
A Realistic Compiler Generator Based on High-Level Semantics
Another Progress Report

Peter Lee
The University of Michigan

Peter-LeeXUMlch-NTS.MilnetOMIT-rultice.ARPA
peteOCAELN.engin.UMich.EDU

Uwe Pleban
PhiloSoft and The University of Michigan

UwePlebanXUMich-MTS.laailnetdMIT-multlce.ARPA

Department of Electrical Engineering and Computer Science
Division of Computer Science and Engineering

The University of Michigan
Ann Arbor, Michigan 481092122 Received lot3 l/86

Abstract
We have developed a new style of semantic definition

called high-level semantics. In constrast to traditional de-
notational semantics, high-level semantics is suitable for
both defining the functional meaning of programming lan-
guages, as well as describing realistic compiler implcmen-
tations. Moreover, high-level specifications are consid-
erably more descriptive and intelligible than traditional
specifications.

This paper describer the compiler generator MESS,
which embodies the principles of high-level semantics.
MESS has been used to generate compilers for nontrivial
languages. The compilers are efficient, and produce ob-
ject programs that are competitive with those generated
by hand-written compilers.

1 Overview

A number of recently developed semantics directed
compiler generators [Mos79,Pau82,Wan84] are based on
denotational semantics [MiS76,Sto77]. Experience with
these systems shows that the generated compilers, and
the object programs they produce, are eeveral orders of
magnitude less efficient than their hand-written counter-
parts. We have discovered that this inefficiency is an
inherent property of the compilers, due to several funda-
mental problems with the specification techniques used in
traditional denotational semantics. Furthermore, we find
that many of these problems make it dif’llcult to write,
modify, and debug the semantic specifications.

In order to solve these problems, we have developed
a new style of semantic definition called high-leuel acman-
tics. In constrast to traditional denotational eemantics,
high-level semantics is suitable for both defining the func-
tional meaning of programming languages, as well as de-
scribing realistic compiler implementationa.

To verify the feasibility of our ideas, we have imple-
mented a semantics directed compiler generator called
MESS which automatically derives compiler implemen-
tations from high-level semantic descriptions of program-
ming languages. The generated compilers are realistic

because they have the following properties:

They compile nontrivial sequential programming
languages into object code for standard machine
architectures.

Their internal structure is similar to that exhibited
by hand-crafted compilers: They have a multipass
structure, and perform the usual compile time com-
putations, such as type checking, during compila-
tion.

Both the compilers and the object programs they
produce exhibit good performance characteristics.
In particular, the aise and speed of the object
programs are competitive with those produced by
hand-crafted compilers.

The structure of this paper is as follows. The next
section provides a brief overview of high-level semantics.
Section 3 describea the MESS system, which embodies
the fundamental principles of high-level semantics. It also
compares the performance of MESS with that of another
semantics-based compiler generator, and the performance
of a MESS-generated compiler with that of commercially
available compilers. A detailed example of a MESS apec-
ification and how a compiler is generated from it is the
subject of Section 4. In Section 5, we discuss extensions
to MESS and other topics of current research. Finally,
we summarize related work in Section 6.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1987 0-89791-2152/87/0100-0284 754
284

2 Overview of High-Level Semantics

A complete expoeition of high-level semantics appeare
in [Lee86]. Here, we provide just a brief overview. We
etart with a critique of the traditional denotational ap-
proach, and then list the salient characteristics of the
high-level approach.

2.1 Critique of Traditional Denotational Se-
mantics

We aeaume familiarity with traditional denotational
semantics, ae explicated in [MiS76], [Sto77], and [Gor79].
We eay traditiond denotational semantics because we are
referring not only to the mathematical basis of the ap-
proach, but alao the notation, writing style, and Otricke
of the trade” used in denotational epecificatione.

Our criticism of this approach can be summarized as
follows:

1. The writing style inextricably intertwines all the
details of the semantic model (such ae the etruc-
ture of environment8 and l toree, the uee of direct
or continuation style model, etc.) with the actual
semantics of the programming language. This ueu-
ally necessitates a complete reformulation of the ee-
mantic epecification for a language when features
are added whose description requires a more pow-
erful eemantic model.’ In addition, certain aspects
of the eemantice are needlessly overepecified, such
aa the handling of storage allocation. By not oep
arating model-dependent details from the actual
semantics, the extensibility of a given semantic def-
inition is severely compromieed. We call this prob-
lem lack of scparabiliiy.

2. ‘I&litional specifications are not formulated in
terms of fundamental concepts expreeeing the de-
sign, analysis, une, and implementation of pro-
gramming languages. Instead, these concepts are
alwaye encoded via function abstraction and ap-
plication. This results in convoluted functional-
itiee, excessive use of anonymous Xabetractione,
and various %urrying tricka= which make it ex-
tremely difficult to write, read, and debug seman-
tic equation@. Moreover, the distinction between
static (compile time) and dynamic (runtime) lan-
guage components is blurred, a both are expreeeed
within the same framework. Clearly, this coneti-
tutee poor semantics engineering.

3. In a similar vein, the semantic aepecte of certain
language constructs, such aa environment manip-
ulation at routine entry and exit, the distinction
between variables and parameters, and others, are
either completely ignored or expressed in highly
cryptic terms. We calI thia minimolistic semantic
tzplieation.

'A striking example of this ie given in Chapters 9 through
11 in Stoy’n book, where language extension forcea ruch
rewriting five timea.

4. Existing denotational definitions are largely mono-
lithic without any provisions for expressing a lan-
guage specification ae a collection of semantic mod-
ulee. This is lack of modularity.

There are a number of important consequences of
these deficiencies for the automatic generation of proto-
type implementatione from traditional denotational epec-
ifications.

1.

2.

3.

4.

Expressing standard denotational descriptions in
Scott’s language Lambda eeeentitilly amounts to
writing in a very primitive assembly language (with
more or lees syntactic maple syrup) for a X-calculus
machine, with all the accompanying drawbacks
of aeeembly language coding. The IacL of eepa-
rabilify forcea one to implement a traditional ee-
mantics by tmulating a &calculus machine, both
at compile time and at runtime. This emula-
tion is done by means of a partial evaluator per-
forming P-reductions. Not surprisingly, this is
the approach taken by all implementation gener-
atom baaed on denotational semantics, including
SIS [Mor79], PSP (Pau81,Pau82], SPS [Wan84],
and Watt’s use of ML ae a semantic metalanguage
[Wat84].
The poor stmanlics enginttring hae two major neg-
ative effects. First, the emulation of the detaila
of the semantic model requires an excessive num-
ber of function closures, resulting in cztrtmcly slow
cztcution of the ‘target codeb derived from the se-
mantics of a program. Obeervatione by Paulson
[Pausl], Wand [Wan84], and Watt [Wat84], and
our own extensive experiments with SIS [BoB82]
and PSP (Ple84a] indicate that such emulation of
Lambda aeeembly code always rune between SC)0
and several thousand times slower than equivalent
machine code which is directly executable. Sec-
ond, the blurring of static and dynamic language
concept8 requires the presence of a partial evalu-
ation mechanism in a compiler generated from a
traditional semantics. Consequently, the generated
compilers run considerably slower than handwrit-
ten non-optimizing compilers. [LeP86b]
The minimalislic semantic czplication makes it im-
possible to mechanically derivt tficicnt impkmen-
tations which exploit the richness of existing ma-
chine architectures. Curiously enough, the same
problem is caused by some of the overspecification
of storage models in the traditional denotational
approach.

The lack of modularity makee it very difficult to en-
gineer semantic specificationa in the sense of writ-
ing, testing, and debugging them. For realistic lan-
guages, semantic specifications may well be several
thousand lines long, and hence their development
benefits greatly from applying to them standard
software engineering principles such aa modular-
ieation, information hiding, and data abstraction.

Several of our criticisms of traditional denotational
semantics have already been voiced by other researchers.

285

For example, Mosrer’ abrtract semantic algebra approach
to semantics [Mos82,Mos84] is a direct outgrowth of his
dissatisfaction with the intertwining of model dependent
detaila and the actual semantics in denotational epecifi-
cations. Watt [Wat82] has studied modularity iseuea in
semantic specifications. To our knowledge, however, no
comprehensive analysis of the negative impact of tradi-
tional denotational definitions on the generation of com-
piler implementations haa ever appeared in print.

2.2 Characteristics of High Level Semantics

We now summarize the aalient characteristics of our
high-level approach to denotational semantics, which
remedies all of the deficiencies of the traditional ap-
proach.

1. Separability. The semantic definition of a program-
ming language is cleanly separated from the details
of underlying semantic models. Thie separation ie
enforced by requiring two distinct specifications,
called macroocmantics and microtcmanticr.

2. Description uio action-bused opcrotorr. The macro-
semantic8 (semantics, for short) of a language is
defined by homomorphically combining the deno-
tations of syntactic construct8 with action-baaed
semantic operators to form the semantic equations.
These operators yield declarative, imperative, or
value producing actiona, akin to those diecueaed in
(ClF82,Moe82,Mos84].

3. Information hiding. Suitable microsemantic defini-
tions provide the interpretation for the operatore.
However, only the name8 and signatures of the op
eratora are made available to the macrosemantics.
Thus, the principle of reparability guarantees the
inuoriancc of the macrosemantic under different
microremantic specifications of the operators.

4. Distinction between compile time and runtimc. The
separation of the semantics into macrosemantics
and micro8emantica automatically distinguishes
compile time objects from runtime objects. In
ereence, all domains defined in the macroseman-
tier are compile time domains, while those defined
in the microsemantics are runtime domains. Thus,
we obtain the name effect ae. in the two-level meta-
language TML. [NiN86]

5. Modularity. In addition to the kind of modularity
provided by the separation of the microsemantic
details from the semantics, high-level Bernantic de-
scriptions may exhibit two other kinds of modular-
ity. First, the static semantics may be ueparated
from the dynamic eemantics. Second, any (macro
or micro) semantic specification may be written ae
a collection of semantic modules, whose interfaces
are subject to consirtency checking. For example,
there may be a module for the semantic8 of imper-
ative constructs, one for expressions, and one for
declarations. This allows for the incremental devel-
opment of semantic definitions. AII an additional
benefit, microsemantic modules may be reused M
‘semantic libraries.’

6.

7.

8.

9.

Ezpodition of implementation structures. The ae-
mantic operators are chosen to reflect not only fun-
damental language concepts, but also fundamental
implementation concept& Consequently, the oper-
ators can be efficiently implemented, e.g., by in-
terpreting them as templates of intermediate code
for a code generator. In addition, the distinc-
tion between the static and dynamic components
of a language obviates the need for partial evalua-
tion by means of P-reduction during compilation.
[LeP86b]
Exterkbility. Language features requir,ing new op-
erators can be readily accommodated by extend-
ing the microsemantic modules. Thia may require
a rewriting of (parts of) the microsemantics, but
alwaya leaves the exieting macroeemantica intact.
The portions requiring rewriting are easily identi-
fied.
Simplified congruence proofs. Demonstrating the
congruence of two different semantic specificatione
merely involves relating the microsemantic spec-
ificationa. The techniquea described in [Roy861
should prove particularly appropriate in this con-
text.
Readability. Finally, our epecifications are written
in a readable notation baaed on ML [Mi185], which
allows them to be processed by the MESS system.

3 The MESS System

A compiler can be generated from a high-level seman-
tics by treating the macrosemantice as a specification of
the tranelation component of a compiler, and the mi-
crosemanticti aa a epecitication of an abstract machine or
runtime environment. Figure 1 gives a pictorial depiction
of this procese an implemented in the MESS system. The
figure shows that a macrosemantice specifies a tranelation
from source abstract syntax trees (ASTS) to prcfiz-form
operator czpressiotae (PO%). Theee expressions can ei-
ther be viewed aa an algebraic specification of elements
of a data type, or aa unevaluated function applications.
An interpretation for the operators ia provided by a mi-
croremantic definition.

With respect to realistic compilation, the macrose-
mantica specifies all of the compile time computations
involved with translating abstract syntax trees to inter-
mediate code. A suitable microsemantics, then, specifies
further translation to target code.

The principle of separability dictates that or& the
namea and signatures of the operators be shared between
a macrosemantics and a microsemantice. Thus, any two
microsemantic epecificationa that define the same oper-
ator name8 and eignaturea are interchangeable. This is
depicted in Figure 1, where four different, yet compati-
ble, microsemantic specifications are ehown. A microae-
mantics might be baaed on standard denotational mod-
els, e.g., by writing X-calculus definitions of the opera-
tom in the traditional direct or continuation styles. In
this case the compoeition of the macro and micro seman-
tics constitutes a standard denotational semantics. On

286

realistic compiler
code

generator

macroeeman tic8 direct
various

microeeman tics

standard denotational semantics

Figure 1: Compiler generation from high-level semantics

the other hand, one may choose an ‘operational” spec-
ification of the microsemantics by providing an abstract
machine which is capable of interpreting the POEs. Fi-
nally, since the operator expressions are in prefix form,
they can be processed by a code generator in a straight-
forward way.

3.1 MESS at Work

Figure 2 shows the overall structure of MESS, which
runs on an IBM Personal Computer. The generated com-
piler front-ends and the front-end generator itself are
written in Pascal. The semantics analyzer is written in
SCHEME [StS78], as are the compiler cores it generates.
We use the Turbo Pascal compiler [Bor85] and TI PC

SCHEME system [TI85]. For the time being we write
code generators in Prolog, using the Turbo Prolog imple-
ment ation [Bor86].

Ae a nontrivial test of our ideas, we have written
a high-level semantics for HypoPL, a hypothetical lan-
guage with arrays, nonrecursive procedures, and the
usual Pascal-like control structures. In addition to the
macroeemantic specification for HypoPL, we have written
four different microsemantic specifications, correspond-
ing to the four microsemantic specifications depicted in
Figure 1: (1) a X-calculus based direct style specification,
(2) a X-calculus based continuation style epecification, (3)
an abstract machine written in SCHEME, and (4) a code
generator for the iAPX8086, the CPU used in the IBM
PC.

We have ported Paulson’s Semantics Processor (PSP)
[Pau82,Pau81] to the IBM PC in order to compare its per-
formance with that of MESS. PSP was chosen because it
exhibits, to our knowledge, the best performance charac-
teristics of any compiler generator based on denotational
semantics. [Ple84a]

The time required to generate a HypoPL compiler by

each system is given Figure 3. In this paper, all timings
are given in seconds, and were recorded on an IBM PC
with a 1OMHz 8086 processor, 512 kilobytea of random-
access memory, and a 10 megabyte hard disk with an ac-
cess time of 65 milliseconds. The semantic specification
used for the PSP timing is written in the continuation
style, aa is the microsemantic specification used for the
MESS timing. Combined, the macro and micro eeman-
tic specifications processed by MESS are about 900 (well

commented) lines long, and required approximately 24
man-hours to write and debug. Much of this time was
spent locating type errors since at the time the MESS
type checker was not complete. The PSP specification is
about 1100 lines long.

As Figure 3 shows, MESS takes considerably longer
to generate a HypoPL compiler than does PSP. This is
due in large part to the fact that PSP is written in Pascal
and was thus compiled to native machine code, whereas
MESS is written in an implementation of SCHEME that
compiles to interpreted byte codes. We expect that a
native code compiler for SCHEME would allow MESS to
run at a speed comparable to that of PSP.

Figure 4 shows compile times for an 82 line HypoPL
bubble sorting program. Here we can see that the MESS-
generated compiler is more than five times faster than the
PSP-generated compiler.’ Of its 105 seconds of compile
time, the PSP-generated compiler spends more than 66
seconds performing &reductions. In addition, it gener-
ates more than 6,000 instructions for the SECD machine
[Lan64].

In order to make a comparison with hand crafted
compilers, we have written equivalent bubble sorting pro-
grams in C, Pascal, and Modula-2, and then measured

‘For both the MESS-generated and PSP-generated corn-
piler timings, unnecessary I/O overhead time has been
diecounted.

287

0 i
AS apcc. I

I

I 4
I
I

c
I
I

l-------1 I

c

I I SA
I

I I I
I I l
I I I
I
I
I
I
L _----- J I

generated
compiler

I I I
I I I

L

PO1

j--+J- ’

I CG
I

I

I -1 I

t L ---------
’ I

various
microaeman tic
~pecifica tiona

I
I
I

x ‘m

I AM I

implementation of f k
I

-----a

6

J
microeeman tic6

results

This pictorial reprerentation of h4ESS showr the various phaees of compiler generation. The semanticist provides
specifications for the front-end, the macroaemantice, and the microsemantics (FE spec., Ma spec., and one of CG spec.,
A spec., or AM spec.). A specification of the abstract syntax (AS apec.) may also be given, although the front-end
generator, consisting of the Simple Lexical Analyzer Generator, Parser Generator, and Tree-Builder Generator (SLAG,
PaG, and T&G) generates this automatically.

The semantics analyzer (SA) procesres the semantic descriptions and generates the compiler core (CC). In addition,
it produces an implementation of the microsemantic operatom in a form corresponding to the type of microeemantics
specified: either a code generator (CC), a aet of functions written in the X-cakulue (X), or a.n abstract machine (AM).

If a code generator is produced, the combination of FE+CC+CG constitutes a realistic compiler. Otherwise, FE+CC
is a compiler that produces prefix-form operator expressions (PO&) which must be interpreted by either a X-calculus
machine enriched with the X-functions, or else the abstract machine (AM).

Figure 2: Our big MESS.

288

MESS
PSP

233

691

Figure 3: Compiler generation times for HypoPL (in seconds)

MESS-HypoPL
PSP-HypoPL
Aztec G
Turbo Pascal
Logitech Modula-2

Figure 4: Compile times for bubble sort program (in seconds)

MESS-HypoPL 296 1
Aztec C 279 1
Turbo Pascal 400

Logitech Modula-2 392 1

Figure 5: Object code siaes for bubble sort program (in bytes)

(all checking disabled)

MESS-HypoPL 2.21

Aztec C 1.861
Turbo Paecal 2.46

Logitech Modula-2 2.46

Figure 6: iAPX8086 object code execution times for sorting 250 integers (in seconds)

(all checking disabled)

continuation 21.3

direct 11.9 1
abstract machine 2.97 I
PSP SECD 30.1

Figure 7: POE and SECD execution times for sorting 10 integers (in seconds)

289

the compile times for commercially available compilers
for these languager. We use the following compilers:
Manx Aztec C, Version 3.20e [Man85], Borland Turbo
Pascal, Version 3.0 [Bor85], and Logitech Modula-2, Ver-
sion 2.0 (L+og86]. The timing for the Manx compiler mea-
auree only the compilation to rymbolic assembly code.
The Logitech compiler used is the fully-linked vereion,
M2C. As Figure 4 shows, the MESS-generated HypoPL
compiler ie about five timee slower than the C compiler,
and faster than the Module-2 compiler. The separate
paseee of MESS-generated compilem currently commu-
nicate via disk files since there is no provision for direct
data communication between Pascal, SCHEME, and Pro-
log programs. This slows down the compilation coneid-
erably, perhaps by more than a factor of two. We look
forward to the day when all components of the generated
compilers are written in the eame LISP dialect.

The MESS timing includes the time required to gen-
erate machine code for the iAPX8086 proceeeor. Thus,
we can compare the iAPX8086 object programs produced
by the MESS-generated, C, Pascal, and Modula-2 com-
pilers. This is done in Figures 5 and 6. The object codee
sizes, in bytes, are given in Figure 5. We are pleased to
point out that the object code produced by the MESS-
generated compiler is more compact than that produced
by the Turbo Pascal and Modula-2 compilers. The execu-
tion times for the bubble sort object programs produced
by the variour compilem are dirplayed in Figure 6. Thir
graph showr the time required by each program to sort
a worst case input of 250 integers. Again, we would like
to point out that the performance of the object code pro-
duced by the MESS-generated compiler compares favor-
ably with that produced by the hand-crafted compilers.

Due to memory constraints in the IBM PC, we are
unable to run the PSP-generated SECD object program
on an input of 250 integers. Also, we are unable to use
the continuation and direct etyle microeemantice to inter-
pret the POE produced by the MESS-generated compiler
for such a large input. We believe this to be caused by a
bug in the SCHEME eyetem concerning a stack eegment
overflow during garbage collection. However, on a worst
case input of ten integers, we have the timings given in
Figure 7. Note that both of the MESS-generated microse-
mantic implementations baaed on standard X-calculus
models (“direct” and “continuation’) exhibit better run-
time performance than the SECD machine used by PSP.

4 An Example

In order to better illustrate the process of compiler
generation in the MESS eystem,’ we take aa an exam-
ple a tiny fragment of a high-level semantic epecification.
The fragment describes an imperative language with in-
tegers and one-dimensional arrays (and no other types).
Although this language is not very realistic, it suite our
illustrative purposes. Complete examples of large epeci-
ficatione can be found in (Lee86].

sInci&ntally, the name, MESS, comer from the fact that
high-level semantic specifications are Modular, Bctenrible,
and Separated Semantic apeciflcatione.

4.1 The Macrosemantice

Macrosemantic specificationa begin with a description
of the compile time semantic domaine. Of particular in-
terest here is the definition of the etatic environment,
S-ENV, which may be viewed aa the central compile time
data structure.

renaatic domains

S-ENV - IDENT -> MODE;
MODE - union

noneM I
acala.rM of NAME I
arrayI of (NAME * UPPERBOUND);

UPPERBOUND - INT;

The domains IDENT and NAME are predefined and rep-
reeent, respectively, the domains of syntactic identifiers
and semantic namee. The principle of separability dic-
tates that syntactic identifiers be converted into eeman-
tic names before being passed on to any microseman-
tic operatom. The nature of this conversion directly re-
flects the scoping propertiee of the language being de-
scribed. [Lee86,PlL86] For example, in a lexically-scoped
language, identifiers are a-converted to semantic names.

nemntic functions

P : AS1 -> OUTPUTFILE;
D : AST -> S-ENV -> (S,ENV * DACTIOB);
B : AST -> S-ENV -> IACTION:
C : AST -> S,ENV -> IACTION;
L : AST -> S-ENV -> LACTION;
E : AST -> S-ENV -> VACTION;

The semantic functlone section provide8 declara-
tions for the functionalitiee of the semantic valuation
functions: P (program meanings), D (declarations), B

(blocks), C (t t e a emente), L (L-values), and E (expree-
sions). Here we eee referencea to the action domains,
DACTION (declaration actione), IACTION (imperative ac-
tions), LACTION &value producing actions), and VAC-
TION (value producing actions). These action domains
must be defined by the microeemantice.

Now, a few example semantic equations.

c [[etmt II; Ifi etmte]] r3-env =
CmdSeq (C [[stmt]] B-env,

C [[stmts 11 e-em) ;

C [I lver ‘I :=‘I expr II 8,env =
Aeeign (L [[lvarll a-env,

E [[exprll a-env> ;

L [[id I’(” expr I,)”]] s-env =
cane n-em [[id]] in

noneM =>
error 9ariable not declared” 1

ecalarM (-1 =>
error “miaalng array sub8cript’L I

array%! (name. ub) =>

Index (Array (name),
Check (ub,

E Cbxprll a-env)) ;

E [[mm]] s-env = Const nun;

These equations describe, in order, the semantics of
statement sequencing, assignments, L-value array index-
ing, and integer constant expressions. The operators
CmdSeq, Assign, Index, Array, Check, and Conet are de-
fined in the microsemantics.

Several points should be noted about the macrose-
mantics:

l Anonymous X-abstractions never appear in the se-
mantic equations. This means that a compiler
derived from these equations need not deal’with
higher order functions.

l Storage allocation details, for instance the domain
of store locations, are absent from the equations.
This is quite unlike a traditional denotational spec-
ification. However, we believe it to be appropriate
here since stores are not conceptually necessary to
describe the semantics of euch a simple language
(and, actually, much more complicated languages
as well). For compiler generation, this means that
the generated compiler isn’t “tied down” to any
particular model of the store, or method of storage
allocation.

l In fact, all details of the semantic model are absent
from the macrosemantics. For instance, it is not
apparent whether continuations are used to model
flow of control. This information is hidden in the
microeemantice, and thus the macrosemantics is
protected from massive rewriting if the semantic
model changes.

l Microsemantic operators are always applied to run-
time domains such as integers, or else composed
with other operators. They are never applied to
macrosemantic domains, as this would violate the
separability property. Such violations are not al-
lowed by the MESS system.

4.2 A Continuation-Based Microsemantics

We now give excerpts of one possible microsemantic
specification which supports the macrosemantics of the
previoue section. The specification is written using con-
tinuations.

eemautic domains

(* dynamic environmente *)
D-ENV = NAME -> DENOTATION;

(* denotations *)
DENOTATION = union

unbound 1

intValue of INT I
arrayvalue of INT -> NAME;

(* expressible values *)
EV = INT;

(* program anewe& *)
ANSWER - OUTPUTFILE;

(* command, L-value and
expression continuations *)

CONT = D-ENV -> ANSWER;
LCONT = NAME -> CONT;
ECONT = EV -> CONT;

These domain definitions define dynamic environ-
ments and the various types of continuations. Note that
D-ENV takes the place of the more traditional “store.”
NAM5 may denote either integer or array values, and are
also used as Gvaluee. Array values are mappings of inte-
gers to the names (i.e., L-values) of the array elements.

action domains

(* imperative action8 *)
IACTION = CONT -> CONT;

(* L-value producing actions *)
LACTION = LCONT -> CONT;

(* value producing actions *)
VACTION = ECONT -> CONT;

The action domaine section defines the structure of
the action domains. MESS enforces the requirement that
every microsemantic operator produce a value in one of
these domains.

operat ore

(* Perform actions in sequence *>
CmdSeq : IACTION * IACTION -> IACTION is
CmdSeq (ai, a2) =

in cont. al (. a2 cant) ;

(* Assign the value to the L-vdlue *)
Assign : LACTION * VACTION ->
Aeeign (1, v) -

in cont. in d,env _
1 i in name. v { fn ev.

cant ([name =>
intvalue (VII

IACTION is

d-em) 3 3;

(* Produce a neu L-value by indexing the
given l-value *)

Index : LACTION * VACTION -> LACTION is
Index (1, v) = in lcont . in d-env.

1 < in name. v { in ev.
let arrayvalue (array) = d-env name
in

lcont (array ev) d-env
end 3 3:

(* Return the L-value oi the array *)

291

Array : NAME -> LACTION I8
Array (mm.) - in lcont. lcont name;

(* Check that the given lntoger 18
greater than the value *)

Check : INT * VACTION -> VACTION ia
Check (n. v) = in l cont. v < in l v.

If (ev < n) andalro (ev >- 0)
then l cent ev
else orror *eubrcript out of range” 1;

(* Convert the integer to en action *>
COn8t : INT -> VACTION 18

Coo8t (n) = in l cent . l cent n;

Although complete definitions for the operatore are
given, only the name6 and fW'bCfiO?difiG6 are used by
MESS for processing the macrodemantic6.

4.S Generating the Compiler

Notes For the purposer of illustration, we have taken
the liberty of simplifying things a bit throughout this
subsection. In particular, the generated compiler core is
more complicated than shown in order to allow for static
semantic error handling of high quality. Thir also has the
effect of expanding the structure of abstract syntax trees.

Once a macrosemantics and a microsemantics have
been written, a compiler is generated as follows. First,
the microeemanticr is procerred by ME?%. This results in
a microsemantics interface file which contains the names
and signatures of the operators. In addition, an imple-
mentation of the microremanticr is generated.

Then, the macrosemantics, together wlth the mi-
croremanticr interface file, is procwrsd by MESS. Thir re-
sults in a compiler core, written in SCHEME. An excerpt
of the compiler core generated from the macrosemantics
given in Section 4.1 is shown in Figure 8. Notice that
the names of the microsemantic operators are quoted -
this prevents the evaluation of the runtime operators at
compile time. With the runtime operators safely quoted,
the macrosemantics can be completely evaluated without
the need for an expensive partial evaluation mechanism
euch as P-reduction [LeP86b].

Hence, compilation of the following source statement:

x(2) :* 6;

given the declaration:

int x(10);

proceeds as follows. First, it is translated into an abetract
syntax tree by the front-end. The trees are written ae
SCHEME s-expressions:

(ilvar ":=" l xpr(
(lid .(" expr ")"I (lid1 x) (Inuml 2))
(Inud 6))

This is then translated by the compiler core (in par-
ticular, the function C) of Figure 8 into the POE:

(at381@

(index (array ‘xX) (check 10 (conat 2)))

(coast 6))

where we aesume xt is the semantic name for the syntac-
tic identifier x.

4.4 Executing the Compiled Programs

This POE can now be *executed- in a number of
ways. First, MESS automatically generates ,an imple-
mentation of the operatom from the microsemantics. For
example, the definitions of the CmdSeq and Check opera-
tom given in Section 4.2 are translated by MESS into the
folbwing SCHEME code:

(define (CmdSeq al al)
(lambda (cant)

(al (a2 cant))>>

(define (Chock n v)

(lambda (econt)
(v (lambda (ev)

(If (and (< ev n) (>- ev 0))
(econt ev)
(error

"8UblCripli Out Of rEng0")))))

Alternatively, one can write an abstract machine def-
inition by hand which interprets the POEs. For example,
the CmdSeq and Check operators might be implemented
by the following hand-written SCHEh4E code:

(macro CmdSeq
(lambda (e)

'(let ((81 (lambda (> ,(cadr 0)))
(~2 (lambda (> .(caddr a)>>>

(begin (81) 632))>))

(define (Check P v)
(if (and (c v n) (>= v 0))

V

(error “eubecript out of range")))

Here, we have avoided the use of continuations, as
they are presumably not necessary to implement the op-
erators. Note that a macro is used to define CmdSeq since

the order of evaluation of arguments in SCHEME is not
defined.

Finally, since the PO% are prefix form expressions
comprised solely of applications of operators, a code gen-
erator can be used to obtain machine code. We have
written such a code generator, and it translates the POE
given above into the following iAPX8086 machine code
(assume that the base address of the array x is 502, and
subscript checking is suppreesed):

mov ax.4
add ax,OFFSET aem-[SO21
mov bx.ax
1OV WORD [bx],6

292

(dofine (C ut)

(let ((nodenemo (car ast))
(mubnodea (cdr ant)))

(care nodaname

(lotmt “;” rtmtrl

(apPly
(lambda (mtmt atmte)

(lankda (s,env)

(list ‘hd8eq ((C rtat) a,env> ((C stmte) a,env))))
rubnodes))

(Ilver “:=” exprl
(fwly

(lambda (loar sxpr)
(lambda (s,env)

(liet ‘Aeeign ((L. lvar) e,env) (02 expr) e-env))))
rubnoder))

. . . 1))

(define (L ant)
(let ((nodename (car ant))

(mubnodes (cdr aet)))
(case nodename

(lid “(* l xpr “IwI
(apPly

hmbda (id expr)
(lambda (a,env)

((lambda (v)
(cond ((eq? v non&l) (error “variable not declared”))

((eqY ‘8calarM (car v)) (error “mierIng array rubrcrlpt~*))
(elre (let ((name (cadr v))

(ub (caddr v)))
(list ‘Index

(list ‘Array name)
(list ‘Check ub ((E expr) 8,env))))))

hanv (cadr id)))>)
rubnodee))

. . . 1))

(define (E art)
(lot ((noden-• (car aat))

(rubnodea (cdr ast)))
(case nodenmme

(Inrrml
(apPl7

(lambda (num)
(lambda (e2anv>

(limt ‘Con8t mm)))
eubnodea))

Figure 8: Excerpt of generated compiler core

293

5 Unfinished Business

The following tasks are currently under investigation:

l Specification of code generator8 in the MESS meta-
language. MESS is currently being extended to be
able to process microsemantic specifications which
treat the microsemantic operator8 ae data type
constructor8 rather than higher-order functions.
This will forego the need for using another lan-
guage such a8 Turbo Prolog for specifying code
generators. In addition, it will allow the generated
compiler core and code generator for a language to
communicate via data structures in memory rather
than on disk files.

l Generation of compiler8 for larger languages. We
are currently in the midst of generating a com-
piler for Sol/C (sort of like C), which features,
among other things, recursive procedure8 with any
number of reference or value parameters, inte-
ger, Boolean, and character objects, and multidi-
menrional open array parameterr. Although the
macroremanticr for Sol/C and the code generator
epecification are complete, the current revisions to
MESS have prevented us from including a complete
set of experimental results in this paper. We plan
to report on Sol/C in the near future.

8 Specification of multi-pa88 compiler corea. MESS-
generated compilers currently have a fixed, three
pa88 structure. Often, it would be convenient to
specify more paeees for the compiler core, for in-
stance, to separate type checking concern8 from the
rest of the macrosemanticr.

l Development of a microeemantic library. Such
a library would define operator set8 powerful
enough to describe the semantic8 of most sequen-
tial programming languagee. Essentially, this is a
semantics-based approach to the UNCOL problem.

6 Related Work

Our work rtarted after experimenting with the direct
implementation of denotational specifications using SIS
[BoB82] and PSP (Ple84a]. A first step towards high-
level semantic8 wa8 the development of normal form se-
mantics [Ple84b]. This was directly inspired by Wand’8
work on deriving postfix code from continuation seman-
tics [Wan82], and research in the area of code genera-
tor specification8 language8 [GlG78,Gan80,Bir82]. The
connection with Mosees’ concept of action-based seman-
tic operators [Mo882,Moeg4], although known for quite
8ome time, wae made only recently. Indeed, the contin-
uation traneformers constructed in [Ple84b] are directly
analogous to eemantic operator8 yielding actions.

There are two semantic8based compiler generator8
similar in spirit to our approach. The CERES system of
Jones and Christiansen [JoC82] accepts semantic speci-
fications expressed in a emall number of action-oriented
operator8 inspired by there of Mosses. Sethi’s eystem

[Set811 generate8 efficient compiler8 by treating funda-
mental 8runtime” operators in the semantic specification
a8 uninterpreted symbols. His work is alao motivated by
that of Mosses, but still refer8 to microeemantic concepts
such a8 continuation8 and 8tores. Both syetems have only
been uaed for generating compilere for language8 with
control structuree for sequencing, looping and decision
making, and simple expressions. Aleo, the intermediate
code produced by the generated compilers muat be trans-
lated by a code generator in an ad hoc manner.

The possibility of providing alternative implementa-
tions for the operator8 of a semantic algebra was men-
tioned by Watt during hi8 experimentation with ML as
a semantic metalanguage [Wat84]. However, our MESS
8ystem is the first implementation generator which en-
forces the separation of the microsemantics from the se-
mantics.

Very recently, Nieleon and Nielson have described an
approach to semantic8 directed compiler generation UI-
ing the two level metalanguage TML which enforces the
distinction between compile time and runtime domain8
[NiN86]. The composition of the two portion8 of a TML
epecification correspond8 directly to the composition of
macrosemantic and microremantic definitions.

References

[Bir82]

[BoB82]

[Bor85]

[Bor86]

[ClF82]

[Gan80]

[GlG78]

Bird, P. An implementation of a code gener-
ator specification language for table driven
code generators. Proc. SIGPLAN ‘82 Symp.
Compiler Conrtruction, SIGPLAN Notices
17, 6 (June 1982), 44-55.

Bodwin, J., Bradley, L., Kanda, K., Litle,
D., and Pleban, U. Experience with a com-
piler generator based on denotational re-
mantics. Proc. SIGPLAN ‘82 Symp. Com-
piler Construction, SIGPLAN Notice8 17,6
(June 1982), 216229.

lhrbo Paecal Reference Manual (version
3.0). Borland International, Inc., 1985.

‘Turbo Prolog Owners Handbook. Borland
International, Inc., 1986.

Clinger, W., Friedman, D. P., And Wand,
M. A scheme for a higher-level semantic al-
gebra. US-French Seminar on the Applica-
tion of Algebra to Language Definition and
Compilation, Fontainebleau, France, June
1982.

Ganapathi, M. Retargetable code genera-
tion and optimization using attribute gram-
mars. Ph. D. Thesis, Tech. Rep. 406, Com-
puter Science Department, University of
Wisconsin-Madison, 1980.

Glanville, R. S., and Graham, S. A new
method for compiler code generation. Conf.
Rec. 5th Ann. ACM Symp. Principles of
Programming Languages, Tucson, AZ, Jan.
1978.

294

[Gor79]

[JoC82]

[Lan64]

[Lee861

[LeP86a]

[LePBGb]

b3w

(Man851

[MiS76]

[MilSS]

[Moe791

[Mos82]

(~0~841

[NiN86]

[Pau81]

Gordon, M. J. C. The denotational descrip-
tion of programming languagea: An intro-
duction. Springer-Verlag, New York, 1979.

Jones, N. D., and Christiansen, H. Con-
trol flow treatment in a simple semantics-
directed compiler generator. Formal De-
scription of Programming Concepts II, IFIP
IC-2 Working Conference, North Holland,
Amsterdam, 1982.

Landin, P. J. The mechanical evaluation
of expressions. The Computer Journal 6,
(1964), 308-320.

Lee, P. The automatic generation of realis-
tic compilers from high-level semantic de-
scriptions. Ph.D. Thesis, Dep. of Electrical
Engineering and Computer Science, Univ.
of Michigan, Ann Arbor, forthcoming.

Lee, P., and Pleban, U. F. The auto-
matic generation of realistic compilers from
high-level semantic descriptions: A progress
report. Technical Report CRLTR13-86,
The University of Michigan Computing Re-
search Laboratory, June 1986.

Lee, P., and Pleban, U. F. On the use of
LISP in implementing denotational seman-
tics. Proc. 1986 ACM Conf. LISP and Func-
tional Programming, 233-248.

Logitech Modula-2 Compiler Manual (ver-
sion 2.0). Logitech, 1986.

Astec CDeveJopment Package ManuaJ (ver-
#Jon 3.2Oe). Manx, 1985.

Milne, R. E., and Strachey, C. A theory
of programming language semantics. Chap
man and Hall, London, 1976.

Milner, R. The standard ML core language.
Polymorphism II, 2 (Oct. 1985).

Mosses, P. SIS - Semantics implementation
system. Tech. Rep. DAIMI MD-30, Com-
puter Science Dept., Aarhus Univ., Aug.
1979.

Mosses, P. Abstract eemantic algebras! In:
D. Bjgmer (Ed.), Formal description of pro-
gramming concepts II. North Holland, Am-
sterdam, 1982, 63-88.

Mosses, P. A basic abstract semantic al-
gebra. In: Semantics of data type, Lec-
ture Notes in Computer Science, Vol. 173.
Springer-Verlag, Berlin, 1984, 87-107.

Nielson, H. R., and Nielson, F. Semantics
directed compiling for functional languages.
Proc. 1986 ACM Conf. LISP and Functional
Programming, 249-257.

Paulson, L. A compiler generator for eeman-
tic grammars. Ph. D. Dissertation, Stanford
University, December 1981.

(Pau82j

(Ple84a]

[Ple84b]

[PlL86]

IRoY861

[Set811

[StS78]

[St0771

[TI85]

[Wan821

[Wan841

[Wat82]

[Wat84]

Paulson, L. A semantics-directed compiler
generator. Conf. Rec. 9th Ann. ACM Symp.
Principles of Programming Languages, Al-
buquerque, NM, Jan. 1982, 224-239.

Pleban, U. Formal semantics and compiler
generation. In: Morgenbrod, H., and Sam-
mer, W. (Eds.) Programmierumgebungen
und Compiler. Teubner-Verlag, Stuttgart,
1984, 145-161.
Pleban, U. Compiler prototyping using for-
mal semantics. Proc. SIGPLAN ‘84 Symp.
Compiler Construction, SIGPLAN Notices
19, 6 (June 1984), 94-105.
Pleban, U. F., and Lee, P. High-level seman-
tics: An integrated approach to program-
ming language semantics and the specifica-
tion of implementations (Summary). Sub-
mitted to the Third Workshop on the Math-
ematical Foundations of Programming Se-
mantics. New Orleans, April 8-10, 1987.
Royer, V. ‘Danaformations in denotational
semantics in semantics directed compiler
generation. Proc. SIGPLAN ‘86 Symp.
Compiler Construction, SIGPLAN Notices
21, 6 (June 1986), 68-73.

Sethi, R. Control tlow aspects of seman-
tics directed compiling. Tech. Rep. 98, Bell
Labs., 1981; also in Proc. SIGPLAN ‘82

’ Symp. Compiler Construction, SIGPLAN
Notices 17, 6 (June 1982)) 245-2GO.
Steele, G. L., and Sussman, G. J. The re-
vised report on SCHEME, a dialect of LISP.
MIT AI Memo 452, Cambridge, 1978.
Stoy, 3. E. Denotational semantics: The
Scott-Strachey approach to programming
Janguage theory. MIT Press, Cambridge,
1977.

TI Scheme Language Reference Manual,
Texas Instruments, Inc., 1985.
Wand, M. Deriving target code a.a a repre-
sentation of continuation semantics. ACM
TOPLAS 4, 3 (July 1982), 496-517.
Wand, M. A semantic prototyping system,
Proc. SIGPLAN ‘84 Symp. Compiler Con-
struction, SIGPLAN Notices 19, 6 (June
1984)) 213-221.
Watt, D. A. Modular language definitions.
Rep. CSC/82/R3, Computing Science De-
partment, University of Glasgow, Oct. 1982.
Watt, D. A. Executable semantic descrip-
tions. Rep. CSC/84/R2, Computing Sci-
ence Department, University of Glasgcw,
Oct. 1984; also Software - Practice and E;x-
perience 16, 1 (Jan. 1986)) 13-43.

BLESS
this

MESS

295

