 2 ) ( b + e ) ,  
ihe subexpression b + e  is evaluated before a 2, whether 
~he machine evaluates an operand before, after or eon- 
~urrently with its operator.)  

A~ array is considered as a function whose domain is a 
s~hset of the set of integer-lists. I t  is initialized with the 
appropriate domain (not subsequently,altered) and with 
all its elements equal. Thus 

exp(mdtoarray((O, m), (0, n)) (a) 

det~otes an 0 n + l )  X (n- t - l )  array each of whose ele- 
ments is a. An own array is initialized with the appropriate 
dimensionality but  with array bounds ( - - ~ ,  - t -~ ) .  
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These are "pared down" to finite vMues at the first entry 
to the array's block. Thus if A is a two-dimensional array 
then 

parearray( (O, m), (0, n) ) (a, A)  

denotes an (m-t-l)  X (n-l- l )  array whose elements are 
the same as those of A insofar as their' domains overlap, 
and otherwise a. 

A switch is initialized by the function arrangeasarray,  
that, transforms a given list structure into an array of 
given domain, e.g. 

arrangeasarray( (O, 2), (0, 3))((a, b, c, d), (e, f , g, h), (i, j ,  k, l) ) 

denotes a 3X4 array whose elements (row by row) are 
a ,  b,  c ,  . . . , k ,  l .  

Fo lk -LI sTs  

Let us use the term "control-list" to mean the list of suc- 
cessive values assigned to the controlled vm'iable during 
one execution of a for~statement. The point of departure of 
our treatment of for-statements is that a for-list might 
roughly be said to " d e n o t e "  the control-list, with each :/br- 
list-element denoting one segment of it. This suggests the 
following incorrect rendering. 

for  v := a s t e p  b u n t i l  c, forty, 
d, concatenate (step(a, b, c), 
e w h i l e  p unitlist (d), 

do T while(e, p)), 
T) 

where jbr,  concatenate, step and while are defined as follows. ~ 

r e e f o r ( v , S ,  7') = i f  -7 n u l l S t h e n  [v := hS; 
7'; 

for (v, t,g, T)] 
r e e  concatenate S = null S --~ ( ) 

null(hS) ~ concatenate (tS) 
e lse  --~ h2S :concatenate (t (hS) :tS) 

r e e s t e p ( a , b , c )  = (a - e) X sign(b) > 0 --~ ( ) 
e l s e  -)  a:step(a+b, b, c) 

r e c  while(e, p) = p --~ c:while(e, p) 
e l s e  ---, ( ) 

However, these definitions fail to reflect the sequence of 
execution prescribed for AL(~OL 60. When interpreted by 
the sharing machine they would lead to an a t tempt  to 
evaluate the entire control-list before the first iteration of 
the loop. The inadequacy of this approach is especially 
flagrant in the case of while. We therefore consider for-  
list-elements as denoting not lists but a particular kind of 
function, called here a stream, that  is like a list but has 
special properties related to the sequencing of evaluation. 
Principally, the items of an intermediately resulting 
stream need never exist simultaneously. So streams might 
have practical advantages when a list is subjected to a 
cascade of editing processes. 6 

Following [MEE], an infixed colon indicates prefixing. T h u s  
" x : L "  is equivalent to "prefix x L . "  

6 It appears that in stream-transformers we have a functional 
analogue of what Conway [12] calls " c o - r o u t i n e s . "  

C o m m u n i c a t i o n s  o f  t h e  ACM 95 



ftowever, the user of a purely functional system (i.e. 
AE/SI)X?D rather titan iAE/sharing machine) would have 
no way of telling whether his intern lediately resulting lists 
were in fact being streamed or not, since the only differ- 
enccs in outcome arc concerned with the amount of store 
used, or the range of jobs possible with a given size of 
store. On the other hand, the introduction of imperatives 
makes it possible to write list-expressions whose outcome 
is  affected by whether they arc represented as streams or 
not. Hence it) t)ecomes necessary to introduce a new sat of 
identifiers that play tile same role for streams that h, t, 
etc. play fort' lists. The next subsection is concerned with 
these operations. 

STREAMS 

There is a relationship t)etween lists and functions that 
is used here in modeling for-statements (and would be used 
to model input /output  if ALGOL 60 included such). In this 
relationship a nonnull list; L is mirrored by a none-adic 
function S that produces a 2-list consisting of (1) the 
head of L, and (2) the function mirroring the tail of L. 
The common functions, etc. associated with lists are 

mirrored as follows. 

wullist X() .  ( ) 
null (b) null (S ( ) ) 
head(L) 1st(S( ) ) 
lail(L) 2nd(S( ) ) 
pr~fix(x)(L) X( ).(x, S) 
cons(x, L) x( ).(*, S) 
unitli.st(x) x( ).(x,x( ).()) 

lit is easy to see tihat the first five expressions on the 
right satisfy tim four relationships that  characterize "nullist, 

null ,  h, t and prefix. 

null (nullist) null ( { X (). ( ) } [ ]) 
-qnull(pr~fix xL) --nnull({X( ).(x,S) }[ ]) 
h(prefixxL) = x lst({X( ).(x,S)}[ ]) = x 
t(p,'efix xL) = L 2nd({X( ).(x,S)}[ l) = S 

This correspondence serves two related purposes. I t  
enables us to perform operations on lists (such as generat- 
ing them, mapping them, concatenating them) without 
using an " e x t e n s i v e , "  item-by-item representation of the 
intermediately resulting lists; and it enables us to postpone 
the evaluation of the expressions specifying the items of a 
list until they arc actually needed. The second of these is 

what interests us here. 
The expressions that  make use of this technique can be 

made slightly clearer by using the following definitions. 

nullist* = X( ).( ) 
null*(S) = nu l l (S ( ) )  
h*(S) = 1st(S())  
U(S) = 2rut(S()) 

However, the analogous definilions for the constructors 
cannot be used since they would not preserve the sequenc- 
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ing of ewfiuation. The best that can be done is to introduce 
a new syntactic device whereby for any two expressions L, 

M 

L:*M stands for X().(L,M) 

We now define functions that  correctly mirror A.LC0L 
60'S three kinds of for-list-eleme~lt. 

t e e  step*(a, b, c) = 
X ( ) . [ ( a ' - c ' )  X sign(b') > 0] - ,  ( ) 

e l s e  ~ [a', step*(X( ) .a'+b' ,  b, c)] 
w h e r e  a', b', c' = a(  ) ,b( ) ,c(  ) 

unitlist*(a) = a( ) :* nullist* 
r e e  while*(e, p) = X( ).p' ~ [e', while*(e, p)] 

e l s e  --~ ( ) 
w h e r e  # ,  p' = e ( ) ,  p(  ) 

The matelfing definitions for concatenate* and Jbr* should 
be obvious. 

The above formulas reflect certain choices of AL(;OL 60'S 
designers, e.g. 

(a) that all parameters are evaluated "when they are 
corme to," rather than e.g. evaluating the parameters of a 
step-element (arithmetic progression) all together;  

(b) that  the decision whether the current iteration is 
the last is taken after it, not before it; 

(c) that arty resetting of the controlled variable during 
the execution of the for-body affects its subsequent values. 

That  is to say, had different choices been made in these 
matters, then a different IAE, or different definitions of 
tile auxiliary functions involved, would have been needed 
to mirror for-statements. 

TYPES 

Roughly speaking our model deMs with types "]nterpre- 
tivcly." Specifiers in ALGOL 60 affect the prescribed out- 
come of a program only by causing transfer between real 
and integer, or by rejecting an argument outside the 

specified class. We suppose that associated with each 
specifiable (:lass there is a transfer function whose range 

is within that  class. For instance, f loat is defined for num- 
bers, i.e. for reals and integers, and leaves reals unchanged; 

similarly with unfloat,  which is prescribed in the Ar~oo~, 60 
report to be defined by 

unfloat(x) = entier(x q- 0.5) 

The transfer function for truthvalues is merely a very 

limited form of the identity function that is defined by 

rejectallbuttruthvalues(x) = Boolean(x) --~ x 

(Here Boolean  designates the class--or predicate, we do 

not distinguish--whose members are the trutllvalues. A 
conditional expression none of whose conditions hold is 
taken as undefined.) More generally we define a functiortl 
in  as follows: 

in(A)  (x) = A (x) -~ x 
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so ~hat if ..t is tt (:lass the(, i'nA is a filter that  rejects non- 
members  of A. For example bz(Boolean)  is the function 
rejectal~bullrutkvalue.s" defined above.  So the transfer func- 
tions for Booleatls and strings are respectively in (Boo lean)  
and in ( s t r ing) .  

The ftm(',tion defined by 

/ l o a t , e s . l t  (f) (:~:) = / t e a t  (f (:r ) ) 

t ransforms any number  producing function into a real- 
produ(:ing function. (This definition exploils the fact tha t  
we consider any  function as operat ing on a sz:ngle argument  
allbeit a list.) More generally, it' t is the transfer  function 
for some class A, then the traHsfer function for A-pro- 
ducers is Bt, where B (Curry ' s  combinator  B [2]) is de- 
fined by 

Bq?: = t@c) 

~ 60 So for instance Bfloat is the function floatresult defined 
above. The  transfer functions for type-procedures are 

y a  therefore Bfloal, Burtfloat and B(in(Boolean)). Since ar- 
0i: rays  are t reated as functions these also serve as transfer  

f t l l le t ions for a r rays .  

o~} Impera t ives  arc treated as nullist-producing furmtions; 
so it would appear  that  the best we can do f e r n  transfer  

2i'i~: func t ion  for lahels is B(bt(null)). H e n c e  t h e  t r ans fe r  fune-  

]t1~ (.ions for nontype procedures and for switches (which are 
;|le! considered as arrays  whose elements are program-closures) 

is B(B(in(null))). 
M~, The  effect of the at)eve provisions for checking argu- 

ments  is tht~t a mismatched procedure, array, label or 
switch is not itself immediate ly  rejected. Ins tead it is modi- 
fied so that  any  result it produces, whenever and if ever it 
is applied, is rejected. Hence  our model is overtolerant  in 

pr~ tha t  a mismatch will not lead to rejection if the procedure 
at1*:- is never applied, or if it is exited unnatural ly  and thus 
tea evades producing a result. Fur thermore ,  a label denotes a 
t,~i,: program-closure and so even when its result, namely  
a,5: nullist, is produced, the context  is never resumed and so 
n~: the cheek never  occurs. Hence tile ident i ty function serves 
tli equally well as transfer function. 

ed: 

i; 

THE CONSTANTS AND PRIMITIVES OF ALGOL 60 

The  correspondence given in this paper  associates with 
each ALGOL 60 text an I A E  in which the identifiers occur- 
ring free are drawn fi'om the following three groups. 

Group I consists of the arithmetical,  Boolean and string con-- 
slants. An arithmetical constant is an unsigned number as defined 
in the AlmoL 60 report, and designates an integer or a (rationM) 
real. However the integers also include ' - ~ '  and '+  co ', used in 
the initiM array bounds of own arrays. The Boolean constants are 
' t r u e '  and ' f a l se '  and designate the truthvMues. The string 
constants are certain character-strings whose first and last items 
are ' ~ ' and ' " ' , respectively; such a constant  designates the 
string obtained by removing its first and last items. (It would be 

possible to avoid an infinity of primitives by considering each 
written tmmbcr and each charaeter-string as having internal 

applicative structure. These might conveniently use such nmnber- 
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fornling and string-forming functions as: dec ima l ( re ,n )=  lOre 
+ n; qttoge(s) = concatenate(u' r , ~, 'u' " ').) 

Group 2 consists of symbols and identifiers whose meaning ~s 
laid down in the ALGOL 60 report, and also a number of identifiers 
coined by us and explained above. We assunm that  any collisions 
between these coinages and Ar~aor, 60 identifiers are avoided by 
some device such as the use of a different typeface, e.g. italic 
instead of roman. 

+ ,  - ,  X , / ,  + ,  T, +~r ,  - ~ z ,  <,  =<, =,  ~ ,  >,  ~ ,  -~, A,  V, 

abs, sign, sqrt, sin,  cos, a,'etan, In, exp, e'ngier 
The infixed operators are taken as (applying to 2-lists, either 2- 
nulnbcr-lists or 2-Boolean-lists. Numerical functions are applic- 
able to both reals, and integers; if n andf loat (n)  are both amenable 
to a fimetion then they yield the same result. The coinages are 

for,  concatenate*, step*, anitlist*, wh.ile*, expandtoarray, 
arrange~asarray, parearray, float, .w~tJtoal~ [n> real ,  i n t ege r ,  
Boolean ,  s t r ing ,  atom 

Gro~tp 3 consists of names for very basic objects. 
null ,  nul l is t ,  suffi.x, {f, B, K,  [, Y,  separate, assignandhold 

nul l  is the predicate that  tests whether a list has zero length. 
nul l is t  is a list of length zero. 
s'u~x makes a list one longer, e.g. 

s'aflix(x) (a,b,c) = (a,b,c,x} 
i f  satisfies the following: 

i f ( t r u e )  = 1st 
i f (false)  = 2nd 

B forms a functional product 
B(t ) ( f )  = hx.tff(z)) 

It is used lit dclaying transfer functions for type t)roeedures 
and formals called by name. 

K produces "cons tan t  functions" 
K (x) (:/) = x 

So for instance K3 is a function whose result is 3 for any argu- 
ment; it is used to tidy up assignments. 

I is the identi ty function, defined by 
[ (x) = x 

i t  plays tim role of dummy statenlents. 
Y is the "fixed-point finder." In so fat' as it is reasonably repre- 

sentable it can be defined by 
Y(F) = l e t  z = separale(nullisl) 

le t  z'  = F ( z )  

2 n d ( ( z ~ z ' )  ,z) 
This definition relies on the fact tha t  when a function-trans- 

former is applied to the (arbitrarily chosen) argument nMl is t ,  
rejection does not occur unless, or until, the argumcnt is 
actually applied. 

separate avoids unwanted side-effects; it is used when parameters 
are called by value. 

assigmtndhold is defined by 
assignandhold(x) (y) = l e t  x = real  y -~ float x 

i n t eg e r  y --~ unfloat a: 
Boolean y --~ in(Boolean)x  

2 n d ( ( y ~ x ) , x )  

In  this subsection and the four preceding ones we have  
characterized the abs t rac t  objects compris ing the "domain  

of reference" tha t  our analysis imputes to AL(~OL 60. T h e  

characterization has been part ly formM and par t ly  in- 
formal, taking for granted  such things as numbers ,  propo- 
sitional relations, ere? I a  the next subsection we turn to the  
main (.epic of this paper,  namely how ekLGOL 60 texts can 
be construed as IAEs  referring to these abs t rac t  objects. 

r In [9], BShm is concerned with the formal t rea tment  of this 
topic. 
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ILI,USTI{ATIONS OF THE (JORRESI?ONI)ENCE 

l';aci~ example bek)w illustrates the correspondence be- 
1we(',t a pariicular fealuve of MX;OL 60 and a p~rticular 
f(~alm'e of IAEs. Tha t  is to say, each example illustrates a 
rule tk)r eliminating a particular feature of ALGOL 60 in 
(('rms nf IAEs. In order (o turn a piece of Aix~oL 60 into all 
IAE it will usually be necessary to make marw successive 
applications (if (hesc rules. Ii,1 some of the examples the 
lr.at~sformalion iulo an IMi; has been only partiMly per- 
for,ned lo [)el,ler emphasize the particular poin(~ being 
made by th(' examt)l('. So (he right-hand half of aft illustra- 
lion nla.y not always c(mtail~ au [AE, but, it always con- 
lains somelhing ihat  is nearer to one of the four forms of 
I : \E lh:m the h,fl-hm~d, A[:a~L 60 expression. 

[deat(fic:r.~. Exeepl; for the (realment of individual oc- 
curr(~,mes ()f idenlifiers, the correspondence is context in- 
depend(~n[. Th(,, IAE corresponding to each occurrence of 
an Aid(at[, 60 i(le,difier dep(mds oft (he way the identifier 
is declared or otherwise introduced, as follows. 

I. Whe,,eve,' a local declared to identify a type pro- 
cedure occurs as a leftdumd side wilhin its declaration, it 
is tel)laced by a vm'iant i(lcntifier, indicated here by dote- 
ruling it with an aslevisk. We call this the result variant of 
lhe procedure i(le~lilier. 

2. Every ocem'r(qme of a formal not specified by value, 
or of a h)cal dechu'ed (.o identify a parameterless pro- 
cedure, is (pt'ovided I does no(app ly )  modified by at tach- 
ing an emply  op(!rand listing to i(. This is indicated hero by 
a ,  empt.y bracket pair. Thus we t rea( actual parameters  
ca/led by t,tttue, and l)arant(~t(wh~ss procedures, as Ii()ll(}- 
adie hmctio ,s .  

3. ()wns m'e {;rea{ed as globally declared and are replaced 
by var iams to a v c d  collision between two (:lcclara.tions of 
the same identifier. These wwianIs ~r(~ eMled own variants 
of the identifier appearing in (:he (cxt and are indicated 
here by decorating il. with (me or more daggers. (This is 
one of the two (msat;isfacl;ory fealures of (;he correspond- 
enee between A L(am 60 and IAEs. Which par ty  is to blame 
is a (tuesliot~ we return Io later.) 

[[ere is an example of these substitutions, 

begin begin 
own iul:eger a; ow~t integer ai; 
real proeedurefOc,y,g); own real aH; 

value x; real :c; real procedure f(x,y,g); 
begin va lue  x,y,g; 

o w n  real  a; beg in  
:~,:=*+g(y)+a; y( ) : = z + g (  )(y(  ) )+act ;  
.f:-=k(f,(l,f(z,Y,J) ) f*:=k(f,g( ),f(x,y(),j)) 

end e,~d 
real proee(lure h; real procedure h( ) ; 

h:=k(f,j,h); h*:=k(f,j,h( )); 
a:=fO,h,f) at:=f(at,h (),f) 

end end 

With the exception of these provisions each subsequent 
example is self-contained; timt is to say- the given bit of 

AL,OL 60 corresponds to the givea IAE whatever its 
context  (provided it is grouped sensibly--for  instance, 

9 8  C o m n t u n i e a t i o n s  of  t h e  ?kC~t,| 

not every occurrence of the charael~er-striug ' a ÷ b '  i~t 
Ai:OOL 60 corresponds Io (he IAE " + ( , , ,  b )"  -witness 
' c X a + b X d ' ) .  

Variables. The (,rea(ment~ of individual idea(fliers has 
already been explained. In  s u m m a r y  

Iformal called by name x( ) 
{type procedure as lhs x* 

x Jparameterless procedure x( ) 
~own identifier xt,x +), etc. 

if ~ tb 

~0 tb( 

*k se 
/;lo, 

~d~0se 

i id~0s( 
(strMghtforward z i L?as~ I 

If  all the identifiers i~lvolved are s t ra ighl forward  the { c0flc0 
t rea tment  of subscripted idetttifiers and funet, ion desig- ~ eedtlr 

' itliiia; 
nators is as follows. 

A [ i + j , k} A l l + j ,  k) nle~lt~ 
f(a;+y, Z) f(k( ).X@-y, X().Z) )d'[ 

Tt 'e.~. le t ransformation of actuM paramete r s  into none-adie ~' 
array 

functions is associated with the possibil i ty tha t  a pro- 0at,1 
ccdure might call its formMs by name. I t  is conqfiemcnted locals 
by a peculiarity in the t r ea tmen t  of proeedure  decla'a- 

Heat 
tions as noted below, de~JI 

If  the identifiers involved are all formals  called by name 
then the transcription (o .t~ r~s is 

ihey 

A (  ) ( i (  ) + . i ( ) ,  :c()) "self 
~leeO 

f( )(x( ).x( ) + y ( ) ,  x( ) .~())  d~,~ 
¢leel~ 

In the las(~ example, 'X( ).z( ) '  can be replaced by  2'. h~ 
future illustrations all occurrences of' identifiers are as- 

a~ia, 
sumed to be straightforward unless the reason for non- 
s(,raightforwardness is contained in the  example.  Any ~0~ 

B 
nonstraightforwardaess would involve superimposing the 
appropriate  t rea tment  on any  other  t rans format ions  that 
are. needed, are 

Expressions. tile3 
ii0~) 

a + b + (su.Nz b (suEz a ())) I)r0, 

In  future illustrations (as in previous ones) the trcatmet/t ?l~( 
of argument  lists, as also usually of infixed operators, will beg 
be taken for granted. 

--a + b +(--M(a), b) 

T h e  symbol --M designates the monadic  funct ion %egate." L 
/ ,}. a + b - c + d  + ( -  (+ (a,b),c),d) 

This example shows how "left  assoc ia t ion"  is reflected ' 
12. 

(as opposed to the left-to-right rule which is quite in- 
dependent) .  The  following examples  show how the "pre- 
cedence" rules are reflected. 

cXa+bXd + (X (c.,a), X (b,d)) 

a - b / c  ~ d - (a,/(b, T (c,d))) 'l'I 
iol a T b / c - d  - ( / ( ~  (a,b), c), d) ~0] 

pAqVrAs V(A (p,q), Aft,s)) (~1 

Conditional expressions use the funeti(m if, such that /'e 

if t r u e  = 1st i~ 
if false ~ 2rid 
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i f p  I h , m  a e l s e  b (V p)  (k(  ) .a ,  , a l l . b ) ( )  

So (b(, ('valu:~,ti<)J~ (>l' tl)(~ :/bov(~ /AI,; irlVOlVeS selecting ()n(~ 
from a lisl <>l' lw() i~()H(>~Mic [un(:li()ns arm tlmll applying 
the s(q('('i(,d (m(, t() the mtllis[. 

li&c/,.w. Eacll (t(,(:/~rali()tl is (~or~sirued as a definition 
whos(~ (l(qi,~(,(~ consist s of (me or more local i(tc,d.ifi(~rs and 
whose (t(,IiHic~s (h,t~ol(>s i~fitial values for (henl. In the 
case of l y p c  a t l ( l  arrtty (hwAarations die initiM value is 
conco(.~(~<l with z(,r()s. It~ (he (:ase of switches and pro- 
ccdur(!s th(? (l(~tiMel~s is alr(~a(ty in Mx;()L 60. (In fact the 
initial vaha~ is ~)cver changed since there are no assign- 
ments I(> swil(:h and pro(:e(ture ideatitiers.) 

Array decl:~rations are ini(ializcd in terms of nonlocals 
(e.g. a procedure identifier declared in parallel with an 
array carmel be used in the array bound expressions). 
On the other hand swilches and procedures may refer to 
locals, i.c. to arrays, reMs, etc., and also to each other. 
t tence tsrray defiuiiions (tualify switch and procedure 
definiiions (as well as tit(, blo('k body).  Whereas switch 
and proce(ha'e delinitiotts do nol quMify array definitions, 
they do qualify themselves; that is to say they may be 
"sclf-referetdial," i.e. "circular" or "recursive." We 
accordingly speak of "recursive" and "nonrecursive" 
definiiions or declarations. This dichotomy leaves type 
declarations uncommitted since they contain no initializ- 
ing expressiom If {hey (lid it would be difficult to meeh- 
allize sclf-referet~tial :initializations (e.g. t ee  x = x~--k }); 
SO We c l a s s  (,tleIll a s  nortrecursive. 

1)efinitions can also arise front the block-body----their 
definees being (he labels that are local to tim block. These 
are defit~ed itt terms of locals, inehtding each other, and 
they may be referred to by procedure and switch declara- 
tions. Hence labels ,nust be grouped with switches and 
procedures as a single simultaneously re('ursive definition. 
The overall t reatment  of a block is therefore as follows. 

b e g i n  r e a l  a ;  l e t :  a = qst 

a r r a y  A 6~ ; a n d  A = ~2 

p r o c e d u r e  t" 4,a ; l e t  t e e  P = ~a 

s w i t c h  S r& ; a n d  S = 44 
¢~ ; a n d L  = q~6 

L :  ¢~ ; a n d M  = ¢7 

M: ¢7 ¢~ 

i.e. 

{X(a,A). {X ( I',S,L,M).@,} 

[ YX (P,S,L,M). (6~,0.,,0~,00] } 

[¢~,6d 

q'he d(qailed structure of the 4's is ttle subject of the 
followi~g sections. In the last example, and in some that 
follow, the [AE was prese, d('d twice, in a less and more 
formal ~aota/iou. This emphttsizes the fact that the cor- 
respon(hmce being illustrated is between ALl, eL 60 texts 
and (.,erlmn abstract ()t)jects, not written representations of 
them. 

l'seudoblocks. ~Fhere are three contexts that  may or 
may not be occupied by blocks, but are in any case like 
bloeks in the treatment of labels. These contexts are pro- 
cedure-bodies, tbr-bodies and whole programs. We call 
them pseudoblo&s. Whole programs must also be qualified 
by a conglomeration of all the own-declarations that, occur 
in the program. Their role in a pseudobloek is the same as 
that  of the nonrecursive declarations in a block. 

Declarations. 

r e a l  x l e t  x = sepa~nte ( 0 . 0 )  

i n t e g e r  i ,  j l e t  i = separate (0) 
and j = separate (0) 

B o o l e a n  p l e t  p = separate ( f a l s e )  

By initializing every local identifier, IAEs impute meaning 
to certain ALl,eL 60-like programs to which the ALGOL 60 
report prescribes no lneaning. The use of separale prevents 
subsequent assignments from altering the environmental 
objects designated by '0.0', '0' and 'false ' .  

r e a l  a r r a y  all:j, k:l] l e t  a = expandtoarmy((i,j), (k,1)) 
(o.o) 

i n t e g e r  a r r a y  a, b, c[i:jll l e t  (a,b,c) = 
(separate A, separate A, 

separate A) 
w h e r e  A = expandtoarray 

(u ( i , j ) )  (0) 

a r r a y  a, b, e l l : n ] ,  d[l:r,l:s] l e t  ((a,b,c),u(d)) = 
((separate A, separate A, 

separate A) 
w h e r e  A = expandtoarray 

(u (1,n)) (z), 
unitlist (separate A) 
w h e r e  A = expandtoarray 

( (1 , r ) ,  (1,8)) 

(x)) 
w h e r e  x = 0.0 

s w i t c h  S : =  L, M, N l e t  S = arrangeasarray l u l l , 3 ) )  
(L,M,N) 

A procedure declaration is treated as a definition whose 
defiifiens is a X-expression. Our treatment of actual param- 
eters matches that of formals called by name. So if a 
formal is called by value the procedure body needs some 
decoration. 

p r o c e d u r e  f@,y,z); l e t  f(x,y,z) = l e t  x = separate@()) 
v a l u e  x ,  z ;  a n d  z = separate (z()) 

i.e. let f = X(x,y,z). 
{x(x,z).¢l 
[separate (x ( ) ), separate (z ( ) ) ] 

If separate were omitted the effect would be that of "calling 
by simple name." 

Specifiers also involve decorating the body. 

p r o c e d u r e  f(x,r,p) ; l e t  f(x,r,p) = 
w d u e  x, r ,  p;  l e t  x = separate@()) 
r e a l  x; a n d  r = sepmute(r())  
i n t e g e r  r ;  a n d  p = separate(p()) 
B o o l e a n  p; l e t  x = float(x) 
S ( x + r ,  p)  a n d  r = unfloat(r) 

a n d  p = i n ( B o o l e a n )  (p) 

S(x( ).x+r, x().p) 

~ o l u m e  8 / N u m l ) e r  2 / F e l ) r u a r y ,  1965 C o m m u n i c a t i o n s  o f  t h e  A C M  99 



The  specification of a formal called by  name involves 
preparing to transfer its result. 

p r o c e d u r e  f(x,r,s,P); let f(x,r,s,P) = 
v a l u e  x; l e t  z = separate@()) 
real x; l e t  x = float(x) 
i n t e g e r  r; a n d  r = Bu,nfloal(r) 
s t r i n g  s; a n d  s = 13(in s t r i n g ) ( s )  
rea l  procedure P; attd P = B(13float)(P) 
p(x+~., .9 t ' (  )(x( ) , z+r ( ) ,  x( ).,X )) 

This  t r ea tmen t  of procedures as arguments  might  be clari- 
fied by observing tha t  it suggests a part icular  extension of 
ALGOL 60, by which, for example 

if a<b then sin else cos 

would be a permissible actual  parameter .  There  would then 
be a na lura l  sense in which one might distinguish calling 
procedures  by name  or value. 

This  extension raises a special question concerning 
parame&rless proce(hlres, sitice a t  first sight the designers 
of AL(~OL 60 appear  to have  forestalled it by giving an in- 
compat ib le  meaning to calling a parameter less  procedure 
by  value. However ,  the s i tuat ion is saved by other  l imita- 
t ions it, AL(a)L 60. For, it uses the identifier of a parameter -  
less procedure,  say 'p', as an abbrev ia t ion  for its result, 
i.e. for 'p( )'. It: is thus ilnpossiblc in ALGOL 60 tO refer 
to a parameter less  procedure except  in the context; of ap- 
plying it. T h u s  all "genuine"  cases of procedtn'es as argu- 
men i s  are called by  name.  And, as it happens,  for all such 
operands  that ALGOL 60 allows (namely identifiers) calling 
by  name  and calling by value have  the same outcome,  since 
proc(~dure identifiers camtot  be assigned to in ALGOL 60. 

A parameter less  procedure gives rise to an I A E  with an 
explicit null opcrand listing, as in 

procedure p; a := b l e t  p = X( ).(a := b) 

The  aex t  example  shows how a type procedure can be 
ma tched  1)y an IAE.  

real procedure  f(y) 
v a l u e  y; 
f := aNy'~ 2 + bXy + c 

l e t  f(y) = 2*M [(f* := aye+by+c), 
f*l 

where y = separate(y()) 
w h e r e  f* = 0.0 

Not ice  the way in which the I A E  distinguishes the two 
roles p layed by  the type  procedure identifier. I t  is il- 
lmnina t ing  to compare  the above  expression with the fol- 
lowing equivalent :  

l e t f ( y )  = ay ~ + by + c 

There  are two provisions needed in general for rendering 
AIXrOL 60 tha t  are otiose in this par t icular  example:  (i) 
the abi l i ty to reassign to the result var iable  and to include 
ass ignments  to other  variables,  arid (it) the abi l i ty  to call 
p a r a m e t e r s  by  name.  

Slatements. Each  s t a t ement  is rendered as a 0-list- 
t ransformer ,  i.e. a none-adic funct ion producing the nullist 
for its result. I t  achieves by  side-effects a t ransformat ion  of 
the  currenl  s tate  of evaluation.  

Since the execution of the I A E  assigner f o r m a t  makes no ! thee 
provis ion for type  t ransfer ,  ass ignment  s ta tements  are beinl 
rendered in terms of assignandhold. 

a := b-{-c x( ).K( ) (assignandhold(b+c) (at) 
a[i,j,k] := b÷c X( ).K()(assignandhold(b+c)(a(i,j,]c))) 

T h e  opera tor  K(  ) is needed to ensure tha t  an assignment 
produces nullist. 

a :=  b :=  c := d+e X( ).a := 
assignandhold(assig'mt~thold(d+e)c)b 

Compound  s ta (ements  are considered as functional 
products  (which we indicate informally  by infixed dots). 

b e g i n  R; S; T end X( ) .T(S(R()))  
i.e. T.S.R 

I t  should be observed tha t  the dot  nota t ion,  e.g. in 
T ( x )  . S (u ,  v, w ) . g ,  is used here as an abbrevia.t ion fora 
X( )-expression, and not, for 

I~(R(rx) (S(u, ,~, w) ) (R) (1) 

For, while (1) and 

x( ).T(:~)(S(u, ,,, w)(~¢()))  (2) 

are equivalent  AEs, they  are not  equiva len t  IAEs. hi 
fact  the execution of (1) involves the execution of 
S ( u , v ,  w) and T ( x ) ,  whereas  in (2) they  will not be 
executed until (if ever) the result ing funct ion  is applied. 

D u m m y  s ta tements  are construed as compounds  con- 
taining no items. 

begirt  e n d  X( ) . (  ) 

For - s t a t emen t s  involve several  auxil iary definitions, 
a l ready explained. 

for  v := a s t e p  b u n t i l  c, 
d, 
e w h i l e  p 

do  S 

for (v, 
concatenate* 

(step*(X( ).a, X( ).b, X().c), 
unidisH (X ( ) .d), 
whilc*(X( ).e, X().p)), 

S) 

l?rocedure s t a t emen t s  are t rea ted  as funct ion designa- 
tors occurring as te rms in the funct ional  product .  

S; P(x,y); 7' T.P(x,y).S 

In a condit ional  s t a t ement  the t r ea tmen t  for conditional 
expressions is super imposed on tha t  for s ta tements .  

if  p then begin P; Q end i f (p)(x() .x() .Q(p()) ,  
e l s e  b e g i n  R; S e n d  X( ).X( ),S([~())) 

()  

Here  some abbrev ia t ion  is possible, name ly  

if(p) (x( ).Q(P( )), 
x( ) , s ( ~ ( ) ) )  

But  this is not  a lways so. For  example  in 

if  p t h e n  P(x,y) i f (p)(X( ) .P(X(  ) .x,  X( ) ,y ) ,  
e l s e  R(u,v) X( ).R(X( ) .u ,  X() .v) )  

() 
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a ~:: tile eorresponding f~bbreviation would result in both arms 
mi:,~ bei~g exeeut:ed. 

: ()tie-armed conditionals are filled out with dummy 
S~'COlld gI'lllS ; 

if p then begin P; Q end if(p)(X( ).Q(P()), I) 

g~, l,c~bela and J'ump.s'. The t reatment  of jumps springs 
from the observation that the symbol 'go t o '  in AL(~OL 60 
is redundant,  and could be ignored by a processor. Tha t  is 
{~) say, there is a considerable similarity between labels 
grad the identifiers of parameterless not,type procedures. 

i{i} I~ is possible to use the same "calling mechanism" for 
..o;!~ t,oih, leaving any differenees lo be made by the thing that, 

is "called." Thus  there is a natural meaning to be given to 
a program that, at, different |in-ms, substitutes labels and 
procedures for the same formal, e.g. 

el:2 pr( e e d u r e  P; 
ria i f  p t h e n  go to M; 

L:. .  
.... f(P) .,.f(L)... 

l i might therefore be supposed ~hat labels can be elimi- 
~mled formally by considering each labelled segment of 
pl 'ogram as a t)arameterless procedure declaration (and 

7e, helme as a definition whose definiens is a X()-expression). 
?, The present purpose is semantic specification, not cheap 
~.~ rulming. So this device is not  invalidated by the fael that 

i~ involves aeeumulating a pile of "resmnption points," 
o~le for every exeeuted jump, that  are never taken up. 
t lowever,  the device only yietds a valid t reatment  of pro- 
(>(lure exits at the cost of abandoning the facility for 
(:losed subroutines that  is embodied in Arx;o,, 60's pro- 

:i~ c(~(lm'es. We are thus le(l s to "program-poinls ."  Labels are 
eliminated in favour of program-point declarations. 

As mentioned earlier, a further complication is presented 
by lhe possibility that  a s ta tement  (:art t)e entered un- 
~:miurally and then exited naturally This is met by the, 
{:'orma[ t reatment  below. 

Oum ldent'~iers. The t reatment  of o w n  ,.'s can best be 
('~msidered as involving a preliminary transforlnatiou of 
.\~(:~OL 60, which eliminates o w n  declarations except in 
t he head of a whole program or the head of the body of a 
~lobally declared procedure. This transformation may  re- 
quire systematic changes of identifiers to avoid collisions. 

The t reatment  of  o w n ' s  would have been more elegant, 
had they been. associated with procedures instead of with 
blocks, and had their active life been prescribed a s  cote> 
ruinous with the life of their procedure (which may include 
zero of more activations of the procedure). One consequence 
()f this would have been that  two nesting activations of a 

s In [11] van Wijngaarden meets this point by using an explieib 
) k  " : ~ as an extra parameter to each procedure. 

procedure would share their own ' s  or not, accorditLg as 
they were activations of the same life of {lie procedure or 
of two nesting lives. This meaning of own  almost exactly 
coincides wilh lhe generally accepted meaning, if o w n ' s  
are restricted to the heads of (he bodies of procedures 
declared in the head of the whole program.'-' 

C o n c l u s i o n  

Oile little SUl/g use of ALGOL 60 has been as a standard 
with which to describe and compare olher languages. I ts  
suitability for this role arose fi'om being described with 
remarkable precision, and from its greater power and 
elegmme, so that its own idiosyneraeies and limila|ious 
did not overshadow those of the languages being measm'ed 
against it. 

The  language of IAEs is put forward here for eonsidera 
lion as a further step in this direction, and the supporting 
evidence is a detailed mapping of A[~(a)L 60 into IAEs.  So 
far in this paper we have Iaid the groundwork for the 
mapping, namely a description of the "primitive objects" 
it refers to, and we have given specific instances of ils 
application. The remainder of lhe paper is devole(t lo its 
formal characterization. 
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