
William D Clinger
Anne H Hartheimer

Semantic Microsystems, Inc
4470 SW Hall, Suite 340
Beaverton, Oregon 97005

Abstract

Scheme and Smalltalk continuations may have unlimited ex-
tent. This means that a purely stack-based implementation of
continuations, as suffices for most languages, is inadequate.
Several implementation strategies have been described in the
literature. Determining which is best requires knowledge of
the kinds of programs that will commonly be run.

Danvy, for example, has conjectured that continuation captures
occur in clusters. That is, the same continuation, once cap-
tured, is likely to be captured again. As evidence, Danvy cited
the use of continuations in a research setting. We report that
Danvy’s conjecture is somewhat true in the commercial setting
of MacScheme+ToolsmithTM, which provides tools for devel-
oping Macintosh user interfaces in Scheme. These include
an interrupt-driven event system and multitasking, both imple-
mented by liberal use of continuations.

We describe several implementation strategies for continuations
and compare four of them using benchmarks. We conclude that
the most popular strategy may have a slight edge when continu-
ations are not used at all, but that other strategies perform better
when continuations are used and Danvy’s conjecture holds.

1. Introduction

A continuation is the abstract concept represented by the con-
trol stack, or dynamic chain of activation records, in a typical
programming language implementation. Continuations corre-
spond to contexts in Smalltalk-80m. In languages such as
Scheme and Smalltalk-80, continuations may become first class
objects with unlimited extent (lifetime) [Rees 861 [Goldberg
831. This means that a purely stack-based implementation of
recursive procedure calls, which suffices for most languages,
is inadequate.

Permission to copy without fee all or part of this materilal is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1988 ACM 0-89791-273-X/88/0007/0124 $1.50

Implementation Strategies for Continuations

Eric M Ost

Metaphor Cot-p
Bloomington, Indiana

In Scheme, the call-with-current-continuation proce-
dure is the mechanism that allows continuations to outlive their
more usual dynamic extent. One possible implementation of
this procedure, in terms of lower-level procedures creg and
creg-set ! , is shown below. This code assumes that the creg
procedure returns the contents of the continuation register as a
Scheme object with unlimited extent, and that the creg-set I
procedure takes such an object and stores it back into the con-
tinuation register. The operation performed by creg is called
a capture. The operation performed by creg-set ! is called a
throw.

(define (call-with-current-continuation f)
(let ((k (creg)))

(f (lambda (v)
(creg-set ! k)
v)))>

The simplest implementation strategy for such continuations
is to allocate storage for each continuation frame (activation
record) on a heap and to reclaim that storage through garbage
collection or reference counting [Goldberg 831. Several more
efficient implementation strategies for continuations with un-
limited extent have been described [Deutsch 841 [Suzuki 841
[Bartley 861 [Moss 871 [Danvy 871 [Miranda 871. Determining
which is best requires knowledge of the kinds of programs that
will commonly be run.

Danvy, for example, has conjectured that continuation captures
occur in clusters. That is, the same continuation, once captured
(by a call to call-with-current-continuation), is likely
to be captured again-ither an enclosing continuation will be
‘captured, or some subpart of it will be captured. Danvy’s thesis,
as we will call it, is at least partially true of most programs writ-
ten using MacScheme+Toolsmith, a commercial development
system, based on MacScheme@ [Semantic 871. The reasons
have to do with the Macintoshm user interface and Toolsmith’s
presentation of it to the Scheme programmer.

The Macintosh user interface is built upon a polling model.
Programs are expected to take the form of a centralized dis-
patcher that busy-waits for an event, which represents a user
action such as the depression of a key on the mouse or key-
board. When an event becomes available the dispatcher passes
it to an appropriate subroutine for processing. When the sub-
routine has finished it returns control to the dispatcher, which
resumes its busy-wait. This seemingly simple program struc-
ture leads either to unresponsive programs, which signal by

124

means of a wait cursor that they can accept no further instruc-
tions from the user until they have completed their current task,
or to poorly modularized programs, which remain responsive
by means of explicit calls to a polling routine strewn throughout
computation-intensive code.

MacScheme+Toolsmith makes it possible to program the Mac-
intosh using an interrupt model instead of the polling model.
The compiler takes care of polling implicitly by inserting code
at every backward branch and at every procedure call. Inter-
rupt handlers are written in Scheme and may be installed and
removed dynamically. The default interrupt handlers take care
of the standard events by dispatching them to the appropriate
object (such as a window or menu) using a standard message
protocol. Preemptive multitasking is provided for such tasks
as blinking the insertion point in a text window, or changing
the shape of the cursor in response to its position relative to
objects on the screen. These features (interrupts and multitask-
ing) make it much easier to program the Macintosh and lead
to more modular and more responsive programs.

In MacScheme+Toolsmith, the interrupt system and multitask-
ing are implemented using fn-st class continuations. In fact,
every exception captures a continuation. Hence a continuation
is captured every time a key is struck or the mouse clicked.
In practice, use of continuations for these purposes tends to
cause the same continuation to be captured repeatedly. This
is because interrupts for occurrences such as keyboard events
usually occur in bursts, and task switches occur frequently as
well. Since the continuation tends to change little during such
short periods of time, Danvy’s thesis holds fairly well for most
programs written using MacScheme+Toolsmith.

Of course we didn’t have to use the full power of continua-
tions in order to implement interrupts or multitasking, but it
was certainly convenient to do so. MacScheme+Toolsmith has
in fact achieved great simplicity of implementation by using
continuations for these things. We were emboldened to do so
by our implementation of continuations, which makes them
significantly more efficient than in other implementations of
Scheme.

2. Danvy’s thesis

We investigate whether Danvy’s thesis holds for applica-
tion programs written using MacScheme+Toolsmith by con-
sidering programs that make no explicit use of call-with-
current-continuation. If Danvy’s thesis holds for these
programs, then it sureIy holds for programs that use call-
with-current-continuation explicitly.

Our test programs come from the Gabriel benchmark suite,
translated into Scheme [Gabriel 8.53. Of these, only the ctak
benchmark uses explicit continuations.

Multitasking is a standard use of continuations in Scheme
[Haynes 841. Most application programs written using Mac-
Scheme+Toolsmith make use of multitasking, because concur-
rent tasks are the most practical way to perform various chores
mandated by the Macintosh user interface. On a Macintosh
II, approximately ten task switches occur each second. Each
task switch involves two captures of a continuation (one by the

timer interrupt and the other by the task scheduler) and one
throw (by the task scheduler; the timer interrupt is not really
returned from until the interrupted task is later resumed by the
task scheduler).

To measure how well Danvy’s thesis holds under these circum-
stances, we wrote a handler for timer interrupts that records
both the size in words of the continuation structure being cap-
tured and the number of words shared between that structure
and the previously captured continuation structure. From this
data we calculated the average percentage of the continuation
structure that had been captured previously. Figure 1 shows
that Danvy’s thesis holds fairly well even for programs that
don’t appear to use continuations at all.

It is a bit odd that each timer interrupt captures a continua-
tion. Since the task scheduler will capture exactly the same
continuation, the average fraction of continuation structure that
is being recaptured due to multitasking can never be less than
half. We therefore adjusted the data to show what would hap-
pen if captures were performed only by the task scheduler. We
also subtracted 37 words of continuation structure created by
the read/evaUprint loop and other system code. The adjusted
percentages in Figure 1 show that Danvy’s thesis might not
hold up very well if timer interrupts had been implemented a
little differently.

On the other hand, the adjusted percentages show that Danvy’s
thesis is more true of the larger benchmarks than of the smaller
ones. If this trend continues to even larger programs, as seems
plausible, then Danvy’s thesis should be true of most realis-
tically sized programs regardless of how multitasking is im-
plemented. We tested this hypothesis by performing similar
measurements on the MacScheme compiler. We found that
the adjusted percentages were often higher than for any of the
Gabriel benchmarks, and that the absolute size of the recap-
tured continuation structure was significantly greater.

Danvy’s thesis may also be true of typical programs in other
implementations of Scheme, but we doubt it. Most Scheme
programmers seem to be awitre that call-with-current-
cant inuat ion is an expensive procedure, so they avoid it even
if they are otherwise tempted to use it. Programmers would be
more inclined to use continuations if they were implemented
more efficiently.

Whether programmers should be encouraged to use first class
continuations is beyond the scope of this paper.

3. Implementation strategies

The garbage collection strategy

The simplest strategy for ensuring that continuations have un-
limited extent is to allocate them in the heap and rely on
garbage collection or reference counting to recover their stor-
age lHolloway 803 [Goldberg 831. We call this the gc strategy,
When used with a fast garbage collector, the gc strategy is fast
enough to be considered for use with byte code interpreters but
is impractical for native code. (We used it in MacScheme until
we added the native code compiler.) Since most continuations
are short-lived, we would like to recover their storage using
some more efficient mechanism than garbage collection.

125

Benchmark Average Size
of Continuation
(32+it words)

Per Cent Adjusted
Recaptured Percentage

tak ctak

takl boyer
browse
destructive
traverse-init
traverse
deriv
dderiv

div-iter div-ret
fft
puzzle
triangle
fprint
fread
tprint

compiler

189 69 166 76 :3

195 381 2 5’:
105 76 25

6”; ii
3

205 90 ;i
96 70
z: 70 ;

80 476 54 :
80 91

159 :i
207

f Y
54

103
202 it 4;
106 81 41

455 1 92 83

Figure 1. Multitasking and Danvy’s thesis.

The spaghetti strategy

The spaghetti stack used in Interlisp is a variation of the gc
strategy [Bobrow 731. The spaghetti stack is in effect a separate
heap in which storage is reclaimed by reference counting rather
than garbage collection. Though complex, the spaghetti stack
is more efficient than a straightforward gc strategy because its
storage management is optimized to support procedure call, re-
turn, and a host of related operations. In the normal case, when
all frames have dynamic extent, the spaghetti stack behaves as
a conventional stack.

The strategies discussed in the rest of this section can be re-
garded as simplifications of the spaghetti strategy. They per-
form worse than the spaghetti strategy in exceptional cases, but
achieve better average performance because they simplify the
normal case.

The heap strategy

The lifetime of a continuation frame created for a procedure
call normally ends when the called procedure returns. The only
exception is for continuation frames that have been captured.
This suggests the heap srraregy, in which a one-bit reference
count in each frame indicates whether the frame has been cap-
tured. Continuation frames are allocated in a garbage-collected
heap as in the gc strategy, but a free list of uncaptured frames
is also used. When a frame is needed by a procedure call, it
is taken from the free list unless the free list is empty. If the
free list is empty, then the frame is allocated from the heap.
When a frame is returned through, it is linked onto the free
list if its reference count indicates that it has not been cap-
tured. Otherwise it is left for the garbage collector to reclaim.
Capturing a continuation involves setting the reference count
of every frame in the continuation to indicate that it has been
captured. Throwing to a continuation involves nothing more
than storing the continuation in the continuation register.

The heap strategy is most practical if all continuation frames are
the same size. [Danvy 871 describes an incremental variation of
the heap strategy that avoids the need to mark all continuation
frames when a continuation is captured, at the cost of a few
extra instructions for each call and return. A very clever and
efficient variation of the heap strategy is presented in [Moss
871 and will be discussed in a later section.

The stack strategy

Only continuations that have been captured can outlive their
stack life. This leads to the stack strategy, in which the active
continuation is represented as a contiguous stack in an area
of storage we call the stuck cache. Non-tail-recursive calls
push continuation frames onto this stack cache, and returns
pop frames from the stack cache, just as in an ordinary stack-
based language. When a continuation is captured, however, a
copy of the entire stack cache is made and stored in the heap.
When a continuation is thrown to, the stack cache is cleared
and the continuation is copied back into the stack cache.

The stack strategy can use standard calling sequences, making
procedure calls and returns just as fast as for languages that re-
strict continuations to have dynamic extent. This apparently
means that programs that don’t use call-with-current-
cant inuat ion don’t have to pay for it. There is a small hid-
den cost because the existence of continuations with unlimited
extent precludes some compiler optimizations, but this is hard
to quantify.

Variations on the stack strategy are used by most implemen-
tations of Scheme and Smalltalk- [Deutsch 841 [Suzuki 841
[Bartley 861 [Samples 861 mngar 871. PC Scheme, for ex-
ample, uses a chunked stack strategy: By maintaining a small
bound on the size of the stack cache, and copying portions of
the stack cache into the heap or back again as the stack cache
overflows and underflows, PC Scheme reduces the worst-case

126

1 Strategy 1 Allocate and Link Deallocate and Unlink

kCC

heap

Moss's
variation

sub.1 #size,avail move.1 link(cont),cont
cmp.1 limit,avail *
blt overflow *
move.1 cont,link(avail)
move.1 avail,cont

move. 1 link(free),temp move.1 link(cont),temp
beq allocateMoreFrames * bmi doNotFree *
move.1 cont,link(free) move.1 free,link(cont)
move.1 free,cont move.1 cont,free
move.1 temp,free move.1 temp,cont

move.1 next(cont),cont move.1 prev(cont),cont
bmi overflow * bmi doNotFree *

stack sub.1 #size,cont add.1 #size,cont
cmp.1 limit,cont *
blt overflow *

stack/heap sub.1 #size,stack cmp.1 stack,stackBottom *
cmp.1 limit,stack * beq heapCase *
blt overflow * add.1 #size,stack

Figure 2. Assembly code for several strategies.

latency of captures and throws [Bartley 861. In PC Scheme
the stack cache really is a cache, since much of the active
continuation may reside in the heap.

Since the stack strategy can create multiple copies of a con-
tinuation frame when the frame is captured more than once,
continuation frames should not be side effected once they have
been allocated and initialized. This means, for example, that
storage for variables that appear on the left hand side of an
assignment should not be allocated in a continuation frame,
because an assignment to the variable that alters one frame can-
not affect other copies of it unless the implementation is doing
something complicated. This is why many Scheme compil-
ers allocate all such variables in heap storage, with the happy
result that knowledgeable Scheme programmers try to avoid
assignments because they are so inefficient.

SOAR avoids this problem by using a variation of the chunked
stack strategy in which the copying of a captured frame is
deferred until it is returned through (or a throw is performed).
Then and only then is it copied into the heap. Pointers to
the frame are updated using information maintained by the
generation scavenging garbage collector wngar 871.

The stack/heap strategy

The stuck/heap strategy is similar to the stack strategy. All
continuation frames are allocated in the stack cache. When
a continuation is captured, however, the contents of the stack
cache are moved into the heap and the stack cache is cleared.
Likewise when a continuation is thrown to, the new active
continuation is left in the heap and the stack cache is cleared.
This means that each procedure return must test to see whether
the continuation frame being returned through is in the stack

cache or the heap. Naturally, the frame should be popped off
the stack cache only if it is in the stack cache.

The main advantage of the stack/heap strategy is that it makes
throwing very fast, and recapturing a previously captured con-
tinuation is very fast also. It therefore works well when
Danvy’s thesis holds.

The stacWheap strategy is used by only a few systems: Tek-
tronix Smalltalk [Wirfs-Brock 881, BrouHaHa [Miranda 871,
and MacScheme. BrouHaHa is notable because continuation
frames in the heap are represented quite differently from frames
in the stack cache. BrouHaHa uses two distinct interpreters, de-
pending on whether the topmost continuation frame is in the
heap or in the stack cache.

With the stack/heap strategy, there is never more than one copy
of a continuation frame. This means it is all right to allocate
storage for assigned variables within a frame.

A disadvantage of the stack/heap strategy is that some com-
pilers allocate only one continuation frame to be used by all
the procedure calls within a procedure. This optimization can
make a large difference in a system's performance on the in-
famous tak benchmark, for example. The stack/heap strategy
makes this optimization inconvenient because the frame may
be reused only if it is in the stack cache.

The incremental stack/heap strategy

The incremental stack/heap strategy is a minor variation on
the stack/heap strategy: When returning through a continuation
frame that isn’t in the stack cache, a trap occurs and copies the
frame into the stack cache. This makes it easier for compiled
code to reuse the frame for other calls.

127

loop1 14.3 14.3 14.3 14.3
loop2 83.9 173.5 83.8 98.0

takl 11.8 11.0 11.3 11.3
takl (tasking) 12.8 12.3 12.4 12.4

boyer 58.3 49.0 50.8 50.6
boyer (tasking) 61.3 54.3 54.6 54.8

deriv 14.4 12.6 13.5 13.6
deriv (tasking) 15.5 13.8 14.6 14.7

puzzle 33.2 33.6 32.9 33.0
puzzle (tasking) 34.6 35.2 34.3 34.4

Figure 3. Four strategies compared on a Macintosh II. Times are in seconds.

4. Code sequences

Figure 2 lists typical Motorola 68000 assembly code to allocate
a new frame and link it to its predecessor, and to deallocate and
unlink a frame. Only the normal case is shown. Instructions
marked with an asterisk can be eliminated in many systems by
relying on address faults or other trickery.

For example, the extra instructions incurred by the stack/heap
strategy on each procedure return can be eliminated by main-
taining a permanent continuation frame at the bottom of the
stack cache. This frame’s return address points to system
code that immediately returns through the topmost continua-
tion frame in the heap.

The code sequences for the incremental stack/heap strategy are
the same as for the stack/heap strategy since they differ only
in the exceptional case of returning through a frame that is not
in the stack cache.

In Moss’s strategy, a clever variation of the heap strategy, the
continuation register serves as both the continuation and the
free list pointer ~MOSS 871. It points into the middle of a doubly
linked list. The free list is linked in one direction through the
next fields, while the continuation frames are linked in the
opposite direction through the prev fields. The ends of the
list are indicated by links that point to themselves but have the
high order bit set. The prev field for a frame that has been
captured also points to itself and has its high bit set; the real
dynamic link for such a frame is stored elsewhere in the frame.

5. An experiment

We implemented the gc, stack, stack/heap, and incremental
stack/heap strategies by modifying MacScheme+Toolsmith ver-
sion 1.5. Non-tail-recursive procedure calls are fairly slow in
MacScheme because its calling conventions were djesigned for
a byte code interpreter, where it is faster to have a byte code do
potentially unnecessary work than it is to decode multiple byte
codes. Since the operations associated with allocating and link-

ing a continuation frame are so complex in MacScheme, they
are performed by an out-of-line routine in native code as well
as in byte code; likewise for deallocating and unlinking a con-
tinuation frame. This made it possible for us to implement the
four strategies without making any change to the compiler, so
all four strategies were tested using identical native code.

We were unable to test the heap strategy because MacScheme
uses continuation frames of various sizes.

Our analysis begins with two outrageous benchmarks. The
ctak benchmark, as modified for Scheme, captures a contin-
uation on every procedure call and throws on every return.
Since call-with-current-continuation is not open-coded
by MacScheme, this benchmark involves three times as many
procedure calls as the tak benchmark and creates 63609 clo-
sures. The loop2 benchmark is a countdown loop that throws
to a previously captured continuation every time through the
loop. Source code for these benchmarks, together with their
less exotic analogues tak and 100~1, are shown in an ap-
pendix. The remaining benchmarks are straightforward transla-
tions of Common Lisp code found in [Gabriel 851. Benchmarks
were run on a Macintosh II with 5 megabytes of RAM and on a
Macintosh Plus with 1 megabyte, using generic arithmetic and
fully safe code. In particular, stack overtlow was detected by
software using equivalents of the starred instructions in Fig-
ure 2. The timings reported in Figure 3 are in seconds and
represent the median of three runs for each strategy.

The stack strategy is easily the worst of the tested strategies on
the continuation-intensive benchmarks ctak and 100~2. The
other three strategies are about twice as fast. The gc strategy
has a slight edge on the ct ak benchmark because it never has to
copy any frames. The incremental stack/heap strategy is a little
slower than the stack/heap strategy on the loop2 benchmark
because it has to copy a frame into the stack cache each time
through the loop.

We also ran these two benchmarks on comparable hardware us-
ing PC Scheme and l-3. These implementations use the stack
strategy, but we found that they do not perform as well on
continuation-intensive benchmarks as our experimental imple-
mentation of the stack strategy.

128

Benchmark

tak
tak (tasking)

takl
takl (tasking)
deriv
deriv (taskina)

gc stack
strategy strategy

58.4 10.4
60.5 13.0

172.5 49.8
172.1 64.2
299.5 113.5
280.0 117.0

stack/heap incremental
strategy stack/heap

10.5 10:5
11.4 11.4

50.0 50.0
57.3 57.4

112.3 112.4
112.7 112.7

Figure 4. Four strategies compared on a Macintosh Plus. Times are in seconds.

While the stack strategy performs poorly on continuation-
intensive programs, it has the best performance when first class
continuations are not used. The tak benchmark shows that the
stack strategy performs well on procedure calls, while the gc
strategy is the worst of the four. The stack/heap and incre-
mental stack/heap strategies perform identically, suffering from
one extra instruction per return compared to the stack strategy.
This extra instruction isn’t very significant for MacScheme but
would be quite significant in a very high performance system
like T3, which runs the tak benchmark in .22 seconds on a Sun
3/160 using fixnum arithmetic [Kranz 881. High performance
systems would have to eliminate this instruction using some
sort of trick as described in the previous section.

We were surprised that one instruction appears to be so costly.
The only difference between the code executed by the stack
strategy on this benchmark and the code executed by the
stack/heap strategy is that the stack strategy uses a

dbra timer ,usualCase

to decrement a software timer while the stack/heap strategy
uses

cmp.1 bottom(globals) ,stack
dbeq timer,usualCase

to test for an empty stack cache and to decrement the timer.
Since these sequences are executed 47706 times by the tak
benchmark, the second sequence appears to be about 2.5 mi-
croseconds slower than the first. Clearly we have chosen an un-
fortunate instruction ordering that causes pipelining or caching
or alignment problems for the 68020. Rather than experi-
ment by reorganizing the code, we ran tak and a few other
benchmarks on the 68000-based Macintosh Plus, using a much
smaller heap size. The results are shown in Figure 4.

Figures 3 and 4 show that the stack strategy’s slight edge over
the stack/heap strategies disappears when tasking is enabled in
MacScheme+Toolsmith. Under these conditions the stacWheap
strategies deliver essentially the same performance as the stack
strategy on programs that don’t use call-with-current-
cant inuat ion, and should perform better on programs that
do.

In Section 2 we argued that Danvy’s thesis is more likely to
hold for larger programs, and that the average size of the con-
tinuation structure should increase for larger programs as well.

This means that the performance of the stack/heap strategies
relative to the pure stack strategy should improve as the pro-
gram size is increased. The chunked stack strategy used in PC
Scheme appears to be a nice compromise, since it scales better
than the pure stack strategy.

The large heap size used for Figure 3 makes the gc strategy look
better than it is, but Figure 4 shows it in a harsher light. Figure
4 also sheds a harsher light on the stack strategy, which allo-
cates more storage than the stack/heap strategies when Danvy’s
thesis is true. Garbage collection is responsible for most of the
variation shown by Figure 4.

What might be wrong with this experiment? The main prob-
lem is that MacScheme’s relatively slow procedure call dilutes
the differences between the strategies. Since MacScheme was
designed to use the stack/heap strategy, the calling conventions
might also be biased against the stack strategy. We, however,
are convinced that the calling conventions are biased against
speed in general, and hurt the star&heap strategy as much as
the stack strategy.

6. Conclusion

We recommend the incremental stack/heap strategy. If imple-
mented carefully, it should perform just as well as the stack
strategy when first class continuations are not used, and should
perform much better when continuations are exploited heavily
and Danvy’s thesis holds.

Danvy’s thesis holds well enough for typical programs writ-
ten in MacScheme+Toolsmith that even a simple-minded im-
plementation of the stack/heap strategies performs as well or
better than the stack strategy. We can’t say that the stack/heap
strategies will perform better than the stack strategy for typical
uses ofcall-with-current-continuation inothersystems
because we don’t have any data on typical uses. What we can
say is that the stack/heap strategies take some of the fear out
of using call-with-current-continuation.

On the other hand, our data confirm that the stack strategy is ad-
equate for systems that make only modest use of continuations.
A chunked stack strategy like that used in PC Scheme should
be an effective compromise between the pure stack strategy
and the incremental stack/heap strategy.

129

We are intrigued by Moss’s variation on the heap strategy,
which we were unable to test. It is very simple, though it
uses an extra memory reference on each call and return.

What is the overall performance cost of first class continuations
in a language like Scheme? With a sufficiently clever imple-
mentation, there is no apparent cost to programs that don’t use
call-with-current-continuation. A few compiler opti-
mizations that depend on the movement of code with potential
side effects across an unknown procedure call are thwarted by
the existence of first class continuations, but we would be very
surprised if these optimizations could improve the overall per-
formance of a Scheme system by more than one or two per
cent; the T3 compiler certainly performs rather well without
them [Kranz 883. The real performance cost of fn-st class con-
tinuations is the time and money required to implement them.
The days or weeks spent on continuations can’t be spent tuning
the rest of a system.

7. Acknowledgements

Under the influence of stack management techniques invented
for Algol 60, early work in this area often used a ,single stor-
age management technique for both environment structure and
continuation structure. Sometime during the 1982-1983 aca-
demic year Jonathan Rees pointed out to one of us (Clinger)
that we could forget about environment structure b:y assuming
that all variables are in registers or in heap-allocated storage.
This insight leads quickly to the stack and stack/heap strategies.

The comments and experience of Norman Adams, Richard
Kelsey, Jonathan Rees, Allen Wirfs-Brock, and an ianonymous
member of the program committee were very helpful to us as
we prepared this paper.

References

[Bartley 861 David H Bartley and John C Jensen, “The Imple-
mentation of PC Scheme”, Proceedings of the 1986 ACM Con-
ference on Lisp and Functional Programming, August 1986,
pages 86-93.

[Caudill 861 Patrick J CaudiIl and Allen Wirfs-Brock, “A
Third Generation SmalItalk-80 Implementation”, Conference
Proceedings of OOPSLA ‘86, SIGPLAN Notices 21, 11,
November 1986, pages 119-130.

[Danvy 871 Olivier Danvy, “Memory Allocation and Higher-
Order Functions”, Proceedings of the SIGPLAN ‘87 !iymposium
on Interpreters and Interpretive Techniques, June 1987, pages
241-252.

[Deutsch 841 L Peter Deutsch and Allan M Schiffman, “Effi-
cient Implementation of the Smalltalk- System”, Conference
Record of the 1Ith Annual ACM Symposium on Principles of
Programming Languages, January 1984, pages 297-302.

[Gabriel 851 Richard P Gabriel, Performance and Evaluation
of Lisp Systems, The Ml’T Press, 1985.

[Goldberg 831 Adele Goldberg and David Robson, Smalltalk-
80: the Language and its Implementation, Addison-Wesley,
1983.

[Haynes 841 Christopher T Haynes and Daniel P Friedman,
“Engines Build Process Abstractions”, Conference Record of
the 1984 ACM Symposium on Lisp and Functional Program-
ming, August 1984, pages 18-24.

[Holloway 803 Jack Holloway, Guy L Steele, Gerald Jay
Sussman, and Alan Bell, “The SCHEME-79 Chip”, MIT AI
Laboratory, AI Memo 5.59, January 1980.

[Kranz 861 David Kranz, Richard Kelsey, Jonathan Rees,
Paul Hudak, James Philbin, and Norman Adams, “Orbit: An
Optimizing Compiler for Scheme”, Proceedings of the SIG-
PLAN ‘86 Symposium on Compiler Construction, July 1986,
pages 219-233.

[Kranz 881 David Andrew Kranz, ORBIT: An Optimizing
Compiler for Scheme, PhD thesis, Yale University, May 1988.

[Miranda 871 Eliot Miranda, “BrouHaHa-A Portable Small-
talk Interpreter”, Conference Proceedings of OOPSLA ‘87,
SIGPLAN Notices 22, 12, December 1987, pages 354-365.

[Moss 871 J Eliot B Moss, “Managing Stack Frames in
Smalltalk”, Proceedings of the SIGPLAN ‘87 Symposium on In-
terpreters and Interpretive Techniques, June 1987, pages 229-
240.

[Rees 861 Jonathan Rees and William Clinger [editors], “Re-
vised3 Report on the Algorithmic Language Scheme”, SIG-
PLAN Norices 21, 12, December 1986, pages 37-79.

[Samples 861 A Dain Samples, David Ungar, and Paul Hilfin-
ger, “SOAR: Smalltalk without Bytecodes”, Conference Pro-
ceedings of OOPSLA ‘86, SIGPLAN Notices 21, 11, November
1986, pages 107-118.

[Semantic 871 Semantic Microsystems, MucScheme+Tool-
smith, August 1987.

[Suzuki 841 Norihisa Suzuki and Minoru Terada, “Creating
Efficient Systems for Object-Oriented Languages”, Conference
Record of the IIth Annual ACM Symposium on Principles of
Programming Languages, January 1984, pages 290-296.

[Ungar 871 David M Ungar, The Design and Evaluation of a
High Performance Smalltalk System, The MIT Press, 1987.

[Wirfs-Brock 881 Allen Wirfs-Brock, personal communica-
tion, April 1988. Tektronix Smalltalk is described in [Caudill
861, which was not detailed enough for us to realize that Tek-
tronix Smalltalk uses the stack/heap strategy rather than the
stack strategy.

130

Appendix: Source code
;;; TAK -- A vanilla version of the TAKeuchi function

(define (tak x y 2)
(if (not Cc y x))

2
ctak (tak (- x I) y 2)

(tak (- y I) z x)
ctak (- z I) x y))))

(run-benchmark "TAK" (lambda () (tak 18 12 6)))

III ... CTAK -- A version of the TAK procedure that uses
;;; continuations.

(define (ctak x y z)
(call-with-current-continuation

(lambda (k)
(ctak-aux k x y 2))))

(define (ctak-aux k x y z)
(cond ((not (< y x)) ;xy

(k 2))
(else (call-vith-current-continuation

(lambda (k)
(ctak-aux
k
(call-with-current-continuation

(lambda (k)
(ctak-aux k

(- x 1)
Y
z)))

(call-with-current-continuation
(lambda (k)

(ctak-aux A

(- y 1)
z
x)))

(call-with-current-continuation
(lambda (k)

(ctak-aux k
(- 2 1)

:mm

(run-benchmark “CTAK” (lambda 0 (ctak 18 12 6)))

;;; LOOP1 -- A perverse way to write a loop.

(define (loop1 n)

(let ((n n)
(k 0))

(define (loop ignored)
(if (zero? n)

'done
(begin (set! n (- n 1))

(loop #t))))
(loop et)))

(run-benchmark "Loopl" (lambda () (loop1 1000000)))

;;; LOOP2 -- An extremely perverse way to write a loop.

(define (loop2 n)
(1st ((n n)

(k 0))
(define (loop ignored)

(call-with-current-continuation
(lambda (cant)

(set! k cant)))
(if (zero? n)

'done
(begin (set! n (- n 1))

(k #t))))
(loop #t)))

(run-benchmark "Loop2" (lambda () (loop2 1000000)))

131

