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Abstract 
We have developed a new style of semantic definition 

called high-level semantics. In constrast to traditional de- 
notational semantics, high-level semantics is suitable for 
both defining the functional meaning of programming lan- 
guages, as well as describing realistic compiler implcmen- 
tations. Moreover, high-level specifications are consid- 
erably more descriptive and intelligible than traditional 
specifications. 

This paper describer the compiler generator MESS, 
which embodies the principles of high-level semantics. 
MESS has been used to generate compilers for nontrivial 
languages. The compilers are efficient, and produce ob- 
ject programs that are competitive with those generated 
by hand-written compilers. 

1 Overview 

A number of recently developed semantics directed 
compiler generators [Mos79,Pau82,Wan84] are based on 
denotational semantics [MiS76,Sto77]. Experience with 
these systems shows that the generated compilers, and 
the object programs they produce, are eeveral orders of 
magnitude less efficient than their hand-written counter- 
parts. We have discovered that this inefficiency is an 
inherent property of the compilers, due to several funda- 
mental problems with the specification techniques used in 
traditional denotational semantics. Furthermore, we find 
that many of these problems make it dif’llcult to write, 
modify, and debug the semantic specifications. 

In order to solve these problems, we have developed 
a new style of semantic definition called high-leuel acman- 
tics. In constrast to traditional denotational eemantics, 
high-level semantics is suitable for both defining the func- 
tional meaning of programming languages, as well as de- 
scribing realistic compiler implementationa. 

To verify the feasibility of our ideas, we have imple- 
mented a semantics directed compiler generator called 
MESS which automatically derives compiler implemen- 
tations from high-level semantic descriptions of program- 
ming languages. The generated compilers are realistic 

because they have the following properties: 

They compile nontrivial sequential programming 
languages into object code for standard machine 
architectures. 

Their internal structure is similar to that exhibited 
by hand-crafted compilers: They have a multipass 
structure, and perform the usual compile time com- 
putations, such as type checking, during compila- 
tion. 

Both the compilers and the object programs they 
produce exhibit good performance characteristics. 
In particular, the aise and speed of the object 
programs are competitive with those produced by 
hand-crafted compilers. 

The structure of this paper is as follows. The next 
section provides a brief overview of high-level semantics. 
Section 3 describea the MESS system, which embodies 
the fundamental principles of high-level semantics. It also 
compares the performance of MESS with that of another 
semantics-based compiler generator, and the performance 
of a MESS-generated compiler with that of commercially 
available compilers. A detailed example of a MESS apec- 
ification and how a compiler is generated from it is the 
subject of Section 4. In Section 5, we discuss extensions 
to MESS and other topics of current research. Finally, 
we summarize related work in Section 6. 
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2 Overview of High-Level Semantics 

A complete expoeition of high-level semantics appeare 
in [Lee86]. Here, we provide just a brief overview. We 
etart with a critique of the traditional denotational ap- 
proach, and then list the salient characteristics of the 
high-level approach. 

2.1 Critique of Traditional Denotational Se- 
mantics 

We aeaume familiarity with traditional denotational 
semantics, ae explicated in [MiS76], [Sto77], and [Gor79]. 
We eay traditiond denotational semantics because we are 
referring not only to the mathematical basis of the ap- 
proach, but alao the notation, writing style, and Otricke 
of the trade” used in denotational epecificatione. 

Our criticism of this approach can be summarized as 
follows: 

1. The writing style inextricably intertwines all the 
details of the semantic model (such ae the etruc- 
ture of environment8 and l toree, the uee of direct 
or continuation style model, etc.) with the actual 
semantics of the programming language. This ueu- 
ally necessitates a complete reformulation of the ee- 
mantic epecification for a language when features 
are added whose description requires a more pow- 
erful eemantic model.’ In addition, certain aspects 
of the eemantice are needlessly overepecified, such 
aa the handling of storage allocation. By not oep 
arating model-dependent details from the actual 
semantics, the extensibility of a given semantic def- 
inition is severely compromieed. We call this prob- 
lem lack of scparabiliiy. 

2. ‘I&litional specifications are not formulated in 
terms of fundamental concepts expreeeing the de- 
sign, analysis, une, and implementation of pro- 
gramming languages. Instead, these concepts are 
alwaye encoded via function abstraction and ap- 
plication. This results in convoluted functional- 
itiee, excessive use of anonymous Xabetractione, 
and various %urrying tricka= which make it ex- 
tremely difficult to write, read, and debug seman- 
tic equation@. Moreover, the distinction between 
static (compile time) and dynamic (runtime) lan- 
guage components is blurred, a both are expreeeed 
within the same framework. Clearly, this coneti- 
tutee poor semantics engineering. 

3. In a similar vein, the semantic aepecte of certain 
language constructs, such aa environment manip- 
ulation at routine entry and exit, the distinction 
between variables and parameters, and others, are 
either completely ignored or expressed in highly 
cryptic terms. We calI thia minimolistic semantic 
tzplieation. 

'A striking example of this ie given in Chapters 9 through 
11 in Stoy’n book, where language extension forcea ruch 
rewriting five timea. 

4. Existing denotational definitions are largely mono- 
lithic without any provisions for expressing a lan- 
guage specification ae a collection of semantic mod- 
ulee. This is lack of modularity. 

There are a number of important consequences of 
these deficiencies for the automatic generation of proto- 
type implementatione from traditional denotational epec- 
ifications. 

1. 

2. 

3. 

4. 

Expressing standard denotational descriptions in 
Scott’s language Lambda eeeentitilly amounts to 
writing in a very primitive assembly language (with 
more or lees syntactic maple syrup) for a X-calculus 
machine, with all the accompanying drawbacks 
of aeeembly language coding. The IacL of eepa- 
rabilify forcea one to implement a traditional ee- 
mantics by tmulating a &calculus machine, both 
at compile time and at runtime. This emula- 
tion is done by means of a partial evaluator per- 
forming P-reductions. Not surprisingly, this is 
the approach taken by all implementation gener- 
atom baaed on denotational semantics, including 
SIS [Mor79], PSP (Pau81,Pau82], SPS [Wan84], 
and Watt’s use of ML ae a semantic metalanguage 
[Wat84]. 
The poor stmanlics enginttring hae two major neg- 
ative effects. First, the emulation of the detaila 
of the semantic model requires an excessive num- 
ber of function closures, resulting in cztrtmcly slow 
cztcution of the ‘target codeb derived from the se- 
mantics of a program. Obeervatione by Paulson 
[Pausl], Wand [Wan84], and Watt [Wat84], and 
our own extensive experiments with SIS [BoB82] 
and PSP (Ple84a] indicate that such emulation of 
Lambda aeeembly code always rune between SC)0 
and several thousand times slower than equivalent 
machine code which is directly executable. Sec- 
ond, the blurring of static and dynamic language 
concept8 requires the presence of a partial evalu- 
ation mechanism in a compiler generated from a 
traditional semantics. Consequently, the generated 
compilers run considerably slower than handwrit- 
ten non-optimizing compilers. [LeP86b] 
The minimalislic semantic czplication makes it im- 
possible to mechanically derivt tficicnt impkmen- 
tations which exploit the richness of existing ma- 
chine architectures. Curiously enough, the same 
problem is caused by some of the overspecification 
of storage models in the traditional denotational 
approach. 

The lack of modularity makee it very difficult to en- 
gineer semantic specificationa in the sense of writ- 
ing, testing, and debugging them. For realistic lan- 
guages, semantic specifications may well be several 
thousand lines long, and hence their development 
benefits greatly from applying to them standard 
software engineering principles such aa modular- 
ieation, information hiding, and data abstraction. 

Several of our criticisms of traditional denotational 
semantics have already been voiced by other researchers. 
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For example, Mosrer’ abrtract semantic algebra approach 
to semantics [Mos82,Mos84] is a direct outgrowth of his 
dissatisfaction with the intertwining of model dependent 
detaila and the actual semantics in denotational epecifi- 
cations. Watt [Wat82] has studied modularity iseuea in 
semantic specifications. To our knowledge, however, no 
comprehensive analysis of the negative impact of tradi- 
tional denotational definitions on the generation of com- 
piler implementations haa ever appeared in print. 

2.2 Characteristics of High Level Semantics 

We now summarize the aalient characteristics of our 
high-level approach to denotational semantics, which 
remedies all of the deficiencies of the traditional ap- 
proach. 

1. Separability. The semantic definition of a program- 
ming language is cleanly separated from the details 
of underlying semantic models. Thie separation ie 
enforced by requiring two distinct specifications, 
called macroocmantics and microtcmanticr. 

2. Description uio action-bused opcrotorr. The macro- 
semantic8 (semantics, for short) of a language is 
defined by homomorphically combining the deno- 
tations of syntactic construct8 with action-baaed 
semantic operators to form the semantic equations. 
These operators yield declarative, imperative, or 
value producing actiona, akin to those diecueaed in 
(ClF82,Moe82,Mos84]. 

3. Information hiding. Suitable microsemantic defini- 
tions provide the interpretation for the operatore. 
However, only the name8 and signatures of the op 
eratora are made available to the macrosemantics. 
Thus, the principle of reparability guarantees the 
inuoriancc of the macrosemantic under different 
microremantic specifications of the operators. 

4. Distinction between compile time and runtimc. The 
separation of the semantics into macrosemantics 
and micro8emantica automatically distinguishes 
compile time objects from runtime objects. In 
ereence, all domains defined in the macroseman- 
tier are compile time domains, while those defined 
in the microsemantics are runtime domains. Thus, 
we obtain the name effect ae. in the two-level meta- 
language TML. [NiN86] 

5. Modularity. In addition to the kind of modularity 
provided by the separation of the microsemantic 
details from the semantics, high-level Bernantic de- 
scriptions may exhibit two other kinds of modular- 
ity. First, the static semantics may be ueparated 
from the dynamic eemantics. Second, any (macro 
or micro) semantic specification may be written ae 
a collection of semantic modules, whose interfaces 
are subject to consirtency checking. For example, 
there may be a module for the semantic8 of imper- 
ative constructs, one for expressions, and one for 
declarations. This allows for the incremental devel- 
opment of semantic definitions. AII an additional 
benefit, microsemantic modules may be reused M 
‘semantic libraries.’ 

6. 

7. 

8. 

9. 

Ezpodition of implementation structures. The ae- 
mantic operators are chosen to reflect not only fun- 
damental language concepts, but also fundamental 
implementation concept& Consequently, the oper- 
ators can be efficiently implemented, e.g., by in- 
terpreting them as templates of intermediate code 
for a code generator. In addition, the distinc- 
tion between the static and dynamic components 
of a language obviates the need for partial evalua- 
tion by means of P-reduction during compilation. 
[LeP86b] 
Exterkbility. Language features requir,ing new op- 
erators can be readily accommodated by extend- 
ing the microsemantic modules. Thia may require 
a rewriting of (parts of) the microsemantics, but 
alwaya leaves the exieting macroeemantica intact. 
The portions requiring rewriting are easily identi- 
fied. 
Simplified congruence proofs. Demonstrating the 
congruence of two different semantic specificatione 
merely involves relating the microsemantic spec- 
ificationa. The techniquea described in [Roy861 
should prove particularly appropriate in this con- 
text. 
Readability. Finally, our epecifications are written 
in a readable notation baaed on ML [Mi185], which 
allows them to be processed by the MESS system. 

3 The MESS System 

A compiler can be generated from a high-level seman- 
tics by treating the macrosemantice as a specification of 
the tranelation component of a compiler, and the mi- 
crosemanticti aa a epecitication of an abstract machine or 
runtime environment. Figure 1 gives a pictorial depiction 
of this procese an implemented in the MESS system. The 
figure shows that a macrosemantice specifies a tranelation 
from source abstract syntax trees (ASTS) to prcfiz-form 
operator czpressiotae (PO%). Theee expressions can ei- 
ther be viewed aa an algebraic specification of elements 
of a data type, or aa unevaluated function applications. 
An interpretation for the operators ia provided by a mi- 
croremantic definition. 

With respect to realistic compilation, the macrose- 
mantica specifies all of the compile time computations 
involved with translating abstract syntax trees to inter- 
mediate code. A suitable microsemantics, then, specifies 
further translation to target code. 

The principle of separability dictates that or& the 
namea and signatures of the operators be shared between 
a macrosemantics and a microsemantice. Thus, any two 
microsemantic epecificationa that define the same oper- 
ator name8 and eignaturea are interchangeable. This is 
depicted in Figure 1, where four different, yet compati- 
ble, microsemantic specifications are ehown. A microae- 
mantics might be baaed on standard denotational mod- 
els, e.g., by writing X-calculus definitions of the opera- 
tom in the traditional direct or continuation styles. In 
this case the compoeition of the macro and micro seman- 
tics constitutes a standard denotational semantics. On 

286 



realistic compiler 
code 

generator 

macroeeman tic8 direct 
various 

microeeman tics 

standard denotational semantics 

Figure 1: Compiler generation from high-level semantics 

the other hand, one may choose an ‘operational” spec- 
ification of the microsemantics by providing an abstract 
machine which is capable of interpreting the POEs. Fi- 
nally, since the operator expressions are in prefix form, 
they can be processed by a code generator in a straight- 
forward way. 

3.1 MESS at Work 

Figure 2 shows the overall structure of MESS, which 
runs on an IBM Personal Computer. The generated com- 
piler front-ends and the front-end generator itself are 
written in Pascal. The semantics analyzer is written in 
SCHEME [StS78], as are the compiler cores it generates. 
We use the Turbo Pascal compiler [Bor85] and TI PC 

SCHEME system [TI85]. For the time being we write 
code generators in Prolog, using the Turbo Prolog imple- 
ment ation [Bor86]. 

Ae a nontrivial test of our ideas, we have written 
a high-level semantics for HypoPL, a hypothetical lan- 
guage with arrays, nonrecursive procedures, and the 
usual Pascal-like control structures. In addition to the 
macroeemantic specification for HypoPL, we have written 
four different microsemantic specifications, correspond- 
ing to the four microsemantic specifications depicted in 
Figure 1: (1) a X-calculus based direct style specification, 
(2) a X-calculus based continuation style epecification, (3) 
an abstract machine written in SCHEME, and (4) a code 
generator for the iAPX8086, the CPU used in the IBM 
PC. 

We have ported Paulson’s Semantics Processor (PSP) 
[Pau82,Pau81] to the IBM PC in order to compare its per- 
formance with that of MESS. PSP was chosen because it 
exhibits, to our knowledge, the best performance charac- 
teristics of any compiler generator based on denotational 
semantics. [Ple84a] 

The time required to generate a HypoPL compiler by 

each system is given Figure 3. In this paper, all timings 
are given in seconds, and were recorded on an IBM PC 
with a 1OMHz 8086 processor, 512 kilobytea of random- 
access memory, and a 10 megabyte hard disk with an ac- 
cess time of 65 milliseconds. The semantic specification 
used for the PSP timing is written in the continuation 
style, aa is the microsemantic specification used for the 
MESS timing. Combined, the macro and micro eeman- 
tic specifications processed by MESS are about 900 (well 

commented) lines long, and required approximately 24 
man-hours to write and debug. Much of this time was 
spent locating type errors since at the time the MESS 
type checker was not complete. The PSP specification is 
about 1100 lines long. 

As Figure 3 shows, MESS takes considerably longer 
to generate a HypoPL compiler than does PSP. This is 
due in large part to the fact that PSP is written in Pascal 
and was thus compiled to native machine code, whereas 
MESS is written in an implementation of SCHEME that 
compiles to interpreted byte codes. We expect that a 
native code compiler for SCHEME would allow MESS to 
run at a speed comparable to that of PSP. 

Figure 4 shows compile times for an 82 line HypoPL 
bubble sorting program. Here we can see that the MESS- 
generated compiler is more than five times faster than the 
PSP-generated compiler.’ Of its 105 seconds of compile 
time, the PSP-generated compiler spends more than 66 
seconds performing &reductions. In addition, it gener- 
ates more than 6,000 instructions for the SECD machine 
[Lan64]. 

In order to make a comparison with hand crafted 
compilers, we have written equivalent bubble sorting pro- 
grams in C, Pascal, and Modula-2, and then measured 

‘For both the MESS-generated and PSP-generated corn- 
piler timings, unnecessary I/O overhead time has been 
diecounted. 
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This pictorial reprerentation of h4ESS showr the various phaees of compiler generation. The semanticist provides 
specifications for the front-end, the macroaemantice, and the microsemantics (FE spec., Ma spec., and one of CG spec., 
A spec., or AM spec.). A specification of the abstract syntax (AS apec.) may also be given, although the front-end 
generator, consisting of the Simple Lexical Analyzer Generator, Parser Generator, and Tree-Builder Generator (SLAG, 
PaG, and T&G) generates this automatically. 

The semantics analyzer (SA) procesres the semantic descriptions and generates the compiler core (CC). In addition, 
it produces an implementation of the microsemantic operatom in a form corresponding to the type of microeemantics 
specified: either a code generator (CC), a aet of functions written in the X-cakulue (X), or a.n abstract machine (AM). 

If a code generator is produced, the combination of FE+CC+CG constitutes a realistic compiler. Otherwise, FE+CC 
is a compiler that produces prefix-form operator expressions (PO&) which must be interpreted by either a X-calculus 
machine enriched with the X-functions, or else the abstract machine (AM). 

Figure 2: Our big MESS. 
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PSP 

233 

691 

Figure 3: Compiler generation times for HypoPL (in seconds) 

MESS-HypoPL 
PSP-HypoPL 
Aztec G 
Turbo Pascal 
Logitech Modula-2 

Figure 4: Compile times for bubble sort program (in seconds) 

MESS-HypoPL 296 1 
Aztec C 279 1 
Turbo Pascal 400 

Logitech Modula-2 392 1 

Figure 5: Object code siaes for bubble sort program (in bytes) 

(all checking disabled) 

MESS-HypoPL 2.21 

Aztec C 1.861 
Turbo Paecal 2.46 

Logitech Modula-2 2.46 

Figure 6: iAPX8086 object code execution times for sorting 250 integers (in seconds) 

(all checking disabled) 

continuation 21.3 

direct 11.9 1 
abstract machine 2.97 I 
PSP SECD 30.1 

Figure 7: POE and SECD execution times for sorting 10 integers (in seconds) 
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the compile times for commercially available compilers 
for these languager. We use the following compilers: 
Manx Aztec C, Version 3.20e [Man85], Borland Turbo 
Pascal, Version 3.0 [Bor85], and Logitech Modula-2, Ver- 
sion 2.0 (L+og86]. The timing for the Manx compiler mea- 
auree only the compilation to rymbolic assembly code. 
The Logitech compiler used is the fully-linked vereion, 
M2C. As Figure 4 shows, the MESS-generated HypoPL 
compiler ie about five timee slower than the C compiler, 
and faster than the Module-2 compiler. The separate 
paseee of MESS-generated compilem currently commu- 
nicate via disk files since there is no provision for direct 
data communication between Pascal, SCHEME, and Pro- 
log programs. This slows down the compilation coneid- 
erably, perhaps by more than a factor of two. We look 
forward to the day when all components of the generated 
compilers are written in the eame LISP dialect. 

The MESS timing includes the time required to gen- 
erate machine code for the iAPX8086 proceeeor. Thus, 
we can compare the iAPX8086 object programs produced 
by the MESS-generated, C, Pascal, and Modula-2 com- 
pilers. This is done in Figures 5 and 6. The object codee 
sizes, in bytes, are given in Figure 5. We are pleased to 
point out that the object code produced by the MESS- 
generated compiler is more compact than that produced 
by the Turbo Pascal and Modula-2 compilers. The execu- 
tion times for the bubble sort object programs produced 
by the variour compilem are dirplayed in Figure 6. Thir 
graph showr the time required by each program to sort 
a worst case input of 250 integers. Again, we would like 
to point out that the performance of the object code pro- 
duced by the MESS-generated compiler compares favor- 
ably with that produced by the hand-crafted compilers. 

Due to memory constraints in the IBM PC, we are 
unable to run the PSP-generated SECD object program 
on an input of 250 integers. Also, we are unable to use 
the continuation and direct etyle microeemantice to inter- 
pret the POE produced by the MESS-generated compiler 
for such a large input. We believe this to be caused by a 
bug in the SCHEME eyetem concerning a stack eegment 
overflow during garbage collection. However, on a worst 
case input of ten integers, we have the timings given in 
Figure 7. Note that both of the MESS-generated microse- 
mantic implementations baaed on standard X-calculus 
models (“direct” and “continuation’) exhibit better run- 
time performance than the SECD machine used by PSP. 

4 An Example 

In order to better illustrate the process of compiler 
generation in the MESS eystem,’ we take aa an exam- 
ple a tiny fragment of a high-level semantic epecification. 
The fragment describes an imperative language with in- 
tegers and one-dimensional arrays (and no other types). 
Although this language is not very realistic, it suite our 
illustrative purposes. Complete examples of large epeci- 
ficatione can be found in (Lee86]. 

sInci&ntally, the name, MESS, comer from the fact that 
high-level semantic specifications are Modular, Bctenrible, 
and Separated Semantic apeciflcatione. 

4.1 The Macrosemantice 

Macrosemantic specificationa begin with a description 
of the compile time semantic domaine. Of particular in- 
terest here is the definition of the etatic environment, 
S-ENV, which may be viewed aa the central compile time 
data structure. 

renaatic domains 

S-ENV - IDENT -> MODE; 
MODE - union 

noneM I 
acala.rM of NAME I 
arrayI of (NAME * UPPERBOUND); 

UPPERBOUND - INT; 

The domains IDENT and NAME are predefined and rep- 
reeent, respectively, the domains of syntactic identifiers 
and semantic namee. The principle of separability dic- 
tates that syntactic identifiers be converted into eeman- 
tic names before being passed on to any microseman- 
tic operatom. The nature of this conversion directly re- 
flects the scoping propertiee of the language being de- 
scribed. [Lee86,PlL86] For example, in a lexically-scoped 
language, identifiers are a-converted to semantic names. 

nemntic functions 

P : AS1 -> OUTPUTFILE; 
D : AST -> S-ENV -> (S,ENV * DACTIOB); 
B : AST -> S-ENV -> IACTION: 
C : AST -> S,ENV -> IACTION; 
L : AST -> S-ENV -> LACTION; 
E : AST -> S-ENV -> VACTION; 

The semantic functlone section provide8 declara- 
tions for the functionalitiee of the semantic valuation 
functions: P (program meanings), D (declarations), B 

(blocks), C ( t t e a emente), L (L-values), and E (expree- 
sions). Here we eee referencea to the action domains, 
DACTION (declaration actione), IACTION (imperative ac- 
tions), LACTION &value producing actions), and VAC- 
TION (value producing actions). These action domains 
must be defined by the microeemantice. 

Now, a few example semantic equations. 

c [[ etmt II; Ifi etmte ]] r3-env = 
CmdSeq (C [[ stmt ]] B-env, 

C [[ stmts 11 e-em) ; 

C [I lver ‘I :=‘I expr II 8,env = 
Aeeign (L [ [lvarll a-env, 

E [[exprll a-env> ; 

L [[ id I’(” expr I,)” ]] s-env = 
cane n-em [[id]] in 

noneM => 
error 9ariable not declared” 1 

ecalarM (-1 => 
error “miaalng array sub8cript’L I 

array%! (name. ub) => 



Index (Array (name), 
Check (ub, 

E Cbxprll a-env)) ; 

E [[ mm ]] s-env = Const nun; 

These equations describe, in order, the semantics of 
statement sequencing, assignments, L-value array index- 
ing, and integer constant expressions. The operators 
CmdSeq, Assign, Index, Array, Check, and Conet are de- 
fined in the microsemantics. 

Several points should be noted about the macrose- 
mantics: 

l Anonymous X-abstractions never appear in the se- 
mantic equations. This means that a compiler 
derived from these equations need not deal’with 
higher order functions. 

l Storage allocation details, for instance the domain 
of store locations, are absent from the equations. 
This is quite unlike a traditional denotational spec- 
ification. However, we believe it to be appropriate 
here since stores are not conceptually necessary to 
describe the semantics of euch a simple language 
(and, actually, much more complicated languages 
as well). For compiler generation, this means that 
the generated compiler isn’t “tied down” to any 
particular model of the store, or method of storage 
allocation. 

l In fact, all details of the semantic model are absent 
from the macrosemantics. For instance, it is not 
apparent whether continuations are used to model 
flow of control. This information is hidden in the 
microeemantice, and thus the macrosemantics is 
protected from massive rewriting if the semantic 
model changes. 

l Microsemantic operators are always applied to run- 
time domains such as integers, or else composed 
with other operators. They are never applied to 
macrosemantic domains, as this would violate the 
separability property. Such violations are not al- 
lowed by the MESS system. 

4.2 A Continuation-Based Microsemantics 

We now give excerpts of one possible microsemantic 
specification which supports the macrosemantics of the 
previoue section. The specification is written using con- 
tinuations. 

eemautic domains 

(* dynamic environmente *) 
D-ENV = NAME -> DENOTATION; 

(* denotations *) 
DENOTATION = union 

unbound 1 

intValue of INT I 
arrayvalue of INT -> NAME; 

(* expressible values *) 
EV = INT; 

(* program anewe& *) 
ANSWER - OUTPUTFILE; 

(* command, L-value and 
expression continuations *) 

CONT = D-ENV -> ANSWER; 
LCONT = NAME -> CONT; 
ECONT = EV -> CONT; 

These domain definitions define dynamic environ- 
ments and the various types of continuations. Note that 
D-ENV takes the place of the more traditional “store.” 
NAM5 may denote either integer or array values, and are 
also used as Gvaluee. Array values are mappings of inte- 
gers to the names (i.e., L-values) of the array elements. 

action domains 

(* imperative action8 *) 
IACTION = CONT -> CONT; 

(* L-value producing actions *) 
LACTION = LCONT -> CONT; 

(* value producing actions *) 
VACTION = ECONT -> CONT; 

The action domaine section defines the structure of 
the action domains. MESS enforces the requirement that 
every microsemantic operator produce a value in one of 
these domains. 

operat ore 

(* Perform actions in sequence *> 
CmdSeq : IACTION * IACTION -> IACTION is 
CmdSeq (ai, a2) = 

in cont. al (. a2 cant ) ; 

(* Assign the value to the L-vdlue *) 
Assign : LACTION * VACTION -> 
Aeeign (1, v) - 

in cont. in d,env _ 
1 i in name. v { fn ev. 

cant ([name => 
intvalue (VII 

IACTION is 

d-em) 3 3; 

(* Produce a neu L-value by indexing the 
given l-value *) 

Index : LACTION * VACTION -> LACTION is 
Index (1, v) = in lcont . in d-env. 

1 < in name. v { in ev. 
let arrayvalue (array) = d-env name 
in 

lcont (array ev) d-env 
end 3 3: 

(* Return the L-value oi the array *) 
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Array : NAME -> LACTION I8 
Array (mm.) - in lcont. lcont name; 

(* Check that the given lntoger 18 
greater than the value *) 

Check : INT * VACTION -> VACTION ia 
Check (n. v) = in l cont. v < in l v. 

If (ev < n) andalro (ev >- 0) 
then l cent ev 
else orror *eubrcript out of range” 1; 

(* Convert the integer to en action *> 
COn8t : INT -> VACTION 18 

Coo8t (n) = in l cent . l cent n; 

Although complete definitions for the operatore are 
given, only the name6 and fW'bCfiO?difiG6 are used by 
MESS for processing the macrodemantic6. 

4.S Generating the Compiler 

Notes For the purposer of illustration, we have taken 
the liberty of simplifying things a bit throughout this 
subsection. In particular, the generated compiler core is 
more complicated than shown in order to allow for static 
semantic error handling of high quality. Thir also has the 
effect of expanding the structure of abstract syntax trees. 

Once a macrosemantics and a microsemantics have 
been written, a compiler is generated as follows. First, 
the microeemanticr is procerred by ME?%. This results in 
a microsemantics interface file which contains the names 
and signatures of the operators. In addition, an imple- 
mentation of the microremanticr is generated. 

Then, the macrosemantics, together wlth the mi- 
croremanticr interface file, is procwrsd by MESS. Thir re- 
sults in a compiler core, written in SCHEME. An excerpt 
of the compiler core generated from the macrosemantics 
given in Section 4.1 is shown in Figure 8. Notice that 
the names of the microsemantic operators are quoted - 
this prevents the evaluation of the runtime operators at 
compile time. With the runtime operators safely quoted, 
the macrosemantics can be completely evaluated without 
the need for an expensive partial evaluation mechanism 
euch as P-reduction [LeP86b]. 

Hence, compilation of the following source statement: 

x(2) :* 6; 

given the declaration: 

int x(10); 

proceeds as follows. First, it is translated into an abetract 
syntax tree by the front-end. The trees are written ae 
SCHEME s-expressions: 

(ilvar ":=" l xpr( 
(lid .(" expr ")"I (lid1 x) (Inuml 2)) 
(Inud 6)) 

This is then translated by the compiler core (in par- 
ticular, the function C) of Figure 8 into the POE: 

(at381@ 

(index (array ‘xX) (check 10 (conat 2))) 

(coast 6)) 

where we aesume xt is the semantic name for the syntac- 
tic identifier x. 

4.4 Executing the Compiled Programs 

This POE can now be *executed- in a number of 
ways. First, MESS automatically generates ,an imple- 
mentation of the operatom from the microsemantics. For 
example, the definitions of the CmdSeq and Check opera- 
tom given in Section 4.2 are translated by MESS into the 
folbwing SCHEME code: 

(define (CmdSeq al al) 
(lambda (cant) 

(al (a2 cant))>> 

(define (Chock n v) 

(lambda (econt) 
(v (lambda (ev) 

(If (and (< ev n) (>- ev 0)) 
(econt ev) 
(error 

"8UblCripli Out Of rEng0"))))) 

Alternatively, one can write an abstract machine def- 
inition by hand which interprets the POEs. For example, 
the CmdSeq and Check operators might be implemented 
by the following hand-written SCHEh4E code: 

(macro CmdSeq 
(lambda (e) 

'(let ((81 (lambda (> ,(cadr 0))) 
(~2 (lambda (> .(caddr a)>>> 

(begin (81) 632))>)) 

(define (Check P v) 
(if (and (c v n) (>= v 0)) 

V 

(error “eubecript out of range"))) 

Here, we have avoided the use of continuations, as 
they are presumably not necessary to implement the op- 
erators. Note that a macro is used to define CmdSeq since 

the order of evaluation of arguments in SCHEME is not 
defined. 

Finally, since the PO% are prefix form expressions 
comprised solely of applications of operators, a code gen- 
erator can be used to obtain machine code. We have 
written such a code generator, and it translates the POE 
given above into the following iAPX8086 machine code 
(assume that the base address of the array x is 502, and 
subscript checking is suppreesed): 

mov ax.4 
add ax,OFFSET aem-[SO21 
mov bx.ax 
1OV WORD [bx],6 
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(dofine (C ut) 

(let ((nodenemo (car ast)) 
(mubnodea (cdr ant))) 

(care nodaname 

(lotmt “;” rtmtrl 

(apPly 
(lambda (mtmt atmte) 

(lankda (s,env) 

(list ‘hd8eq ((C rtat) a,env> ((C stmte) a,env)))) 
rubnodes)) 

(Ilver “:=” exprl 
(fwly 

(lambda (loar sxpr) 
(lambda (s,env) 

(liet ‘Aeeign ((L. lvar) e,env) (02 expr) e-env)))) 
rubnoder ) ) 

. . . 1)) 

(define (L ant) 
(let ((nodename (car ant)) 

(mubnodes (cdr aet))) 
(case nodename 

(lid “(* l xpr “IwI 
(apPly 

hmbda (id expr) 
(lambda (a,env) 

((lambda (v) 
(cond ((eq? v non&l) (error “variable not declared”)) 

((eqY ‘8calarM (car v)) (error “mierIng array rubrcrlpt~*)) 
(elre (let ((name (cadr v)) 

(ub (caddr v)) ) 
(list ‘Index 

(list ‘Array name) 
(list ‘Check ub ((E expr) 8,env)))))) 

hanv (cadr id)))>) 
rubnodee) ) 

. . . 1)) 

(define (E art) 
(lot ((noden-• (car aat)) 

(rubnodea (cdr ast))) 
(case nodenmme 

(Inrrml 
(apPl7 

(lambda (num) 
(lambda (e2anv> 

(limt ‘Con8t mm))) 
eubnodea)) 

Figure 8: Excerpt of generated compiler core 
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5 Unfinished Business 

The following tasks are currently under investigation: 

l Specification of code generator8 in the MESS meta- 
language. MESS is currently being extended to be 
able to process microsemantic specifications which 
treat the microsemantic operator8 ae data type 
constructor8 rather than higher-order functions. 
This will forego the need for using another lan- 
guage such a8 Turbo Prolog for specifying code 
generators. In addition, it will allow the generated 
compiler core and code generator for a language to 
communicate via data structures in memory rather 
than on disk files. 

l Generation of compiler8 for larger languages. We 
are currently in the midst of generating a com- 
piler for Sol/C (sort of like C), which features, 
among other things, recursive procedure8 with any 
number of reference or value parameters, inte- 
ger, Boolean, and character objects, and multidi- 
menrional open array parameterr. Although the 
macroremanticr for Sol/C and the code generator 
epecification are complete, the current revisions to 
MESS have prevented us from including a complete 
set of experimental results in this paper. We plan 
to report on Sol/C in the near future. 

8 Specification of multi-pa88 compiler corea. MESS- 
generated compilers currently have a fixed, three 
pa88 structure. Often, it would be convenient to 
specify more paeees for the compiler core, for in- 
stance, to separate type checking concern8 from the 
rest of the macrosemanticr. 

l Development of a microeemantic library. Such 
a library would define operator set8 powerful 
enough to describe the semantic8 of most sequen- 
tial programming languagee. Essentially, this is a 
semantics-based approach to the UNCOL problem. 

6 Related Work 

Our work rtarted after experimenting with the direct 
implementation of denotational specifications using SIS 
[BoB82] and PSP (Ple84a]. A first step towards high- 
level semantic8 wa8 the development of normal form se- 
mantics [Ple84b]. This was directly inspired by Wand’8 
work on deriving postfix code from continuation seman- 
tics [Wan82], and research in the area of code genera- 
tor specification8 language8 [GlG78,Gan80,Bir82]. The 
connection with Mosees’ concept of action-based seman- 
tic operators [Mo882,Moeg4], although known for quite 
8ome time, wae made only recently. Indeed, the contin- 
uation traneformers constructed in [Ple84b] are directly 
analogous to eemantic operator8 yielding actions. 

There are two semantic8based compiler generator8 
similar in spirit to our approach. The CERES system of 
Jones and Christiansen [JoC82] accepts semantic speci- 
fications expressed in a emall number of action-oriented 
operator8 inspired by there of Mosses. Sethi’s eystem 

[Set811 generate8 efficient compiler8 by treating funda- 
mental 8runtime” operators in the semantic specification 
a8 uninterpreted symbols. His work is alao motivated by 
that of Mosses, but still refer8 to microeemantic concepts 
such a8 continuation8 and 8tores. Both syetems have only 
been uaed for generating compilere for language8 with 
control structuree for sequencing, looping and decision 
making, and simple expressions. Aleo, the intermediate 
code produced by the generated compilers muat be trans- 
lated by a code generator in an ad hoc manner. 

The possibility of providing alternative implementa- 
tions for the operator8 of a semantic algebra was men- 
tioned by Watt during hi8 experimentation with ML as 
a semantic metalanguage [Wat84]. However, our MESS 
8ystem is the first implementation generator which en- 
forces the separation of the microsemantics from the se- 
mantics. 

Very recently, Nieleon and Nielson have described an 
approach to semantic8 directed compiler generation UI- 
ing the two level metalanguage TML which enforces the 
distinction between compile time and runtime domain8 
[NiN86]. The composition of the two portion8 of a TML 
epecification correspond8 directly to the composition of 
macrosemantic and microremantic definitions. 
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