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Abstract 

Scheme and Smalltalk continuations may have unlimited ex- 
tent. This means that a purely stack-based implementation of 
continuations, as suffices for most languages, is inadequate. 
Several implementation strategies have been described in the 
literature. Determining which is best requires knowledge of 
the kinds of programs that will commonly be run. 

Danvy, for example, has conjectured that continuation captures 
occur in clusters. That is, the same continuation, once cap- 
tured, is likely to be captured again. As evidence, Danvy cited 
the use of continuations in a research setting. We report that 
Danvy’s conjecture is somewhat true in the commercial setting 
of MacScheme+ToolsmithTM, which provides tools for devel- 
oping Macintosh user interfaces in Scheme. These include 
an interrupt-driven event system and multitasking, both imple- 
mented by liberal use of continuations. 

We describe several implementation strategies for continuations 
and compare four of them using benchmarks. We conclude that 
the most popular strategy may have a slight edge when continu- 
ations are not used at all, but that other strategies perform better 
when continuations are used and Danvy’s conjecture holds. 

1. Introduction 

A continuation is the abstract concept represented by the con- 
trol stack, or dynamic chain of activation records, in a typical 
programming language implementation. Continuations corre- 
spond to contexts in Smalltalk-80m. In languages such as 
Scheme and Smalltalk-80, continuations may become first class 
objects with unlimited extent (lifetime) [Rees 861 [Goldberg 
831. This means that a purely stack-based implementation of 
recursive procedure calls, which suffices for most languages, 
is inadequate. 
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In Scheme, the call-with-current-continuation proce- 
dure is the mechanism that allows continuations to outlive their 
more usual dynamic extent. One possible implementation of 
this procedure, in terms of lower-level procedures creg and 
creg-set ! , is shown below. This code assumes that the creg 
procedure returns the contents of the continuation register as a 
Scheme object with unlimited extent, and that the creg-set I 
procedure takes such an object and stores it back into the con- 
tinuation register. The operation performed by creg is called 
a capture. The operation performed by creg-set ! is called a 
throw. 

(define (call-with-current-continuation f) 
(let ((k (creg))) 

(f (lambda (v) 
(creg-set ! k) 
v)))> 

The simplest implementation strategy for such continuations 
is to allocate storage for each continuation frame (activation 
record) on a heap and to reclaim that storage through garbage 
collection or reference counting [Goldberg 831. Several more 
efficient implementation strategies for continuations with un- 
limited extent have been described [Deutsch 841 [Suzuki 841 
[Bartley 861 [Moss 871 [Danvy 871 [Miranda 871. Determining 
which is best requires knowledge of the kinds of programs that 
will commonly be run. 

Danvy, for example, has conjectured that continuation captures 
occur in clusters. That is, the same continuation, once captured 
(by a call to call-with-current-continuation), is likely 
to be captured again-ither an enclosing continuation will be 
‘captured, or some subpart of it will be captured. Danvy’s thesis, 
as we will call it, is at least partially true of most programs writ- 
ten using MacScheme+Toolsmith, a commercial development 
system, based on MacScheme@ [Semantic 871. The reasons 
have to do with the Macintoshm user interface and Toolsmith’s 
presentation of it to the Scheme programmer. 

The Macintosh user interface is built upon a polling model. 
Programs are expected to take the form of a centralized dis- 
patcher that busy-waits for an event, which represents a user 
action such as the depression of a key on the mouse or key- 
board. When an event becomes available the dispatcher passes 
it to an appropriate subroutine for processing. When the sub- 
routine has finished it returns control to the dispatcher, which 
resumes its busy-wait. This seemingly simple program struc- 
ture leads either to unresponsive programs, which signal by 
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means of a wait cursor that they can accept no further instruc- 
tions from the user until they have completed their current task, 
or to poorly modularized programs, which remain responsive 
by means of explicit calls to a polling routine strewn throughout 
computation-intensive code. 

MacScheme+Toolsmith makes it possible to program the Mac- 
intosh using an interrupt model instead of the polling model. 
The compiler takes care of polling implicitly by inserting code 
at every backward branch and at every procedure call. Inter- 
rupt handlers are written in Scheme and may be installed and 
removed dynamically. The default interrupt handlers take care 
of the standard events by dispatching them to the appropriate 
object (such as a window or menu) using a standard message 
protocol. Preemptive multitasking is provided for such tasks 
as blinking the insertion point in a text window, or changing 
the shape of the cursor in response to its position relative to 
objects on the screen. These features (interrupts and multitask- 
ing) make it much easier to program the Macintosh and lead 
to more modular and more responsive programs. 

In MacScheme+Toolsmith, the interrupt system and multitask- 
ing are implemented using fn-st class continuations. In fact, 
every exception captures a continuation. Hence a continuation 
is captured every time a key is struck or the mouse clicked. 
In practice, use of continuations for these purposes tends to 
cause the same continuation to be captured repeatedly. This 
is because interrupts for occurrences such as keyboard events 
usually occur in bursts, and task switches occur frequently as 
well. Since the continuation tends to change little during such 
short periods of time, Danvy’s thesis holds fairly well for most 
programs written using MacScheme+Toolsmith. 

Of course we didn’t have to use the full power of continua- 
tions in order to implement interrupts or multitasking, but it 
was certainly convenient to do so. MacScheme+Toolsmith has 
in fact achieved great simplicity of implementation by using 
continuations for these things. We were emboldened to do so 
by our implementation of continuations, which makes them 
significantly more efficient than in other implementations of 
Scheme. 

2. Danvy’s thesis 

We investigate whether Danvy’s thesis holds for applica- 
tion programs written using MacScheme+Toolsmith by con- 
sidering programs that make no explicit use of call-with- 
current-continuation. If Danvy’s thesis holds for these 
programs, then it sureIy holds for programs that use call- 
with-current-continuation explicitly. 

Our test programs come from the Gabriel benchmark suite, 
translated into Scheme [Gabriel 8.53. Of these, only the ctak 
benchmark uses explicit continuations. 

Multitasking is a standard use of continuations in Scheme 
[Haynes 841. Most application programs written using Mac- 
Scheme+Toolsmith make use of multitasking, because concur- 
rent tasks are the most practical way to perform various chores 
mandated by the Macintosh user interface. On a Macintosh 
II, approximately ten task switches occur each second. Each 
task switch involves two captures of a continuation (one by the 

timer interrupt and the other by the task scheduler) and one 
throw (by the task scheduler; the timer interrupt is not really 
returned from until the interrupted task is later resumed by the 
task scheduler). 

To measure how well Danvy’s thesis holds under these circum- 
stances, we wrote a handler for timer interrupts that records 
both the size in words of the continuation structure being cap- 
tured and the number of words shared between that structure 
and the previously captured continuation structure. From this 
data we calculated the average percentage of the continuation 
structure that had been captured previously. Figure 1 shows 
that Danvy’s thesis holds fairly well even for programs that 
don’t appear to use continuations at all. 

It is a bit odd that each timer interrupt captures a continua- 
tion. Since the task scheduler will capture exactly the same 
continuation, the average fraction of continuation structure that 
is being recaptured due to multitasking can never be less than 
half. We therefore adjusted the data to show what would hap- 
pen if captures were performed only by the task scheduler. We 
also subtracted 37 words of continuation structure created by 
the read/evaUprint loop and other system code. The adjusted 
percentages in Figure 1 show that Danvy’s thesis might not 
hold up very well if timer interrupts had been implemented a 
little differently. 

On the other hand, the adjusted percentages show that Danvy’s 
thesis is more true of the larger benchmarks than of the smaller 
ones. If this trend continues to even larger programs, as seems 
plausible, then Danvy’s thesis should be true of most realis- 
tically sized programs regardless of how multitasking is im- 
plemented. We tested this hypothesis by performing similar 
measurements on the MacScheme compiler. We found that 
the adjusted percentages were often higher than for any of the 
Gabriel benchmarks, and that the absolute size of the recap- 
tured continuation structure was significantly greater. 

Danvy’s thesis may also be true of typical programs in other 
implementations of Scheme, but we doubt it. Most Scheme 
programmers seem to be awitre that call-with-current- 
cant inuat ion is an expensive procedure, so they avoid it even 
if they are otherwise tempted to use it. Programmers would be 
more inclined to use continuations if they were implemented 
more efficiently. 

Whether programmers should be encouraged to use first class 
continuations is beyond the scope of this paper. 

3. Implementation strategies 

The garbage collection strategy 

The simplest strategy for ensuring that continuations have un- 
limited extent is to allocate them in the heap and rely on 
garbage collection or reference counting to recover their stor- 
age lHolloway 803 [Goldberg 831. We call this the gc strategy, 
When used with a fast garbage collector, the gc strategy is fast 
enough to be considered for use with byte code interpreters but 
is impractical for native code. (We used it in MacScheme until 
we added the native code compiler.) Since most continuations 
are short-lived, we would like to recover their storage using 
some more efficient mechanism than garbage collection. 

125 



Benchmark Average Size 
of Continuation 
(32+it words) 

Per Cent Adjusted 
Recaptured Percentage 

tak ctak 

takl boyer 
browse 
destructive 
traverse-init 
traverse 
deriv 
dderiv 

div-iter div-ret 
fft 
puzzle 
triangle 
fprint 
fread 
tprint 

compiler 

189 69 166 76 :3 

195 381 2 5’: 
105 76 25 

6”; ii 
3 

205 90 ;i 
96 70 
z: 70 ; 

80 476 54 : 
80 91 

159 :i 
207 

f Y 
54 

103 
202 it 4; 
106 81 41 

455 1 92 83 

Figure 1. Multitasking and Danvy’s thesis. 

The spaghetti strategy 

The spaghetti stack used in Interlisp is a variation of the gc 
strategy [Bobrow 731. The spaghetti stack is in effect a separate 
heap in which storage is reclaimed by reference counting rather 
than garbage collection. Though complex, the spaghetti stack 
is more efficient than a straightforward gc strategy because its 
storage management is optimized to support procedure call, re- 
turn, and a host of related operations. In the normal case, when 
all frames have dynamic extent, the spaghetti stack behaves as 
a conventional stack. 

The strategies discussed in the rest of this section can be re- 
garded as simplifications of the spaghetti strategy. They per- 
form worse than the spaghetti strategy in exceptional cases, but 
achieve better average performance because they simplify the 
normal case. 

The heap strategy 

The lifetime of a continuation frame created for a procedure 
call normally ends when the called procedure returns. The only 
exception is for continuation frames that have been captured. 
This suggests the heap srraregy, in which a one-bit reference 
count in each frame indicates whether the frame has been cap- 
tured. Continuation frames are allocated in a garbage-collected 
heap as in the gc strategy, but a free list of uncaptured frames 
is also used. When a frame is needed by a procedure call, it 
is taken from the free list unless the free list is empty. If the 
free list is empty, then the frame is allocated from the heap. 
When a frame is returned through, it is linked onto the free 
list if its reference count indicates that it has not been cap- 
tured. Otherwise it is left for the garbage collector to reclaim. 
Capturing a continuation involves setting the reference count 
of every frame in the continuation to indicate that it has been 
captured. Throwing to a continuation involves nothing more 
than storing the continuation in the continuation register. 

The heap strategy is most practical if all continuation frames are 
the same size. [Danvy 871 describes an incremental variation of 
the heap strategy that avoids the need to mark all continuation 
frames when a continuation is captured, at the cost of a few 
extra instructions for each call and return. A very clever and 
efficient variation of the heap strategy is presented in [Moss 
871 and will be discussed in a later section. 

The stack strategy 

Only continuations that have been captured can outlive their 
stack life. This leads to the stack strategy, in which the active 
continuation is represented as a contiguous stack in an area 
of storage we call the stuck cache. Non-tail-recursive calls 
push continuation frames onto this stack cache, and returns 
pop frames from the stack cache, just as in an ordinary stack- 
based language. When a continuation is captured, however, a 
copy of the entire stack cache is made and stored in the heap. 
When a continuation is thrown to, the stack cache is cleared 
and the continuation is copied back into the stack cache. 

The stack strategy can use standard calling sequences, making 
procedure calls and returns just as fast as for languages that re- 
strict continuations to have dynamic extent. This apparently 
means that programs that don’t use call-with-current- 
cant inuat ion don’t have to pay for it. There is a small hid- 
den cost because the existence of continuations with unlimited 
extent precludes some compiler optimizations, but this is hard 
to quantify. 

Variations on the stack strategy are used by most implemen- 
tations of Scheme and Smalltalk- [Deutsch 841 [Suzuki 841 
[Bartley 861 [Samples 861 mngar 871. PC Scheme, for ex- 
ample, uses a chunked stack strategy: By maintaining a small 
bound on the size of the stack cache, and copying portions of 
the stack cache into the heap or back again as the stack cache 
overflows and underflows, PC Scheme reduces the worst-case 
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1 Strategy 1 Allocate and Link Deallocate and Unlink 

kCC 

heap 

Moss's 
variation 

sub.1 #size,avail move.1 link(cont),cont 
cmp.1 limit,avail * 
blt overflow * 
move.1 cont,link(avail) 
move.1 avail,cont 

move. 1 link(free),temp move.1 link(cont),temp 
beq allocateMoreFrames * bmi doNotFree * 
move.1 cont,link(free) move.1 free,link(cont) 
move.1 free,cont move.1 cont,free 
move.1 temp,free move.1 temp,cont 

move.1 next(cont),cont move.1 prev(cont),cont 
bmi overflow * bmi doNotFree * 

stack sub.1 #size,cont add.1 #size,cont 
cmp.1 limit,cont * 
blt overflow * 

stack/heap sub.1 #size,stack cmp.1 stack,stackBottom * 
cmp.1 limit,stack * beq heapCase * 
blt overflow * add.1 #size,stack 

Figure 2. Assembly code for several strategies. 

latency of captures and throws [Bartley 861. In PC Scheme 
the stack cache really is a cache, since much of the active 
continuation may reside in the heap. 

Since the stack strategy can create multiple copies of a con- 
tinuation frame when the frame is captured more than once, 
continuation frames should not be side effected once they have 
been allocated and initialized. This means, for example, that 
storage for variables that appear on the left hand side of an 
assignment should not be allocated in a continuation frame, 
because an assignment to the variable that alters one frame can- 
not affect other copies of it unless the implementation is doing 
something complicated. This is why many Scheme compil- 
ers allocate all such variables in heap storage, with the happy 
result that knowledgeable Scheme programmers try to avoid 
assignments because they are so inefficient. 

SOAR avoids this problem by using a variation of the chunked 
stack strategy in which the copying of a captured frame is 
deferred until it is returned through (or a throw is performed). 
Then and only then is it copied into the heap. Pointers to 
the frame are updated using information maintained by the 
generation scavenging garbage collector wngar 871. 

The stack/heap strategy 

The stuck/heap strategy is similar to the stack strategy. All 
continuation frames are allocated in the stack cache. When 
a continuation is captured, however, the contents of the stack 
cache are moved into the heap and the stack cache is cleared. 
Likewise when a continuation is thrown to, the new active 
continuation is left in the heap and the stack cache is cleared. 
This means that each procedure return must test to see whether 
the continuation frame being returned through is in the stack 

cache or the heap. Naturally, the frame should be popped off 
the stack cache only if it is in the stack cache. 

The main advantage of the stack/heap strategy is that it makes 
throwing very fast, and recapturing a previously captured con- 
tinuation is very fast also. It therefore works well when 
Danvy’s thesis holds. 

The stacWheap strategy is used by only a few systems: Tek- 
tronix Smalltalk [Wirfs-Brock 881, BrouHaHa [Miranda 871, 
and MacScheme. BrouHaHa is notable because continuation 
frames in the heap are represented quite differently from frames 
in the stack cache. BrouHaHa uses two distinct interpreters, de- 
pending on whether the topmost continuation frame is in the 
heap or in the stack cache. 

With the stack/heap strategy, there is never more than one copy 
of a continuation frame. This means it is all right to allocate 
storage for assigned variables within a frame. 

A disadvantage of the stack/heap strategy is that some com- 
pilers allocate only one continuation frame to be used by all 
the procedure calls within a procedure. This optimization can 
make a large difference in a system's performance on the in- 
famous tak benchmark, for example. The stack/heap strategy 
makes this optimization inconvenient because the frame may 
be reused only if it is in the stack cache. 

The incremental stack/heap strategy 

The incremental stack/heap strategy is a minor variation on 
the stack/heap strategy: When returning through a continuation 
frame that isn’t in the stack cache, a trap occurs and copies the 
frame into the stack cache. This makes it easier for compiled 
code to reuse the frame for other calls. 
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loop1 14.3 14.3 14.3 14.3 
loop2 83.9 173.5 83.8 98.0 

takl 11.8 11.0 11.3 11.3 
takl (tasking) 12.8 12.3 12.4 12.4 

boyer 58.3 49.0 50.8 50.6 
boyer (tasking) 61.3 54.3 54.6 54.8 

deriv 14.4 12.6 13.5 13.6 
deriv (tasking) 15.5 13.8 14.6 14.7 

puzzle 33.2 33.6 32.9 33.0 
puzzle (tasking) 34.6 35.2 34.3 34.4 

Figure 3. Four strategies compared on a Macintosh II. Times are in seconds. 

4. Code sequences 

Figure 2 lists typical Motorola 68000 assembly code to allocate 
a new frame and link it to its predecessor, and to deallocate and 
unlink a frame. Only the normal case is shown. Instructions 
marked with an asterisk can be eliminated in many systems by 
relying on address faults or other trickery. 

For example, the extra instructions incurred by the stack/heap 
strategy on each procedure return can be eliminated by main- 
taining a permanent continuation frame at the bottom of the 
stack cache. This frame’s return address points to system 
code that immediately returns through the topmost continua- 
tion frame in the heap. 

The code sequences for the incremental stack/heap strategy are 
the same as for the stack/heap strategy since they differ only 
in the exceptional case of returning through a frame that is not 
in the stack cache. 

In Moss’s strategy, a clever variation of the heap strategy, the 
continuation register serves as both the continuation and the 
free list pointer ~MOSS 871. It points into the middle of a doubly 
linked list. The free list is linked in one direction through the 
next fields, while the continuation frames are linked in the 
opposite direction through the prev fields. The ends of the 
list are indicated by links that point to themselves but have the 
high order bit set. The prev field for a frame that has been 
captured also points to itself and has its high bit set; the real 
dynamic link for such a frame is stored elsewhere in the frame. 

5. An experiment 

We implemented the gc, stack, stack/heap, and incremental 
stack/heap strategies by modifying MacScheme+Toolsmith ver- 
sion 1.5. Non-tail-recursive procedure calls are fairly slow in 
MacScheme because its calling conventions were djesigned for 
a byte code interpreter, where it is faster to have a byte code do 
potentially unnecessary work than it is to decode multiple byte 
codes. Since the operations associated with allocating and link- 

ing a continuation frame are so complex in MacScheme, they 
are performed by an out-of-line routine in native code as well 
as in byte code; likewise for deallocating and unlinking a con- 
tinuation frame. This made it possible for us to implement the 
four strategies without making any change to the compiler, so 
all four strategies were tested using identical native code. 

We were unable to test the heap strategy because MacScheme 
uses continuation frames of various sizes. 

Our analysis begins with two outrageous benchmarks. The 
ctak benchmark, as modified for Scheme, captures a contin- 
uation on every procedure call and throws on every return. 
Since call-with-current-continuation is not open-coded 
by MacScheme, this benchmark involves three times as many 
procedure calls as the tak benchmark and creates 63609 clo- 
sures. The loop2 benchmark is a countdown loop that throws 
to a previously captured continuation every time through the 
loop. Source code for these benchmarks, together with their 
less exotic analogues tak and 100~1, are shown in an ap- 
pendix. The remaining benchmarks are straightforward transla- 
tions of Common Lisp code found in [Gabriel 851. Benchmarks 
were run on a Macintosh II with 5 megabytes of RAM and on a 
Macintosh Plus with 1 megabyte, using generic arithmetic and 
fully safe code. In particular, stack overtlow was detected by 
software using equivalents of the starred instructions in Fig- 
ure 2. The timings reported in Figure 3 are in seconds and 
represent the median of three runs for each strategy. 

The stack strategy is easily the worst of the tested strategies on 
the continuation-intensive benchmarks ctak and 100~2. The 
other three strategies are about twice as fast. The gc strategy 
has a slight edge on the ct ak benchmark because it never has to 
copy any frames. The incremental stack/heap strategy is a little 
slower than the stack/heap strategy on the loop2 benchmark 
because it has to copy a frame into the stack cache each time 
through the loop. 

We also ran these two benchmarks on comparable hardware us- 
ing PC Scheme and l-3. These implementations use the stack 
strategy, but we found that they do not perform as well on 
continuation-intensive benchmarks as our experimental imple- 
mentation of the stack strategy. 
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Benchmark 

tak 
tak (tasking) 

takl 
takl (tasking) 
deriv 
deriv (taskina) 

gc stack 
strategy strategy 

58.4 10.4 
60.5 13.0 

172.5 49.8 
172.1 64.2 
299.5 113.5 
280.0 117.0 

stack/heap incremental 
strategy stack/heap 

10.5 10:5 
11.4 11.4 

50.0 50.0 
57.3 57.4 

112.3 112.4 
112.7 112.7 

Figure 4. Four strategies compared on a Macintosh Plus. Times are in seconds. 

While the stack strategy performs poorly on continuation- 
intensive programs, it has the best performance when first class 
continuations are not used. The tak benchmark shows that the 
stack strategy performs well on procedure calls, while the gc 
strategy is the worst of the four. The stack/heap and incre- 
mental stack/heap strategies perform identically, suffering from 
one extra instruction per return compared to the stack strategy. 
This extra instruction isn’t very significant for MacScheme but 
would be quite significant in a very high performance system 
like T3, which runs the tak benchmark in .22 seconds on a Sun 
3/160 using fixnum arithmetic [Kranz 881. High performance 
systems would have to eliminate this instruction using some 
sort of trick as described in the previous section. 

We were surprised that one instruction appears to be so costly. 
The only difference between the code executed by the stack 
strategy on this benchmark and the code executed by the 
stack/heap strategy is that the stack strategy uses a 

dbra timer ,usualCase 

to decrement a software timer while the stack/heap strategy 
uses 

cmp.1 bottom(globals) ,stack 
dbeq timer,usualCase 

to test for an empty stack cache and to decrement the timer. 
Since these sequences are executed 47706 times by the tak 
benchmark, the second sequence appears to be about 2.5 mi- 
croseconds slower than the first. Clearly we have chosen an un- 
fortunate instruction ordering that causes pipelining or caching 
or alignment problems for the 68020. Rather than experi- 
ment by reorganizing the code, we ran tak and a few other 
benchmarks on the 68000-based Macintosh Plus, using a much 
smaller heap size. The results are shown in Figure 4. 

Figures 3 and 4 show that the stack strategy’s slight edge over 
the stack/heap strategies disappears when tasking is enabled in 
MacScheme+Toolsmith. Under these conditions the stacWheap 
strategies deliver essentially the same performance as the stack 
strategy on programs that don’t use call-with-current- 
cant inuat ion, and should perform better on programs that 
do. 

In Section 2 we argued that Danvy’s thesis is more likely to 
hold for larger programs, and that the average size of the con- 
tinuation structure should increase for larger programs as well. 

This means that the performance of the stack/heap strategies 
relative to the pure stack strategy should improve as the pro- 
gram size is increased. The chunked stack strategy used in PC 
Scheme appears to be a nice compromise, since it scales better 
than the pure stack strategy. 

The large heap size used for Figure 3 makes the gc strategy look 
better than it is, but Figure 4 shows it in a harsher light. Figure 
4 also sheds a harsher light on the stack strategy, which allo- 
cates more storage than the stack/heap strategies when Danvy’s 
thesis is true. Garbage collection is responsible for most of the 
variation shown by Figure 4. 

What might be wrong with this experiment? The main prob- 
lem is that MacScheme’s relatively slow procedure call dilutes 
the differences between the strategies. Since MacScheme was 
designed to use the stack/heap strategy, the calling conventions 
might also be biased against the stack strategy. We, however, 
are convinced that the calling conventions are biased against 
speed in general, and hurt the star&heap strategy as much as 
the stack strategy. 

6. Conclusion 

We recommend the incremental stack/heap strategy. If imple- 
mented carefully, it should perform just as well as the stack 
strategy when first class continuations are not used, and should 
perform much better when continuations are exploited heavily 
and Danvy’s thesis holds. 

Danvy’s thesis holds well enough for typical programs writ- 
ten in MacScheme+Toolsmith that even a simple-minded im- 
plementation of the stack/heap strategies performs as well or 
better than the stack strategy. We can’t say that the stack/heap 
strategies will perform better than the stack strategy for typical 
uses ofcall-with-current-continuation inothersystems 
because we don’t have any data on typical uses. What we can 
say is that the stack/heap strategies take some of the fear out 
of using call-with-current-continuation. 

On the other hand, our data confirm that the stack strategy is ad- 
equate for systems that make only modest use of continuations. 
A chunked stack strategy like that used in PC Scheme should 
be an effective compromise between the pure stack strategy 
and the incremental stack/heap strategy. 
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We are intrigued by Moss’s variation on the heap strategy, 
which we were unable to test. It is very simple, though it 
uses an extra memory reference on each call and return. 

What is the overall performance cost of first class continuations 
in a language like Scheme? With a sufficiently clever imple- 
mentation, there is no apparent cost to programs that don’t use 
call-with-current-continuation. A few compiler opti- 
mizations that depend on the movement of code with potential 
side effects across an unknown procedure call are thwarted by 
the existence of first class continuations, but we would be very 
surprised if these optimizations could improve the overall per- 
formance of a Scheme system by more than one or two per 
cent; the T3 compiler certainly performs rather well without 
them [Kranz 883. The real performance cost of fn-st class con- 
tinuations is the time and money required to implement them. 
The days or weeks spent on continuations can’t be spent tuning 
the rest of a system. 
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Appendix: Source code 
;;; TAK -- A vanilla version of the TAKeuchi function 

(define (tak x y 2) 
(if (not Cc y x)) 

2 
ctak (tak (- x I) y 2) 

(tak (- y I) z x) 
ctak (- z I) x y)))) 

(run-benchmark "TAK" (lambda () (tak 18 12 6))) 

III ... CTAK -- A version of the TAK procedure that uses 
;;; continuations. 

(define (ctak x y z) 
(call-with-current-continuation 

(lambda (k) 
(ctak-aux k x y 2)))) 

(define (ctak-aux k x y z) 
(cond ((not (< y x)) ;xy 

(k 2)) 
(else (call-vith-current-continuation 

(lambda (k) 
(ctak-aux 
k 
(call-with-current-continuation 

(lambda (k) 
(ctak-aux k 

(- x 1) 
Y 
z))) 

(call-with-current-continuation 
(lambda (k) 

(ctak-aux A 

(- y 1) 
z 
x))) 

(call-with-current-continuation 
(lambda (k) 

(ctak-aux k 
(- 2 1) 

:mm 

(run-benchmark “CTAK” (lambda 0 (ctak 18 12 6))) 

;;; LOOP1 -- A perverse way to write a loop. 

(define (loop1 n) 

(let ((n n) 
(k 0)) 

(define (loop ignored) 
(if (zero? n) 

'done 
(begin (set! n (- n 1)) 

(loop #t)))) 
(loop et))) 

(run-benchmark "Loopl" (lambda () (loop1 1000000))) 

;;; LOOP2 -- An extremely perverse way to write a loop. 

(define (loop2 n) 
(1st ((n n) 

(k 0)) 
(define (loop ignored) 

(call-with-current-continuation 
(lambda (cant) 

(set! k cant))) 
(if (zero? n) 

'done 
(begin (set! n (- n 1)) 

(k #t)))) 
(loop #t))) 

(run-benchmark "Loop2" (lambda () (loop2 1000000))) 
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