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A soft type system infers types for the procedures and data structures of dynamically typed
programs. Like conventional static types, soft types express program invariants and thereby
provide valuable information for program optimization and debugging. A soft type checker uses
the types inferred by a soft type system to eliminate run-time checks that are provably unnecessary;
any remaining run-time checks are flagged as potential program errors. Soft Scheme is a practical
soft type checker for R4RS Scheme. Its underlying type system generalizes conventional Hindley-
Milner type inference by incorporating recursive types and a limited form of union type. Soft
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1. INTRODUCTION

Dynamically typed languages such as Scheme [Clinger and Rees 1991] permit pro-
gram operations to be defined over any computable subset of the data domain.
To ensure safe execution, primitive operations confirm via run-time checks that
their arguments belong to appropriate subsets called types. The simple argument
types that primitive operations enforce (e.g., num, bool , cons) induce more complex
types for the inputs of defined procedures (e.g., list of num, bool or num or cons).
Scheme programmers typically have strong intuitive ideas about the types of their
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program’s procedures and data structures, but dynamically typed languages tradi-
tionally offer no tools to discover, verify, or express such types.

Static type systems such as the Hindley-Milner [Hindley 1969; Milner 1978] type
discipline can infer types for programs lacking explicit type annotations. A static
type system consists of a set of syntactic rules ensuring that program operations
are applied to the expected form of data.1 Languages with a static type discipline
support safe program execution without most of the run-time checks present in
dynamically typed languages. But such a discipline limits the subsets of the data
domain (i.e., types) over which program operations can be defined. Static typing
is therefore unsuitable for dynamically typed languages such as Scheme.

A soft type system [Cartwright and Fagan 1991; Fagan 1990] infers types for the
procedures and data structures of dynamically typed programs. Like conventional
static types, soft types express program invariants and thereby provide valuable
information for program optimization and debugging. A soft type checker uses the
types inferred by a soft type system to eliminate run-time checks that are provably
unnecessary; any remaining run-time checks are flagged as potential program errors.

We have developed a practical soft type system and soft type checker for R4RS
Scheme [Clinger and Rees 1991], a modern dialect of Lisp. Soft Scheme is based on
an extension of the Hindley-Milner static type discipline that incorporates recursive
types and a limited form of union type. Soft Scheme requires no programmer-
supplied type annotations and presents types in a natural type language that is
easy for programmers to interpret. Type analysis is sufficiently precise to provide
useful diagnostic assistance to programmers. For our benchmarks, the type checker
typically eliminates 90% of the run-time checks that are necessary for safe execution
without soft typing. Consequently, most soft typed programs run 10 to 15% faster
than their dynamically typed counterparts, and selected examples run more than
twice as fast.

The type system underlying Soft Scheme is a refinement and extension of a soft
type system designed by Cartwright and Fagan [1991] and Fagan [1990] for an ideal-
ized functional language. Their system extends Hindley-Milner typing with limited
union types, recursive types, and a modicum of subtyping as subset on union types.
Soft Scheme includes several major extensions to their technical results. First, it
uses a different representation for types that integrates polymorphism smoothly
with union types and is more computationally efficient. This representation also
supports the incremental definition of new type constructors. Second, an improved
check insertion algorithm inserts fewer run-time checks and yields more precise
types. Third, our system addresses the “grubby” features of a real programming
language that Cartwright and Fagan’s study ignored. In particular, it handles
uncurried procedures of fixed and variable arity, assignment, and first-class con-
tinuations. Finally, our system augments Scheme with pattern matching and type
definition extensions that facilitate more precise type assignment. We present a
detailed comparison to Cartwright and Fagan’s system in Section 6.1.1.

1It is important to separate static type systems which are sound deductive systems from the
heuristic type checking rules in popular programming languages such as C, C++, and Pascal.
Heuristic checking does not prevent program operations from being applied to the wrong form of
data.
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1.1 An Illustration

Soft Scheme assigns types to arbitrary Scheme programs by inserting explicit run-
time checks at applications of primitive operations. Given an input program, the
type checker writes a typed version of the program with explicit run-time checks to
an output file and displays only a summary of the inserted run-time type checks.
The programmer can interactively inspect the types assigned to program expres-
sions.

The following program defines and uses a function that flattens a tree to a proper
list:2

(define flatten
(λ (l)

(cond [(null? l) ’()]
[(pair? l) (append (flatten (car l)) (flatten (cdr l)))]
[else (list l)])))

(define a ’(1 (2) 3))
(define b (flatten a))

Soft type checking this program yields the summary:

TOTAL CHECKS 0

This program requires no run-time checks. The types of its top-level definitions
follow:

flatten : (rec ([Y1 (+ nil (cons Y1 Y1 ) X1 )])
(Y1 −> (list (+ (not cons) (not nil) X1 ))))

a : (cons num (cons (cons num nil) (cons num nil)))
b : (list num)

The type of a reflects the shape of the value yielded by the expression ’(1 (2) 3),
which abbreviates (cons 1 (cons (cons 2 ’()) (cons 3 ’()))). The primitive operation
cons constructs pairs, which have type (cons · ·); the empty list ’() has type nil .
The type for b indicates that b is a proper list of numbers. The type (list num)
abbreviates

(rec ([Y (+ nil (cons num Y ))]) Y ),

which denotes the least fixed point of the recursion equation

Y = nil ∪ (cons num Y ).

Finally, flatten’s type (Y1 −> (list . . .)) indicates that flatten is a procedure of one
argument returning a list. The argument type is defined by

Y1 = nil ∪ (cons Y1 Y1 ) ∪ X1

where X1 is a type variable standing for any type. Hence, flatten accepts the empty
list, pairs, or any other kind of value, i.e., flatten accepts any value. Flatten returns
a proper list of type (list (+ (not cons) (not nil) X1 )). The elements of the result
list have type X1 and do not include pairs or the empty list.

2A proper list is a spine of pairs that ends on the right with the “empty list” constant ’().
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Now suppose we add the following lines to our program:

(define c (car b))
(define d (map add1 a))
(define e (map sub1 (flatten ’(this (that)))))

Soft type checking the extended program yields the following summary:

c 1 (1 prim)
d 1 (1 prim)
e 1 (1 prim) (1 ERROR)
TOTAL CHECKS 3 (1 ERROR)

The extended program requires three run-time checks at primitive operations, one
in each of the definitions of c, d, and e. The typed program produced as output by
Soft Scheme shows the locations of the run-time checks:

(define c (CHECK-car b))
(define d (map CHECK-add1 a))
(define e (map ERROR-sub1 (flatten ’(this (that)))))

An unnecessary run-time check is inserted at car because b’s type

(list num) = (rec ([Y (+ nil (cons num Y ))]) Y )

includes nil which is not a valid input to car. CHECK-add1 indicates that add1
may fail when applied to some element of a, as indeed it will. Finally, ERROR-sub1
indicates that the occurrence of sub1 in this program never succeeds—if it is ever
reached, it will fail. No other run-time checks are required to ensure safe execution
of this program. In particular, no run-time checks are required in the body of flatten
nor in the bodies of the library routines map and append.

1.2 Outline

The next section presents a formal development of a soft type system for a simple
language based on the λ-calculus. Since the internal types inferred by this soft type
system are expressed in an unfamiliar type language that is difficult for program-
mers to interpret directly, Section 3 presents a simpler language of presentation
types and translations between internal and presentation types. The examples
above use presentation types. Section 4 extends the type system to address vari-
ous language constructs that are found in realistic programming languages such as
Scheme. In Section 5 we discuss experiences and performance results obtained from
our prototype soft type system for Scheme. Finally, Section 6 places our work in
the context of other work on soft typing, optimization, and static type systems.

2. A SOFT TYPE SYSTEM FOR CORE SCHEME

As the first step in a formal description of a soft type system, we define an idealized,
dynamically typed, call-by-value language called Core Scheme that embodies the
essence of Scheme.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997.
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2.1 Syntax and Semantics

Core Scheme has expressions (e ∈ Exp) and values (v ∈ Val) of the forms

e ::= v (ap e1 e2) (CHECK-ap e1 e2) (Exp)
(if e1 e2 e3) (let ([x e1]) e2)

v ::= c x (λ (x) e) (Val)

where x ∈ Id are identifiers, and c ∈ Const are constants. Const includes both basic
constants (numbers, #t, #f, ’() ∈ Basic ⊂ Const) and primitive operations (p ∈
Prim ⊂ Const). Primitive operations include both unchecked primitives such as
add1, car, and cons, as well as checked primitives such as CHECK-add1, CHECK-car,
and CHECK-cons. The keywords ap and CHECK-ap introduce unchecked and
checked applications, which we explain below. The free identifiers FV (e) and bound
identifiers of an expression are defined as usual, with λ- and let-expressions binding
their identifiers. The let-expression binds x in e2 but not e1, i.e., let-bindings are
not recursive. Following Barendregt [1984], we adopt the convention that bound
identifiers are always distinct from free identifiers in distinct expressions, and we
identify expressions that differ only by a consistent renaming of the bound identi-
fiers. Programs are closed expressions.

To incorporate run-time checks, Core Scheme includes both unchecked as well
as checked versions of every primitive operation. Invalid applications of unchecked
primitives, such as (ap add1 #t) or (ap car ’()), are meaningless. In an implementa-
tion, they can produce arbitrary results ranging from “core dump” to erroneous but
apparently valid answers. Checked primitives are observationally equivalent to their
corresponding unchecked versions, except that invalid applications of checked prim-
itives terminate execution with error messages. For example, (ap CHECK-add1 #t)
yields an error message. Similarly, ap and CHECK-ap introduce unchecked and
checked applications that are undefined (respectively, yield an error message) when
their first subexpression is not a procedure. For example, the expression (ap 1 2) is
meaningless, while (CHECK-ap 1 2) terminates execution with an error message
like “Error: 1 is not a procedure.”

We use reduction semantics [Felleisen and Hieb 1992] to specify the operational
behavior of Core Scheme programs. Figure 1 defines the single-step reduction rela-
tion 7−→ for Core Scheme (neglecting pairs, which are easy to add). The reduction
relation 7−→ depends on a definition of evaluation contexts E. An evaluation con-
text is an expression with one subexpression replaced by a hole [ ]. E[e] is the
expression obtained by placing e in the hole of E. Our definition of evaluation
contexts ensures that applications evaluate from left to right,3 as every expression
that is not a value can be uniquely decomposed into an evaluation context and a
redex.

Rules βv and check-βv reduce ordinary and checked applications of λ-expressions
by substitution. The notation e[x 7→ v] denotes the expression formed by sub-
stituting v for free x in e, renaming bound variables of v as necessary to avoid
capture. Rule let reduces let-expressions by substitution. Rules if1 and if2 reduce
if-expressions according to whether the test value is the special constant #f. Rules

3Our theorems also hold for a language that does not specify the evaluation order, such as Scheme.
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E[(ap (λ (x) e) v)] 7−→ E[e[x 7→ v]] (βv)

E[(ap c v)] 7−→ E[δ(c, v)] if c ∈ Prim and δ(c, v) ∈ Val (δ1)

E[(ap c v)] 7−→ check if c ∈ Prim and δ(c, v) = check (δ2)

E[(CHECK-ap (λ (x) e) v)] 7−→ E[e[x 7→ v]] (check-βv)

E[(CHECK-ap c v)] 7−→ E[δ(c, v)] if c ∈ Prim and δ(c, v) ∈ Val (check-δ1)

E[(CHECK-ap c v)] 7−→ check if c /∈ Prim or δ(c, v) = check (check-δ2)

E[(if v e1 e2)] 7−→ E[e1] if v 6= #f (if 1)

E[(if #f e1 e2)] 7−→ E[e2] (if 2)

E[(let ([x v]) e)] 7−→ E[e[x 7→ v]] (let)

E ::= [ ] (ap E e) (ap v E) (CHECK-ap E e) (CHECK-ap v E)

(if E e1 e2) (let ([x E]) e)

Fig. 1. Reduction semantics for Core Scheme.

δ1, δ2, check-δ1, and check-δ2 use the partial function

δ : Prim × ClosedVal ⇀ (ClosedVal ∪ {check})

to interpret the application of primitives. ClosedVal ⊂ Val is the set of closed
values, and check is an error message returned by primitive operations that fail. For
unchecked primitives, δ may be undefined at some arguments. For all unchecked
primitives p, we require that a checked primitive CHECK-p exist if δ(p, v) is not
defined for every v ∈ ClosedVal . A checked primitive behaves the same way as
its unchecked counterpart, except it returns check when the unchecked primitive is
undefined:

δ(CHECK-p, v) =
{
δ(p, v) if δ(p, v) is defined;
check if δ(p, v) is undefined.

When δ returns check for the application of a primitive, check immediately becomes
the program’s answer via rule δ2. Rule check-δ2 ensures that checked applications
of basic constants, such as (CHECK-ap 1 2), result in answer check.

The reduction relation 7−→ is the basis of program evaluation. Programs evaluate
according to the relation →7−→ , which is the reflexive and transitive closure of 7−→.
Answers are values or the special token check, which is returned by programs that
apply checked operations to invalid arguments.

With unchecked operations, evaluation can lead to a normal form relative to
→7−→ that is neither a value nor check. Such normal forms arise when an unchecked

primitive is applied to an argument for which it is not defined, e.g., (ap add1 #t),
or when the first subexpression of an unchecked application is not a procedure, e.g.,
(ap 1 2). We say such a expression is stuck :

Stuck =


E[(ap p v)] where δ(p, v) is undefined,
E[(CHECK-ap p v)] where δ(p, v) is undefined,
E[(ap c v)] where c /∈ Prim

 .

We say that e diverges when there is an infinite reduction sequence e 7−→ e′ 7−→
e′′ 7−→ . . . . The following lemma asserts that all closed expressions either (1) yield
an answer that is a closed value, (2) diverge, (3) yield check, or (4) become stuck.
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Lemma 2.1.1. For all closed expressions e, either e →7−→ v where v is closed, e
diverges, e →7−→ check, or e →7−→ e′ where e′ is stuck.

Proof. The proof is a routine induction on the length of the reduction sequence,
using case analysis on the structure of the expression e. For a proof of a similar
theorem, see Felleisen [1991].

Type-safe implementations of dynamically typed languages like Core Scheme
interpret all occurrences of primitive operations in source programs as checked
operations. Since the run-time checks embedded in checked primitives add overhead
to program execution, many implementations allow the programmer to disable run-
time type checking—substituting unchecked operations for checked ones. In this
mode, valid programs execute faster and give the same answers as they do under
conventional “checked” execution, but the language is no longer type safe. Invalid
programs can produce arbitrary results ranging from “core dump” to erroneous but
apparently valid answers.

2.2 Designing a Soft Type System

Designing a soft type system for Core Scheme is a challenging technical problem.
Values in dynamically typed programs belong to many different semantic types,
and dynamically typed programs routinely exploit this fact. To accommodate these
overlapping types, a soft type system for Core Scheme should include union types
and use the following rule to infer types for applications:

e1 : (T1 −> T2) e2 : T3 T3 ⊆ T1

(ap e1 e2) : T2

Here T3 ⊆ T1 indicates that the argument’s type must be a subset (or subtype) of
the function’s input union type.

However, conventional Hindley-Milner type systems presume that all monotypes
are disjoint. In a Hindley-Milner type system, T3 ⊆ T1 holds if and only if T3 =
T1. The standard type inference algorithm relies on this fact by using ordinary
unification to solve type constraints. Hence the standard algorithm cannot directly
accommodate union types. We could base a polymorphic union type system directly
on union types and attempt to find an alternative method of inferring types. Aiken
et al. [1994] have pursued this approach, but both its computational complexity
and its practical behavior are significantly worse than Hindley-Milner typing. We
elected instead to modify Hindley-Milner typing to accommodate union types and
subtyping without compromising its practical efficiency.4

To combine union types and subtyping with Hindley-Milner polymorphism, we
adapt an encoding for record subtyping pioneered by Wand [1987; 1991] and refined
by Rémy [1989; 1991]. Our encoding permits many union types to be expressed as
terms in a free algebra, as with conventional Hindley-Milner types. Flag variables

4Ordinary Hindley-Milner typing relies on simple unification of finite terms, which can be imple-
mented in linear time [Martelli and Montanari 1976; Paterson and Wegman 1978]. Our modifica-

tion of Hindley-Milner typing requires unification of infinite terms, for which no linear algorithm
is known. But practical implementations of simple unification use nonlinear algorithms that are
faster for small types than the linear algorithms. Practical implementations of infinite unification
are faster still because they omit the “occurs check.”
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enable polymorphism to encode subtyping as subset on union types. Types are
inferred by a simple variant of the standard Hindley-Milner algorithm. When dis-
playing types to the programmer, we decode the inferred types into more natural
union types. Our type system thereby provides the illusion of a polymorphic union
type system based on ordinary union types. The illusion is imperfect: occasion-
ally the decoded types do not match what informal reasoning about natural union
types leads us to expect. Such a mismatch would be a serious liability for a static
type system, as programs would be rejected by the type checker without a clear
explanation. In a soft type system, this problem is not nearly as serious. Soft typed
programs may contain apparently unmotivated run-time checks, but they can still
be executed.

The next two subsections define a collection of static types and a static type
system based on a variation of Rémy’s encoding. Following that, we adapt this
static type system to a soft type system for Core Scheme.

2.3 Static Types

To construct a static type system for Core Scheme, we partition the data domain
into disjoint subsets for which the primitive operations are (mostly) closed. Infor-
mally, the primitive operations of Core Scheme induce the following partitioning of
the domain:

D = numbers
∪ {#t}
∪ {#f}
∪ {’()}
∪ {〈v1, v2〉 | v1 ∈ D1 ⊆ D and v2 ∈ D2 ⊆ D}
∪ {f | f(v1) ∈ D2 ⊆ D for all v1 ∈ D1 ⊆ D}.

For Core Scheme, all numbers inhabit the same partition because primitive oper-
ations such as division and exponentiation can produce small integer, big integer,
rational, real, or complex answers. (In a soft type system for an ML-like language
where there are distinct operations for integers and reals, we would use distinct
partitions int and real .) The constants #t, #f, and ’() each inhabit their own
partitions. The partitions containing pairs and procedures are further subdivided
as the components of each (D1, D2) are partitioned in the same way. Appendix B
includes a precise definition of the data domain as a reflexive domain equation. The
domain equation reflects the above partitioning of the data domain.

The static types for Core Scheme reflect the partitioning of the data domain.
We define the set of static types in two stages. We first define a set of pretypes,
of which the static types for Core Scheme are a subset. Informally, every pretype
(σ, τ) is a disjoint union of zero or more partitions (κfσ1 . . . σn, also written κf~σ)
followed by either a single type variable (α) or the empty type (ø):

σ, τ ::= κf1
1 ~σ ∪ . . . ∪ κfnn ~τ ∪

(
α ø

)
where

f ::= ϕ

denotes a flag; ϕ ∈ FlagVar is a flag variable; and κ is a tag. Types represent regular
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997.
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trees with tags constructing internal nodes; the parentheses and union symbol ∪ are
merely syntax to enhance readability. In a partition κfσ1 . . . σn, the constructor
κ has arity n + 2: flag f , types σ1 . . . σn, and type τ are its arguments. Tags,
denoted by κ, designate partitions of the data domain. The tags num, true, false,
and nil identify the partitions containing numbers, #t, #f, and ’(), respectively.
The tags cons and→ identify the partitions containing pairs and procedures. Each
partition has a flag f (written above the tag) that indicates whether the partition
is part of the union type. A flag indicates the partition is present; indicates
that it is absent; and a flag variable (ϕ) indicates the partition may be present or
absent depending on how the flag variable is instantiated. In general, a static type
with free flag variables designates a finite set of possible types corresponding to the
possible instantiations of the free flag variables. The following are some examples
of types:

num ∪ ø means numbers;
num ∪ nil ∪ ø means numbers;
num ∪ nil ∪ ø means numbers or ’();
num ∪ nil ∪ ø means empty ;
num ∪ nil ∪ α means numbers or α but not ’();
(α→ (true ∪ false ∪ ø)) ∪ ø means procedures from α to boolean.

We use infix notation and write (σ1 →f σ2) rather than (→f σ1σ2) for procedure
partitions.

To be well formed, types must be tidy: each tag may be used at most once
within a union, and type variables must have a consistent universe as explained
below. Tidiness permits us to find and represent the pairwise unification between
two sets of types (i.e., two union types) by performing a single unification step.
The following class of grammars defines the (tidy) static types (σX , τX) of Core
Scheme:

σ∅, τ∅ ::= α∅ ø∅ (κfσ∅1 . . . σ
∅
n)∅ ∪ τ{κ} µα∅. τ∅

σX , τX ::= αX øX (κfσ∅1 . . . σ
∅
n)X ∪ τX∪{κ} (κ /∈ X)

where X ∈ 2Tag is a label. Labels enforce tidiness by specifying sets of tags that
are not available for use in the type. For example, the phrase

(num )∅ ∪ (num ){num} ∪ . . .

is not a tidy type because the term (num ){num} violates the restriction κ /∈ X in
the formation of types. Labels also limit the universe for type variables. In the
Hindley-Milner type system, all type variables may range over the entire universe
of types. In our system, the range of a type variable that appears in a union type
excludes types built from the tags of partitions preceding it, i.e., the tags in its
label. That is, in a type

(κf1
1 ~σ1)∅ ∪ . . . ∪ (κfnn ~σn){κ1,...,κn−1} ∪ α{κ1,...,κn},

the universe for type variable α excludes partitions constructed from κ1 . . . κn. For
instance, in the type

num ∪ true ∪ (cons σ1σ2) ∪ α,
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the range of type variable α excludes numbers, #t, and all pairs. The types assigned
to program identifiers and expressions have label ∅. We usually omit labels when
writing types, as they can be easily reconstructed. Similarly, an implementation of
type inference need not manipulate labels.

Recursive types µα. τ represent infinite regular trees [Amadio and Cardelli 1990].
The type µα. τ binds α in τ . The usual renaming rules apply to the bound variable
α, and we have µα. τ = τ [α 7→ µα. τ ]. Recursive types must be formally contractive,
i.e., phrases such as µα. α are not types. The type µα.nil ∪ (cons τ α) ∪ ø,
which denotes proper lists.

Since our union types denote set-theoretic unions of values, we impose a quotient
on types to identify those types that denote the same sets of values. This quotient
identifies (1) types that differ only in the order of union components and (2) types
that denote different representations of the empty type:

κf1
1 ~σ1 ∪ κf2

2 ~σ2 ∪ τ = κf2
2 ~σ2 ∪ κf1

1 ~σ1 ∪ τ

κ ~σ ∪ ø = ø.

It is easy to verify that this quotient preserves tidiness.
To accommodate polymorphism and subtyping, we introduce type schemes:

Σ ::= ∀~ν. τ

where ν ∈ (TypeVar ∪ FlagVar ) denotes a type or flag variable. The type scheme
∀~ν. τ binds type and flag variables {~ν} in τ . We omit ∀ when there are no bound
variables; hence types are a subset of type schemes. Type schemes describe sets of
types by substitution for bound variables. A substitution S is a finite map from
type variables to types and from flag variables to flags. Sτ (respectively, Sf) means
the simultaneous replacement of every free variable in type τ (respectively, flag f)
by its image under S. Since types are required to be tidy, the application Sτ makes
sense only when S preserves the labeling of τ . A type τ ′ is an instance of type
scheme ∀~ν. τ under substitution S, written

τ ′ ≺S ∀~ν. τ,

if Dom(S) = {~ν} and Sτ = τ ′. For example, the type

((num ∪ ø)→ (num ∪ ø)) ∪ ø

is an instance of ∀αϕ. (α→ϕ α)∪ø under the substitution {α 7→ (num ∪ø), ϕ 7→ }.
In our framework, we use polymorphism both to express conventional polymor-

phic types and to express subsets of tidy union types. For instance, the type scheme
∀ϕ1ϕ2.numϕ1 ∪ nil ϕ2 ∪ ø may be instantiated to any type that denotes a subset
of num ∪ nil ∪ ø. There are four such types:

num ∪ nil ∪ ø
num ∪ nil ∪ ø
num ∪ nil ∪ ø
num ∪ nil ∪ ø.

By using polymorphic flag variables for the inputs of primitive operations and
procedures, we can simulate subtyping at applications while still using unification
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997.
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0 : ∀α.num ∪ α

#t : ∀α. true ∪ α

add1 : ∀α1α2ϕ. ((numϕ ∪ ø)→ (num ∪ α1)) ∪ α2

number? : ∀α1α2α3. (α1 → (true ∪ false ∪ α2)) ∪ α3

not : ∀α1α2α3. (α1 → (true ∪ false ∪ α2)) ∪ α3

cons : ∀α1α2α3α4. (α1 → ((α2 → (cons α1 α2)) ∪ α3)) ∪ α4

car : ∀α1α2α3ϕ. (((consϕ α1 α2) ∪ ø)→ α1) ∪ α3

Fig. 2. Static types for unchecked constants.

to equate the procedure’s input type and the argument’s type. A procedure with
type scheme ∀ϕ1ϕ2. (numϕ1 ∪ nil ϕ2 ∪ ø)→ τ can be applied to values of types

num ∪ nil ∪ ø,
num ∪ nil ∪ ø = num ∪ ø,
num ∪ nil ∪ ø = nil ∪ ø, and
num ∪ nil ∪ ø = ø

by instantiating the flag variables ϕ1 and ϕ2 in different combinations of and .
Similarly, polymorphic type variables express supersets of types. Basic constants

and outputs of primitives may have any type that is a superset of their natural type.
For example, numbers have type scheme ∀α.num ∪ α. This may be instantiated
to any type that is a superset of num ∪ ø:

num ∪ ø
num ∪ true ∪ ø
num ∪ true ∪ false ∪ ø

...

This ensures that expressions such as (if P 1 ’()) that mix different types of con-
stants are typable. This expression has type num ∪ nil ∪ ø.

The function TypeOf maps the constants of Core Scheme to type schemes de-
scribing their behavior. The encoding of the unions within a type differs according
to whether the union occurs in a negative (input) or positive (output) position.
A position is positive if it occurs within the first argument of an even number of
→ constructors, and negative if it occurs within an odd number. With recursive
types, a position can be both positive and negative; we assume that primitives
do not have such types. For unchecked primitives, negative unions are encoded
using variables for valid inputs (for reasons explained presently) and and ø for
invalid inputs. Positive unions use for “present” outputs and variables for “ab-
sent” fields. Figure 2 presents the types for some of the constants and unchecked
primitive operations of Core Scheme.

The type schemes of checked primitives are similar to those of unchecked primi-
tives, except they never use or ø, since checked primitives accept all inputs. For
example, primitives CHECK-add1 and CHECK-car have the following type schemes:

CHECK-add1 : ∀α1α2α3ϕ. ((numϕ ∪ α3)→ (num ∪ α1)) ∪ α2

CHECK-car : ∀α1α2α3α4ϕ. (((consϕ α1 α2) ∪ α4)→ α1) ∪ α3.
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τ ≺S TypeOf (c)

A ` c : τ
(const`)

τ ≺S A(x)

A ` x : τ
(id`)

A ` e1 : (τ2 →f τ1) ∪ ø A ` e2 : τ2

A ` (ap e1 e2) : τ1
(ap`)

A ` e1 : (τ2 →f τ1) ∪ τ3 A ` e2 : τ2

A ` (CHECK-ap e1 e2) : τ1
(CHECK-ap`)

A[x 7→ τ1] ` e : τ2

A ` (λ (x) e) : (τ1 → τ2) ∪ τ3
(lam`)

A ` e1 : τ1 A ` e2 : τ2 A ` e3 : τ2

A ` (if e1 e2 e3) : τ2
(if`)

A ` e1 : τ1 A[x 7→ Close(τ1, A)] ` e2 : τ2

A ` (let ([x e1]) e2) : τ2
(let`)

Close(τ, A) = ∀~ν. τ where {~ν} ⊆ FV (τ) − FV (A)

Fig. 3. Static type inference rules.

These type schemes are obtained by replacing ø in the type schemes of the unchecked
primitives with quantified type variables.

As discussed above, polymorphic flag variables in the inputs to procedures provide
subtyping at applications of those procedures. But for a procedure such as add1
that has type scheme

∀α1α2ϕ. ((numϕ ∪ ø)→ (num ∪ α1)) ∪ α2, (1)

the only subtypes of its input type are num ∪ ø and the trivial type num ∪ ø = ø.
Since add1 accepts only one kind of input, an alternative type scheme is

∀α1α2. ((num ∪ ø)→ (num ∪ α1)) ∪ α2. (2)

This type scheme does not have the trivial type ø as a subtype of its input type.
Both (1) and (2) are valid type schemes for add1. We use the first type scheme
for add1 because the second causes reverse flow, a phenomenon discussed in Sec-
tion 5.5.1.

2.4 Static Type Checking

Figure 3 defines a static type system that assigns types to Core Scheme expressions.
Type environments (A) are finite maps from identifiers to type schemes. A[x 7→ Σ]
denotes the functional extension or update of A at x to Σ. FV (Σ) returns the free
type and flag variables of a type Σ. FV extends pointwise to type environments.
The typing A ` e : τ states that expression e has type τ in type environment A.
When A is the empty map, we write simply ` e : τ .

In rules ap` and CHECK-ap`, the first antecedent allows the type of e1 to in-
clude an arbitrary flag f on the constructor→. As with the type schemes assigned
to primitives, this typing avoids the problem of reverse flow (Section 5.5.1). Alter-
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native typing rules for applications could use rather than f , but fewer expressions
would be typable.

A static type system ensures type safety by assigning types only to programs that
cannot lead to meaningless operations (i.e., cannot get stuck). A static type system
that meets this criterion is sound. To ensure soundness, Const , δ, and TypeOf must
satisfy the following typability conditions. For every c, τ , τ ′, f , and v,

(1) when c ∈ Prim , if (τ ′ →f τ) ∪ ø ≺S TypeOf (c) and ` v : τ ′, then either
δ(c, v) = check or δ(c, v) = v′ and` v′ : τ ;

(2) when c /∈ Prim , there exists no S, τ ′, τ such that (τ ′ →f τ) ∪ ø ≺S TypeOf (c).

Condition (1) requires that δ be defined for all primitive operations of functional
type and arguments of matching type, and restricts the set of results that δ may
produce. Condition (2) ensures that only primitive operations, and not basic con-
stants, may have functional type.

Given the typability conditions, we can establish soundness. Recall that Sec-
tion 2.1 defines a reduction relation →7−→ for which every program either (1) yields
an answer v, (2) diverges, (3) yields the error message check, or (4) gets stuck
(Lemma 2.1.1). Type soundness ensures that typable programs yield answers of
the expected type and do not get stuck.

Theorem 2.4.1 (Type Soundness). If ` e : τ , then either e →7−→ v and ` v :
τ , or e diverges, or e →7−→ check.

Proof. We use Wright and Felleisen’s [1994] technique based on subject reduc-
tion. The proof relies on two main lemmas. The first lemma, Subject Reduction,
states that evaluation preserves typing. The second lemma states that stuck pro-
grams are not typable.

Lemma 2.4.2 (Subject Reduction). If ` ea : σ and ea 7−→ eb then ` eb : σ.

Lemma 2.4.3 (Untypability of Stuck Programs). If e ∈ Stuck then there
is no τ such that ` e : τ .

Given these lemmas, we can prove Type Soundness. From Uniform Evaluation
(Lemma 2.1.1), either e →7−→ v where v is closed, e diverges, e →7−→ check, or e →7−→ e′

where e′ ∈ Stuck . Since ` e : τ , if e →7−→ v then ` v : τ by Subject Reduction. All that
remains to show is that e cannot get stuck. Suppose it does; that is, suppose that
e →7−→ e′ where e′ ∈ Stuck . Then ` e′ : τ by Subject Reduction. But this contradicts
Untypability of Stuck Programs; hence e cannot get stuck.

To establish Subject Reduction, we use some obvious facts about deductions:

(1) if A ` C[e] : τ then there exist A′, τ ′ such that A′ ` e : τ ′ (C is a context);
(2) if there are no A′, τ ′ such that A′ ` e : τ ′, then there are no A, τ such that

A ` C[e] : τ .

These follow from the facts that (1) there is exactly one inference rule for each
expression form and (2) each inference rule requires a proof for each subexpression
of the expression in its conclusion.

A key lemma that we use in the proof of Subject Reduction is a Replacement
lemma, adapted from Hindley and Seldin [1986, p. 181]. This allows the replacement
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of one of the subexpressions of a typable expression with another subexpression of
the same type, without disturbing the type of the overall expression.

Lemma 2.4.4 (Replacement). If

(1 ) D is a deduction concluding A ` C[e1] : τ ,
(2 ) D1 is a subdeduction of D concluding A′ ` e1 : τ ′,
(3 ) D1 occurs in D in the position corresponding to the hole in C, and
(4 ) A′ ` e2 : τ ′,

then A ` C[e2] : τ .

A Substitution lemma is the key to showing Subject Reduction for reductions
involving substitution.

Lemma 2.4.5 (Substitution). If A[x 7→ ∀~α~ϕ.τ ] ` e : τ ′ and x /∈ Dom(A) and
A ` v : τ and {~α~ϕ} ∩ FV (A) = ∅ then A ` e[x 7→ v] : τ ′.

The proof of Substitution proceeds by induction on the length of the proof of
A[x 7→ ∀~α~ϕ.τ ] ` e : τ ′ and by case analysis on the last step. The proof is
an adaptation of our similar lemma for an ordinary Hindley-Milner type system
[Wright and Felleisen 1994, Lemma 4.4].

Proof of Subject Reduction. The proof proceeds by case analysis accord-
ing to the reductions of Figure 1. Note that reductions δ2 and check-δ2 do not yield
expressions and hence need not be considered.

Case E[(ap p v)] 7−→ E[δ(p, v)] where δ(p, v) ∈ Val. Since there exist A and
τ such that A ` (ap p v) : τ , we have A ` p : (τ ′ →f τ) ∪ ø and A ` v : τ ′ by ap`.
By the typability conditions for constants, we have A ` δ(c, v) : τ , and hence we
obtain ` E[δ(c, v)] : σ by Replacement.

Case E[(CHECK-ap p v)] 7−→ E[δ(p, v)] where δ(p, v) ∈ Val. This is similar
to the previous case.

Case E[(if v e1 e2)] 7−→ E[e1] where v 6= #f. Since A and τ exist such that
A ` (if v e1 e2) : τ , we have A ` e1 : τ by if`. Hence ` E[e1] : σ by Replacement.

Case E[(if #f e1 e2)] 7−→ E[e2]. Since there exist A and τ such that A `
(if #f e1 e2) : τ , we have A ` e2 : τ by if`. Hence ` E[e2] : σ by Replacement.

Case E[(ap (λ (x) e) v)] 7−→ E[e[x 7→ v]]. Since there exist A and τ such that
A ` (ap (λ (x) e) v) : τ , we have A ` v : τ ′ and A ` (λ (x) e) : (τ ′ →f τ) ∪ ø by
ap`. From the latter, we have A[x 7→ τ ′] ` e : τ (and f = ) by lam`. Hence we
obtain A ` e[x 7→ v] : τ by Substitution, and ` E[e[x 7→ v]] : σ by Replacement.

Case E[(CHECK-ap (λ (x) e) v)] 7−→ E[e[x 7→ v]]. This is similar to the
previous case.

Case E[(let ([x v]) e)] 7−→ E[e[x 7→ v]]. Since there exist A and τ such that
A ` (let ([x v]) e) : τ , we have A ` v : τ ′ and A[x 7→ Close(τ ′, A)] ` e : τ by let`.
As Close(τ ′, A) = ∀~α~ϕ. τ ′ where {~α~ϕ} = FV (τ ′)−FV (A), we have A ` e[x 7→ v] : τ
by Substitution. Hence we have ` E[e[x 7→ v]] : σ by Replacement.

This completes the proof of Subject Reduction.
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Proof of Untypability of Stuck Programs. The proof proceeds by case
analysis on the form of the stuck program.

Case E[(ap p v)] where δ(p, v) is Undefined. It suffices to show that there are
no A, τ such that A ` (ap p v) : τ . Suppose otherwise. Then by ap`, A ` p :
(τ ′ →f τ) ∪ ø and A ` v : τ ′ for some τ ′, f . But then by the typability conditions,
δ(p, v) is defined, which contradicts the premise of this case.

Case E[(CHECK-ap p v)] where δ(p, v) is Undefined. This is similar to the
previous case.

Case E[(ap c v)] where c /∈ Prim. It suffices to show that no A, τ exist such
that A ` (ap c v) : τ . Suppose otherwise. Then by ap`, A ` c : (τ ′ →f τ) ∪ ø and
A ` v : τ ′ for some τ ′, f , contradicting the typability conditions for basic constants.

This completes the proof of Untypability of Stuck Programs.

2.5 Soft Type Checking

The preceding static type system can be used to statically type check Core Scheme
programs. The type system will reject programs that contain incorrect uses of
unchecked primitives, ensuring type-safe execution. But the type system will also
reject some meaningful programs whose safety it cannot prove. To persuade the
type checker to accept an untypable program, a programmer can manually convert
it to typable form by judiciously replacing some unchecked operations with checked
ones.5 A soft type checker automates this process.

Figure 4 defines a soft type system for Core Scheme programs. This system both
assigns types and computes a transformed expression in which some unchecked
primitives and applications are replaced by checked ones. A soft typing A ⇒ e ⇒
e′ : τ states that in type environment A, expression e transforms to e′ such that e′

has type τ .
The function SoftTypeOf assigns type schemes to constants. For checked prim-

itives and basic constants, SoftTypeOf assigns the same type schemes as TypeOf .
For unchecked primitives, SoftTypeOf assigns type schemes that include special
absent variables (ν̃ ∈ AbsVar = AbsTypeVar ∪ AbsFlagVar ). Absent variables
record uses of unchecked primitives that may not be safe. Wherever the func-
tion TypeOf places a flag or ø type in the input type of a primitive, SoftTypeOf
places a corresponding absent flag variable ϕ̃ ∈ AbsFlagVar or absent type variable
α̃ ∈ AbsTypeVar . For example, SoftTypeOf (add1) is

∀α1α2α̃3ϕ. ((numϕ ∪ α̃3)→ (num ∪ α1)) ∪ α2.

Absent variables induce classes of absent flags (f̃) and absent types (τ̃ ). Absent
flags (respectively, types) contain only absent variables:

f̃ ∈ {f | FV (f) ⊂ AbsFlagVar}
τ̃ ∈ {τ | FV (τ) ⊂ AbsVar}.

5The same process cannot be used with statically typed languages such as ML because the Hindley-

Milner type discipline does not provide implicit union types. One must also introduce explicit
definitions of union and recursive types, injections into these types, and projections out of them.
The extra injections and projections increase the conceptual complexity of programs and introduce
additional run-time overhead.
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τ ≺S SoftTypeOf (c) Empty{Sν̃ | ν̃ ∈ Dom(S)}
A ⇒ c⇒ c : τ

(OKconst⇒)

τ ≺S SoftTypeOf (c)

A ⇒ c⇒ CHECK-c : τ
(const⇒)

τ ≺S A(x)

A ⇒ x⇒ x : τ
(id⇒)

A⇒ e1 ⇒ e′1 : (τ2 →f τ1) ∪ τ̃3 A ⇒ e2 ⇒ e′2 : τ2 Empty{τ̃3}
A ⇒ (ap e1 e2)⇒ (ap e′1 e

′
2) : τ1

(OKap⇒)

A ⇒ e1 ⇒ e′1 : (τ2 →f τ1) ∪ τ̃3 A⇒ e2 ⇒ e′2 : τ2

A ⇒ (ap e1 e2)⇒ (CHECK-ap e′1 e
′
2) : τ1

(ap⇒)

A ⇒ e1 ⇒ e′1 : (τ2 →f τ1) ∪ τ3 A⇒ e2 ⇒ e′2 : τ2

A ⇒ (CHECK-ap e1 e2)⇒ (CHECK-ap e′1 e
′
2) : τ1

(CHECK-ap⇒)

A[x 7→ τ1] ⇒ e⇒ e′ : τ2

A ⇒ (λ (x) e)⇒ (λ (x) e′) : (τ1 → τ2) ∪ τ3
(lam⇒)

A⇒ e1 ⇒ e′1 : τ1 A ⇒ e2 ⇒ e′2 : τ2 A ⇒ e3 ⇒ e′3 : τ2

A⇒ (if e1 e2 e3)⇒ (if e′1 e
′
2 e
′
3) : τ2

(if⇒)

A ⇒ e1 ⇒ e′1 : τ1 A[x 7→ SoftClose(τ1, A)] ⇒ e2 ⇒ e′2 : τ2

A ⇒ (let ([x e1]) e2)⇒ (let ([x e′1]) e′2) : τ2
(let⇒)

SoftClose(τ, A) = ∀~ν. τ where {~ν} ⊆ FV (τ)− (FV (A) ∪ AbsTypeVar ∪ AbsFlagVar)

Fig. 4. Soft type inference rules.

Substitutions are required to map absent flag variables to absent flags and absent
type variables to absent types.

If an absent variable is instantiated to a nonempty type in the type assignment
process, then the primitive operation whose type introduced that type variable
must be checked. For example, the expression (ap add1 #t) instantiates the absent
variable α̃3 in the type of add1 as (at least) true ∪ ø. Since the type true ∪ ø
contains the element #t, this application of add1 must be checked. In contrast, the
expression (ap add1 0) instantiates α̃3 as ø, so no run-time check is necessary. The
predicate Empty used by rules OKconst⇒ and OKap⇒ in Figure 4 determines
whether every member of a set of types and flags can be instantiated to the empty
type or the absent flag . For a set of types and flags s, Empty(s) is defined as

Empty(s) =


false if ∃ f ∈ s such that f = ;
false if ∃ τ ∈ s such that τ = κ ~σ ∪ τ ′;
false if ∃ τ ∈ s such that τ = κf~σ ∪ τ ′ and ¬Empty(τ ′);
true otherwise.

Rules OKconst⇒ and OKap⇒ require that Empty hold for that part of the
unchecked primitive’s input type corresponding to undefined inputs. Rules const⇒
and ap⇒ have no such restriction—it is always possible to insert a run-time check. A
type inference algorithm that inserts a minimal number of run-time checks chooses
rules OKconst⇒ and OKap⇒ over rules const⇒ and ap⇒ whenever possible.
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As a let-bound procedure may be used in several different ways, each use may
necessitate different run-time checks in the procedure body. For instance, in the
expression6

(let ([inc (λ (x) (ap add1 x))])
(begin

(ap inc 0)
(ap inc #t)))

the use of inc in (ap inc 0) necessitates no run-time checks. The second use of inc
requires a run-time check at add1. Hence a let-bound procedure must include the
union of all run-time checks required by its uses. To ensure this, absent variables
are not generalized by SoftClose. The above example demonstrates why this re-
striction is necessary. In typing the let-bound expression, add1 is assigned type
((numϕ′ ∪ α̃′)→ . . .) where α̃′ and ϕ′ are fresh variables. Suppose SoftClose
naively generalized absent variables. Generalizing the type of add1 would yield
type scheme ∀α̃′′ϕ′′. ((numϕ′′ ∪ α̃′′)→ . . .) for inc. In typing the application (ap
inc #t), α̃′′ would be instantiated as true ∪ β. However, instantiating α̃′′ would
not affect α̃′ in the type of add1, so no run-time check would be inserted. Sec-
tion 2.6 describes a better method of inserting checks that performs some extra
bookkeeping so that absent variables may be generalized.

To establish the correctness of our soft type system, we must show that all pro-
grams can be soft typed and that inserting run-time checks does not change the
behavior of programs other than to cause programs that would get stuck to yield
check instead. The following theorem establishes that all programs can be soft
typed.

Theorem 2.5.1 (Applicability). For all programs e, there exist e′, τ such that
⇒ e⇒ e′ : τ .

Proof. The proof proceeds by induction over the structure of typing deriva-
tions, using a strengthened induction hypothesis to accommodate terms with free
identifiers. A key fact used in the proof is that it is always possible to find a unify-
ing substitution for two types that contain no uses of or ø. Since none of the soft
type schemes for primitives nor the soft typing rules use these constants, it is always
possible to pick types for primitives such that a type derivation for the program
can be constructed. For a full proof, see the first author’s thesis [Wright 1994].

To relate the behavior of source programs to the behavior of transformed pro-
grams, let e v e′ mean that e′ may have checked operation(s) where e has unchecked
operation(s), but e and e′ are otherwise the same. Specifically, v is the reflexive,
transitive, and compatible7 closure of the following relation:

c v0 CHECK-c
e1 v0 e

′
1 e2 v0 e

′
2

(ap e1 e2) v0 (CHECK-ap e′1 e
′
2)

6The expression (begin e1 e2) abbreviates (ap (λ (x) e2) e1) where x /∈ FV (e2).
7The compatible closure of a relation R is {(C[e1], C[e2]) | (e1, e2) ∈ R for all contexts C}. A
context C is an expression with a hole in place of one subexpression.
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The following theorem establishes that inserting run-time checks does not change
the behavior of programs, other than to cause programs that would get stuck to
yield check instead.

Theorem 2.5.2 (Correspondence). For all e, e′, τ such that ⇒ e⇒ e′ : τ

e →7−→ v ⇔ e′ →7−→ v′ where v v v′;
e diverges ⇔ e′ diverges ;
e →7−→ check or e gets stuck ⇔ e′ →7−→ check.

Proof. Recall that evaluation has four possible outcomes (Lemma 2.1.1). A
program may (1) yield an answer v, (2) diverge, (3) yield check, or (4) get stuck.
We first show that a program that has fewer checked operations performs the same
evaluation steps, but may become stuck sooner.

Lemma 2.5.3 (Simulation). For e1 v e′1
(1) e1 7−→ e2 ⇒ e′1 7−→ e′2 and e2 v e′2;

e1 7−→ check ⇒ e′1 7−→ check;
e1 is stuck ⇒ e′1 7−→ check or e′1 is stuck.

(2) e′1 7−→ e′2 ⇒ e1 7−→ e2 and e2 v e′2;
e′1 7−→ check ⇒ e1 7−→ check or e1 is stuck.

Both parts of this lemma are proved by case analysis on expressions.
For the forward direction of the theorem, from ⇒ e ⇒ e′ : τ we have e v e′ by

induction and case analysis of the soft typing rules in Figure 4. By induction with
the first part of Simulation we have

e →7−→ v ⇒ e′ →7−→ v′ and v v v′;
e diverges ⇒ e′ diverges;
e →7−→ check ⇒ e′ →7−→ check;
e gets stuck ⇒ e′ →7−→ check or e′ gets stuck.

All that remains is to show that e′ cannot get stuck.
To show that e′ cannot get stuck, we show that e′ is typable in the static type

system of Section 2.3. Static Type Soundness ensures that e′ cannot get stuck. Let
S̃ be the substitution with domain AbsVar that takes all absent type variables to
ø and all absent flag variables to .

Lemma 2.5.4 (Static Typability). If A ⇒ e⇒ e′ : τ then S̃A ` e′ : S̃τ .

This lemma is proved by induction over the structure of the deduction A ⇒ e ⇒
e′ : τ . The proof exploits the close correlation between the type schemes assigned
by TypeOf and SoftTypeOf and between the static typing rules and the soft typing
rules. See Wright [1994] for a full proof of this lemma.

For the reverse direction of the theorem, again e v e′. By induction with the
second part of Simulation we have

e′ →7−→ v′ ⇒ e →7−→ v and v v v′;
e′ diverges ⇒ e diverges;
e′ →7−→ check ⇒ e →7−→ check or e gets stuck.

This completes the proof of Correspondence.
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(let ([inc (λ (z) (ap add1 z))])
(ap (λ (x)

(begin
(ap inc x)
(ap sub1 x)
(ap inc #t)))

1))

Fig. 5. Program generating spurious run-time checks.

Correspondence also ensures that soft typed programs do not get stuck.

Corollary 2.5.5 (Safety). For all e, e′, τ such that ⇒ e⇒ e′ : τ , program e′

does not get stuck.

2.6 More Precise Type Assignment

In this section, we present two extensions to our soft type system that enable more
precise type assignment and fewer run-time checks. The first extension permits
generalization of absent flag and type variables. The second extension provides
more subtyping by eliminating certain unnecessary absent variables and -flags.

2.6.1 Generalizing Absent Variables. Some uses of a let-bound procedure may
require that procedure to contain run-time checks, while other uses do not. For
example, in the expression

(let ([inc (λ (z) (ap add1 z))])
(ap inc 1)
(ap inc #t))

the application of inc to #t requires a run-time check at add1 within inc. The
application of inc to 1 by itself necessitates no run-time check. Cloning separate
versions of a let-bound procedure for each use would allow run-time checks to be
inserted only for uses of a procedure that require them. But uninhibited cloning is
impractical, as it can exponentially increase program size.

Instead, we insert run-time checks in a let-bound procedure if any use of the pro-
cedure requires a check. The need for a run-time check is indicated by instantiation
of an absent variable in the procedure’s type scheme to a nonempty type. To collect
run-time checks from different uses of a let-bound identifier, the soft type system
described above prevents generalization of absent variables at a let-expression and
thereby folds together the types of absent variables from different uses. Folding
types from different uses together can yield less precise types and cause spurious
run-time checks to be inserted. To illustrate how this occurs, consider the pro-
gram in Figure 5. This program defines a procedure inc, correctly applies inc to
x, correctly applies sub1 to x, and incorrectly applies inc to #t. In the absence of
applications, inc has type scheme

∀α1α2ϕ. ((numϕ ∪ α̃3)→ (num ∪ α1)) ∪ α2.

Note that the absent variable α̃3 is free in this type scheme. Without the application
(ap inc #t), this program requires no run-time checks as α̃3 is not instantiated
further. But with the application (ap inc #t) as above, two run-time checks are
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required: one at add1 and one at sub1. The run-time check at add1 is required
because the application (ap inc #t) instantiates α̃3 to true ∪ α̃4. Procedure inc
now has type scheme

∀α1α2ϕ. ((numϕ ∪ true ∪ α̃4)→ (num ∪ α1)) ∪ α2

Hence the application (ap inc x) forces x to have type num ∪ true ∪ α̃4, and a
spurious run-time check is inserted at sub1.

To avoid this kind of spurious run-time check, we extend the soft type system of
the previous section to permit safe generalization of absent variables. We generalize
absent variables as usual but record the set of types to which they are instantiated.
A run-time check is required whenever any instance of a generalized absent variable
is nonempty. Formally, we parameterize the soft type system over a set of substi-
tutions Ψ. In the following discussion, we assume that the bound type variables
of all type schemes in the deduction tree are distinct so that we can refer to these
type variables in Ψ. To permit generalization of absent variables, we replace rules
let⇒ and id⇒ with the following rules:

A ⇒ e1 ⇒ e′1 : τ1 A[x 7→ Close(τ1, A)] ⇒ e2 ⇒ e′2 : τ2
A ⇒ (let ([x e1]) e2)⇒ (let ([x e′1]) e′2) : τ2

(let2)

τ ≺S A(x) S|AbsVar ∈ Ψ
A ⇒ x⇒ x : τ

(var2)

The new let2 rule uses Close rather than SoftClose to generalize variables, thereby
closing over absent variables. The new var2 rule records the instances of absent
variables in Ψ. S|AbsVar means S restricted to absent variables. Finally, we add an
additional clause to the definition of Empty as follows:

Empty(s) =


false if ∃ f ∈ s such that f = ;
false if ∃ τ ∈ s such that τ = κ ~σ ∪ τ ′;
false if ∃ τ ∈ s such that τ = κf~σ ∪ τ ′ and ¬Empty(τ ′);
false if ∃ ν̃ ∈ s such that ¬Empty(Sν̃) for some S ∈ Ψ;
true otherwise.

An absent variable is empty if all of its (transitive) instances according to Ψ are
empty.

To illustrate the new system, consider the program in Figure 5 again with the
application (ap inc #t). Procedure inc now has type scheme

∀α1α2ϕα̃3. ((numϕ ∪ α̃3)→ (num ∪ α1)) ∪ α2

because the absent variable α̃3 is generalized by let2. The substitution set Ψ must
contain two substitutions, one for each use of inc:

Ψ = {{α̃3 7→ α̃5}, {α̃3 7→ true ∪ α̃4}}.
Now x has type num ∪ α̃5. A run-time check is still required at add1, but no
spurious run-time check is inserted at sub1.

2.6.2 Type Swapping. Recall that in the types assigned to primitives, the tails of
unions in positive positions (which correspond to procedure outputs) are ordinary
type variables. Flags in negative positions (which correspond to procedure inputs)
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are variables. Our soft type system relies on the generalization of these type and
flag variables to support subtyping. But the types inferred for user-defined proce-
dures do not always satisfy these properties. When a procedure’s input type has a
component with flag rather than a flag variable, that component must be present
in the types of all arguments passed to the procedure. Similarly, when a procedure’s
output union type ends in an absent type variable rather than an ordinary type
variable, the procedure’s output cannot be used as a wider type without forcing
run-time checks to be inserted.

For example, in the following recursive definition8

(letrec ([f (λ (x) (ap f (ap sub1 x)))])
f)

procedure f has soft type scheme

∀α2. ((num ∪ α̃1)→ α2) ∪ α̃3. (3)

(The absent variables α̃1 and α̃3 may be generalized if the extension from the
previous section is used, but our illustration extends to this case.) Type variable α̃3

is an absent variable because the application (ap f . . .) requires f to be a procedure.
Note that the -flag on num appears in a negative (input) position, and the absent
type variable α̃3 appears in a positive (output) position. Suppose f is used in a
context that mixes it with a nonprocedural value:

(letrec ([f (λ (x) (ap f (ap sub1 x)))]) (4)
(if e f #t))

Typing the if-expression requires instantiating α̃3 to true ∪ α̃4. The application
(ap f . . .) now receives an unnecessary run-time check because f’s modified type
scheme

∀α2. ((num ∪ α̃1)→ α2) ∪ true ∪ α̃4

now includes true .
In our type system, there are often several syntactic types that denote the same

set of values. For instance, the type

∀ϕα2α3. ((numϕ ∪ α̃1)→ α2) ∪ α3 (5)

denotes the same set of values as type (3). To see this, convert both to their
equivalent static types:

∀α2. ((num ∪ ø)→ α2) ∪ ø (static equivalent of 3)
∀ϕα2α3. ((numϕ ∪ ø)→ α2) ∪ α3 (static equivalent of 5)

In the denotational semantics for types in Appendix B, these two types denote the
same set of values. Hence it is safe to replace type (3) with type (5) in assigning
a type to f. Unlike type (3), this new type has no -flags in negative positions,
nor absent type variables in positive positions. By replacing the type for f in
example (4) with type (5) when generalizing f’s type, example (4) will no longer
require an unnecessary run-time check.

8We use the standard method of typing letrec-expressions where the bound variables are poly-
morphic only in the body of the letrec-expression and not in the bindings [Milner et al. 1990].
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In general, we can permit more precise type assignment by adding a type-swapping
rule swap` to our type system:

A ` e : τ1 T [[τ1]] = T [[τ2]]
A ` e : τ2

(swap`)

The function T [[·]] yields the set of values that its argument type denotes, according
to the denotational semantics in Appendix B. The antecedent T [[τ1]] = T [[τ2]] is a
semantic condition that requires τ1 and τ2 to denote the same set of values in all
type environments providing bindings for their free variables. We implement an
approximation to this rule by performing the following replacements when gener-
alizing types at let-expressions.

(1) Replace absent type variables that occur only positively in the type being gen-
eralized with fresh ordinary type variables.

(2) Replace -flags that occur only negatively in the type being generalized with
fresh ordinary flag variables.

As the above example indicates, this extension is particularly important for improv-
ing the types assigned to recursive procedures. Section 5.1 presents an example that
illustrates the effect of this extension for a real program.

2.7 Inserting Errors

The soft type system described so far inserts run-time checks at primitive operations
that might lead to errors. We can also use the information the system infers to
determine whether primitive operations are ever applied to valid arguments. If the
type for an occurrence of a primitive operation indicates that it may be applied
to an invalid argument but is never applied to a valid argument, this primitive
operation will fail if it is ever reached. This is a strong indication that the program
may contain a bug. We flag such primitive operations by inserting special run-time
checks called errors . An error is a run-time check that fails whenever it is applied.

To extend the semantics to include errors, for each primitive c we define an
error version ERROR-c and require that δ(ERROR-c, v) = check for all v. We also
add a new expression form (ERROR-ap e1 e2) for procedure applications that are
errors. We extend the semantics appropriately so that ERROR-ap applications
always terminate execution with answer check.

To determine whether a primitive operation is applied to a valid argument, we
track instantiations of all variables, rather than just absent variables as in Sec-
tion 2.6.1, by including all instantiating substitutions in Ψ:

τ ≺S A(x) S ∈ Ψ
A ⇒ x⇒ x : τ

(var3)

We extend Empty to work for ordinary type and flag variables:

Empty(ν) = Empty{Sν | S ∈ Ψ and ν ∈ Dom(S)}.

Now Empty can be used to determine whether that part of the data domain corre-
sponding to a variable in a primitive operation’s type is populated.
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As before, a primitive such as add1 that has type scheme

∀α1α2ϕα̃3. ((numϕ ∪ α̃3)→ (num ∪ α1)) ∪ α2

requires a run-time check if α̃3 is not empty. But now we insert an error rather than
an ordinary run-time check if the valid input domain of the primitive operation is
empty. The valid input domain of add1 is numϕ. Hence we insert ERROR-add1
rather than CHECK-add1 if flag variable ϕ is empty. For example, in the program

(let ([inc (λ (z) (ap add1 z))])
(ap inc 1)
(ap inc #t))

primitive add1 receives an ordinary run-time check because Ψ includes {ϕ 7→ }
from the application (inc 1). In the program

(let ([inc (λ (z) (ap add1 z))])
(ap inc #t))

ϕ is empty, and add1 receives an error :

(let ([inc (λ (z) (ap ERROR-add1 z))])
(ap inc #t))

Inserting ERROR-ap for applications of nonprocedures is similar.

2.8 Implementing Type Inference

As our type system extends the Hindley-Milner system with union types and re-
cursive types, we simply adapt conventional type inference algorithms for Hindley-
Milner type inference to our system. Rémy [1992] describes the basic algorithms
for unification, generalization, and instantiation of types in detail.

3. PRESENTING TYPES TO PROGRAMMERS

The soft type system developed in the previous section infers relatively precise types
for Core Scheme programs. But these types are difficult for programmers to inter-
pret due to the notational complexity introduced by (1) flags and (2) type variables
used to encode subtyping. To present more intelligible types to the programmer,
we define a translation to a set of presentation types. This translation eliminates
flags and type variables used to encode subtyping.

3.1 Presentation Types

Presentation types include recursive types and tidy union types, just as internal
types do. The presentation types (T ) for Core Scheme are

T ::= U (rec ([X1 U1] . . . [Xn Un]) U0)

where X denotes a type variable, and union types (U), basic types (B), and place
holders (N) are

U ::= B X (+ B1 . . . Bn
[
N1 . . . Nm X

]
)

B ::= num true false nil (cons U1 U2) (U1 −> U0)

N ::= (not num) (not true) (not false) (not nil) (not cons) (not −>).
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Unlike internal types, presentation types introduce recursive types using a set
of first-order recurrence equations. The type (rec ([X1 U1] . . . [Xn Un]) U0) binds
X1 . . . Xn in U1 . . . Un and U0 and denotes U0 where

X1 = U1
...

Xn = Un.

The order of the bindings is irrelevant, and we identify (rec () U) with U . The re-
cursive type (rec ([Y1 (+ nil (cons X1 Y1 ))]) Y1 ) denotes proper lists containing
elements of type X1 . This type occurs so frequently that we abbreviate it (list X1 )
(i.e., list is a type macro). By convention, we use names starting with Y for type
variables bound by recursive types.

Basic types correspond to the partitions of the data domain (Section 2.3). A
union type may consist of a single basic type, a single type variable, or several
basic types. We identify union types that differ only in the order in which their
components appear. We identify a union type (+ B) consisting of only a single basic
type with that basic type B . Similarly, we identify a union type (+ X ) consisting
of only a type variable with that type variable X .

As with internal types, presentation types must be tidy. Each of the tags num,
true, false , nil , cons , and −> may be used at most once within a union type
(+ B1 . . . Bn). When a union type includes a type variable, the type variable’s
universe implicitly excludes any types constructed from the tags of B1 . . . Bn. Place
holders serve to further constrain the universe of a type variable. If a union type
includes place holders preceding a type variable, as in the type

(+ B1 . . . Bn N1 . . .Nm X),

then the universe for the type variable X also excludes any types constructed from
the tags of N1 . . .Nm. For example, the type

(+ true false X1 )

includes #t and #f. The universe of X1 excludes the types true and false. The
type

(+ (not true) (not false) X2 )

does not include #t or #f. The universe of X2 is the same as that of X1 .
Type variables in a type may be free or quantified. Rather than use ∀ to indicate

that a type variable is quantified, type variables that begin with an uppercase letter
are considered quantified at the type in which they appear. Type variables that
begin with lowercase letters indicate free type variables.

Following are some simple Scheme procedures to illustrate presentation types.
The following procedure

(define f
(λ (x)

(if (null? x) ’() (+ 1 x))))

returns the empty list (which has type nil) if passed the empty list, and a number if
passed a number. It has type ((+ num nil) −> (+ num nil)). Another procedure
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with the same type is g:

(define g
(λ (x)

(if (null? x) 1 (begin (+ 1 x) ’()))))

It returns a number if passed the empty list, and the empty list if passed a number.
Procedure types may include a type variable shared between the input and result.

For example, procedures f2 and g2

(define f2
(λ (x)

(if (null? x)
’()
(if (number? x)

(+ 1 x)
x))))

(define g2
(λ (x)

(if (null? x)
1
(if (number? x)

’()
x))))

both have type

((+ num nil X1 ) −> (+ num nil X1 )). (6)

Such shared type variables indicate a modicum of dependence of the result on the
input. This type is interpreted as follows:

(1) Given a number, a procedure of type (6) may return a number or the empty
list.

(2) Given an empty list, a procedure of type (6) may return a number or the empty
list.

(3) Given an input of type X1 , which excludes num and nil , a procedure of type (6)
may return a number, the empty list, or a value of type X1 .

In the first two cases, a result of type X1 cannot be returned because the result
must belong to (+ num nil X1 ) for every type X1 . In particular, the result must
belong to (+ num nil) when X1 = (+), where (+) denotes the empty type that
has no values (corresponding to the internal type ø).

The following procedure from the introduction illustrates a presentation type that
involves a union type, a recursive type, place holders, and a shared type variable:

(define flatten
(λ (l)

(cond [(null? l) ’()]
[(pair? l) (append (flatten (car l)) (flatten (cdr l)))]
[else (list l)])))

This procedure has type

(rec ([Y1 (+ nil (cons Y1 Y1 ) X1 )])
(Y1 −> (list (+ (not nil) (not cons) X1 )))).

This type indicates that flatten takes as input any tree and returns a list of the
nonempty leaves of the tree. The leaves are any values in the input other than
pairs or the empty list.
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Following are the types for a few well-known Scheme functions. Several of these
types use extended procedure types (U1 . . .Un −>U0) of arity n.

map : ((X1 −>X2 ) (list X1 ) −> (list X2 ))
member : (X1 (list X1 ) −> (+ false (cons X1 (list X1 ))))
read : (rec ([Y1 (+ num nil . . . (cons Y1 Y1 ))])

(−> (+ eof num nil . . . (cons Y1 Y1 ))))

lastpair : (rec ([Y1 (+ (cons X1 Y1 ) X2 )])
((cons X1 Y1 ) −> (cons X1 (+ (not cons) X2 ))))

The higher-order function map takes a function f of type (X1 −>X2 ) and a list x
of type (list X1 ) and applies f to every element of x. It returns a list of the results.
Function member takes a key k and a list x and searches x for an occurrence of k.
It returns the first sublist starting with element k if one exists; otherwise it returns
false. Procedure read takes no arguments and parses an “s-expression” from an
input device. It returns an end-of-file object of type eof if no input is available.
Finally, lastpair returns the last pair of a spine of pairs.

Appendix A contains additional examples of presentation types.

3.2 Displaying Presentation Types

To translate inferred internal types into presentation types, we must eliminate (1)
flags and (2) type variables used to encode subtyping.

We define certain type and flag variables as useless with respect to a soft typing
deduction for a complete program. In defining useless variables, we assume that
all bound variables in the typing differ and are distinct from free variables. With
respect to soft typing ⇒ e⇒ e′ : τ , type or flag variable ν is useless if

(1) ν is never generalized; or
(2) ν is an absent variable; or
(3) ν is generalized in ∀ν. τ ′ (that appears in some type environment A in some

subdeduction of ⇒ e⇒ e′ : τ), and ν does not occur negatively in τ ′.

To eliminate variables used to encode subtyping, we replace all useless flag variables
with and all useless type variables with ø. To eliminate flags, we replace the
remaining flag variables with . As no flag variables remain, displaying presentation
types is now a simple matter of translating syntax. Components with flag translate
to basic types. Components with flag translate to place holders (not κ) or are
dropped entirely if the union ends in ø.

To illustrate the translation, consider the following internal type scheme for flatten

∀αϕ1ϕ2ϕ3ϕ4. (rec ([y1 nilϕ1 ∪ (consϕ2 y1 y1) ∪ α]
[y2 nil ∪ (cons (nilϕ3 ∪ (consϕ4 y1 y1) ∪ α) y2) ∪ α̃2])

y1 → y2 ∪ α̃3)

where we have informally used rec rather than µ for recursive types. Variables
α̃2, α̃3, ϕ3, ϕ4 are useless: α̃2 and α̃3 because they are absent variables (Condition
2), and ϕ3 and ϕ4 because they do not occur negatively in the above type (Condition
3). Replacing the useless variables with ø and as appropriate and replacing the
remaining flag variables ϕ1, ϕ2 with yields
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∀α. (rec ([y1 nil ∪ (cons y1 y1) ∪ α]
[y2 nil ∪ (cons (nil ∪ (cons y1 y1) ∪ α) y2) ∪ ø])

y1 → y2 ∪ ø).

Changing syntax, we have the presentation type

(rec ([Y1 (+ nil (cons Y1 Y1 ) X1 )]
[Y2 (+ nil (cons (+ (not nil) (not cons) X1 ) Y2 ))])

(Y1 −>Y2 )).

A presentation type resulting from this translation may not completely capture
all of the information present in the internal representation. When the internal
type has a flag variable that appears in both positive and negative positions, the
input-output dependence encoded by this flag variable is lost. For example, in the
type scheme

∀ϕ1ϕ2. (trueϕ1 ∪ falseϕ2 ∪ ø)→ (trueϕ1 ∪ falseϕ2 ∪ ø) ∪ ø (7)

flag variable ϕ1 indicates that this function returns #t only if it is passed #t. Flag
variable ϕ2 indicates that this function returns #f only if it is passed #f. These
dependencies are lost in translating this internal type to the presentation type
((+ true false) −> (+ true false)). The problem is that an internal type with flag
variables shared at different polarities denotes a conjunction of several partitions
(or basic types). For example, the above internal type (7) denotes the conjunction

((+ true false) −> (+ true false))
and (true −> true)
and (false −> false)
and ((+) −> (+)).

(Note that (+) is the empty presentation type corresponding to ø.) Cartwright and
Fagan [1991] suggest decoding types that share flag variables at different polarities
by enumerating all elements of the conjunction not implied by other elements. In
this case, type (7) would be printed as

(true −> true) and (false −> false).

But this approach quickly becomes unworkable as the number of shared flag vari-
ables increases.

Our translation of flag variables shared at different polarities preserves only one
element of the conjunction that the type denotes. The other elements of the con-
junction are discarded. The translation preserves the element in which all flag
variables are substituted to . This element describes the maximum input a proce-
dure can accept and the maximum output it can produce. For instance, we print
presentation type ((+ true false) −> (+ true false)) for the internal type (7). Ap-
pendix B shows by means of a denotational semantics of types as ideals that a
presentation type resulting from our translation approximates the internal type.
In other words, viewing types as upper bounds on sets of values, the presentation
type may describe a larger set than the internal type. In our example, presentation
type ((+ true false) −> (+ true false)) denotes a superset of the set that internal
type (7) denotes. Thus our translation is imprecise but correct.
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Since our presentation types do not precisely describe all possible typings for an
expression, we do not have principal presentation types. This is a source of imper-
fection in our illusion of a polymorphic union type system based on presentation
types (discussed in Section 2.2). Fortunately, this imperfection does not seem to
matter for practical programming.

4. ACCOMMODATING FEATURES OF REAL LANGUAGES

A practical soft type system must address the features of a real programming lan-
guage. This section adds several such features to our simple soft type system, with
emphasis on features of R4RS Scheme.

4.1 Procedure Types of Higher Arity

In Core Scheme, all procedures take exactly one argument. Many programming
languages provide procedures that accept different numbers of arguments. Scheme
procedures of the form (λ (x1 . . . xn) e) accept n arguments. Scheme procedures
of the form (λ (x1 . . . xn . xr) e) accept n or more arguments, with arguments
beyond the first n packaged as a list and bound to xr. Certain Scheme primitives
also accept trailing optional arguments. To handle procedures of higher arities, we
encode Scheme procedure types using argument lists.

We imagine Scheme procedures (λ (x1 . . . xn [.xr ]) e) as taking a single argument
list. Whether they are actually implemented this way is immaterial to the type
system. Before executing the body e, a procedure disassembles its argument list
into the identifiers x1 . . . xn and optionally xr. Applications (e0 e1 . . . en) implicitly
bundle their arguments e1 . . . en into argument lists. A λ-expression receives a run-
time arity check if it may be applied to the wrong number of arguments, i.e., if it
may be passed an argument list of the wrong length.

The binary type constructor (arg · ·) and the type constant noarg encode argu-
ment list types. The presentation type (T1 T2 T3 −> T4 ) now abbreviates

((arg T1 (arg T2 (arg T3 noarg))) −>∗T4 )

where −>∗ is the presentation form of the internal constructor→. For example, the
procedure map takes two arguments, the first of which is a procedure of one argu-
ment. Procedure map has type ((X1 −>X2 ) (list X1 ) −>X2 ), which abbreviates

((arg ((arg X1 noarg) −>∗X2 ) (arg (list X1 ) noarg)) −>∗ (list X2 )).

The types of procedures of unlimited arity use recursive types. For example, +
sums zero or more numbers and has type

+ : (rec ([Y1 (+ noarg (arg num Y1 ))])
(Y1 −>∗num)).

When translating to presentation types, we abbreviate recursive argument lists as
(&list T ). Hence + has the more succinct type

+ : ((&list num) −> num).

A consequence of this encoding is that run-time checks caused by applying pro-
cedures to the wrong number of arguments are distinguished from other run-time
checks. In practice, we find that such arity checks usually indicate program errors.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997.



A Practical Soft Type System for Scheme · 115

4.2 Assignment

Scheme includes assignment in several forms. Identifier bindings may be changed
by set!-expressions; the components of pairs may be mutated by the set-car! and
set-cdr! primitives; and elements of vectors may be changed by vector-set!. If our
type system did not include polymorphic let-expressions, incorporating assignment
would be easy. But as many authors have noted, naively combining Hindley-Milner
polymorphism and assignment leads to an unsound type system [Wright 1995].
Many solutions to this problem have been proposed [Damas 1985; Greiner 1993;
Hoang et al. 1993; Leroy 1992a; Leroy and Weis 1991; Talpin and Jouvelot 1992;
Tofte 1990; Wright 1992; Wright 1995]. We adapt our own solution [Wright 1995],
which is the simplest of all.

To accommodate mutable pairs and vectors, our solution restricts polymorphism
to syntactic values. That is, we replace Core Scheme’s static type inference rule for
let-expressions from Figure 3 with the following two inference rules.

A ` v1 : τ1 A[x 7→ Close(τ1, A)] ` e2 : τ2
A ` (let ([x v1]) e2) : τ2

(letval`)

A ` e1 : τ1 A[x 7→ τ1] ` e2 : τ2 e1 /∈ Val
A ` (let ([x e1]) e2) : τ2

(letexp`)

The first rule assigns a polymorphic type to x when the bound subexpression e1 is
a value. The second rule assigns a type that is not polymorphic to e1 when e1 is
not a value. With these modified rules, it is easy to establish type soundness for a
language that includes mutable pairs and vectors. With correspondingly modified
soft typing rules, the various correctness theorems for a soft type system follow.

For assignment to identifiers, Scheme provides a set!-expression (set! x e). Since
the first position of a set!-expression is an identifier, a particular set!-expression
can assign to only one identifier. Hence identifiers can be classified as assignable
and nonassignable according to whether they appear in the first position of a set!-
expression. To accommodate set!-expressions in a soft type system, we further
constrain the typing rules for let-expressions so that the types of expressions bound
to assignable identifiers are not generalized.

A ` v1 : τ1 A[x 7→ Close(τ1, A)] ` e2 : τ2 x is not assignable
A ` (let ([x v1]) e2) : τ2

(letval`)

A ` e1 : τ1 A[x 7→ τ1] ` e2 : τ2 e1 /∈ Val or x is assignable
A ` (let ([x e1]) e2) : τ2

(letexp`)

We discuss the general advantages of our method of integrating polymorphism
and assignment elsewhere [Wright 1995]. In the context of soft typing, the primary
advantage of our solution is simplicity: it requires no changes to the set of types.
All of the other solutions add notational complexity to types, which makes rea-
soning with types difficult. Furthermore, the additional notations introduced by
these systems would make decoding types into a simple presentation type language
difficult. For example, Tofte’s system [1990] would introduce two different kinds
of type variables and two different kinds of flag variables. While the two kinds
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of type variables would pose little problem, decoded components of union types
would likely require annotations to indicate the kind of flag variable they possess
internally. The extra annotations would amount to displaying the flags themselves.

4.3 First-Class Continuations

Scheme and some dialects of Standard ML provide the ability to access a pro-
gram’s continuation through the use of a call-with-current-continuation operator
(call/cc) [Clinger and Rees 1991]. This operator provides a powerful form of non-
local control that can be used to define exceptions, build backtracking algorithms,
schedule multiple threads of control, etc. Harper and Lillibridge [1993] discovered
that naively combining first-class continuations with polymorphism leads to an un-
sound type system, just as naively combining assignment and polymorphism does.
Fortunately, the same solution of restricting polymorphism to values works for both
assignment and first-class continuations [Wright and Felleisen 1994].

The primitive operator call/cc takes a functional argument and applies it to an
abstraction of the current continuation, packaged as a function. In our prototype,
call/cc has the type

(((X1 −>X2 ) −>X1 ) −>X1 ).

A use of call/cc may require a run-time check for either of two reasons: (1) the value
to which call/cc is applied (of type ((X1 −>X2 ) −>X1 )) is not a procedure of one
argument or (2) the continuation obtained (of type (X1 −>X2 )) is not treated as
a procedure of one argument. While the first case could be handled as usual by
inserting CHECK-call/cc, the second case cannot. To address the second case, we
replace each occurrence of call/cc in the program with the expression

(λ (v) (call/cc (λ (k) (v (λ (x) (k x)))))).

This transformation, a composition of three η-expansions, introduces an explicit
λ-expression for the continuation. The expression (λ (x) (k x)) will receive an arity
check if the continuation may be mistreated.

4.4 Pattern Matching

Many modern programming languages such as Standard ML, Haskell, and Miranda
include pattern-matching expressions. Pattern matching facilitates expressing com-
plicated local control decisions in a concise and readable manner. In ordinary stat-
ically typed languages, pattern matching is largely a notational convenience and
could be provided as a syntactic abbreviation (macro). But in a soft type system
where union types overlap, pattern matching provides an important additional ad-
vantage. Pattern matching enables the type checker to “learn” more precise types
from expressions that test the types of values.

To illustrate how pattern matching enables more precise type assignment, con-
sider the following expression that tests the type of x:

(let ([x (if e 0 (cons 1 ’()))])
(if (pair? x)

(car x)
x))
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From the expression (if e 0 (cons 1 ’())), x has type (+ num (pair num nil)). As
our type system assigns types to identifiers, the occurrence of x in (car x) has the
same type as every other occurrence of x. This type includes num; hence our soft
type system inserts a run-time check at car.

In contrast, the equivalent expression

(let ([x (if P 0 (cons 1 ’()))])
(match x

[(a . ) a]
[b b]))

uses pattern matching to test the type of x. The match-expression compares the
value of x against the patterns (a . ) and b. For the first pattern that matches the
value of x, the corresponding body is evaluated with any identifiers in the pattern
bound to corresponding parts of the value of x. The pattern (a . ) matches a pair,
binding a to (car x). The pattern b matches any value, binding b to the entire value
of x. This match-expression couples the type test to the decomposition of x. By
extending the type system to directly type pattern-matching expressions, we can
avoid unnecessary run-time checks.

Assigning types to pattern-matching expressions is more difficult in our soft type
system than for languages such as ML where types do not overlap. To type a
match-expression

(match e
[p1 e1]
. . .

[pn en])

we first compute a tidy type for each pattern pi. We then assemble the pattern
types into an input type for the match expression that covers all the pattern types.
If the type of the input expression e is larger than the combined pattern types, the
match-expression requires a run-time check. For instance, the expression

(match e
[() e1]
[(a . b) e2])

has input type (+ nil (cons X1 X2 )). If the type of e includes any types other than
nil or cons , this match-expression requires a run-time check.

Because of the restrictions of tidiness, the input type may express a larger type
than the set-theoretic union of the pattern types. For example, the least tidy type
that is an upper bound of the pattern types (cons true false) and (cons false true)
is

(cons (+ true false) (+ true false)).

Thus a match-expression such as

(match e
[(#t . #f) e1]
[(#f . #t) e2])
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requires a run-time check even if e has type (cons (+ true false) (+ true false)).
We call such match-expressions inexhaustive because the patterns do not exhaust
all possibilities covered by the assembled input type. To find a tidy upper bound
of the pattern types, we use a unification algorithm.

Our prototype supports a subset of a general pattern-matching extension that we
developed for Scheme [Wright and Duba 1993]. To improve the treatment of ordi-
nary Scheme programs that do not use pattern matching, our prototype translates
simple forms of type testing if-expressions into equivalent match-expressions.

4.5 Data Definition

Scheme provides 11 different kinds of atomic data values: #t, #f, ’(), numbers,
symbols, strings, characters, input ports, output ports, promises, and an end-of-file
object; and three kinds of composite data objects: pairs, vectors, and procedures.
Our prototype assigns each of these kinds of data a distinct type. But as these are
the only kinds of data objects that Scheme provides, our prototype will infer union
and recursive types over only these types.

To facilitate more informative and more precise type assignment, we include an
extension to Scheme to permit the definition of new kinds of data. The definition

(define-structure (κ x1 . . . xn))

declares a new type constructor κ with arity n. This definition also introduces
a value constructor make-κ, a predicate κ?, selectors κ-x1 . . .κ-xn, and mutators
set-κ-x1! . . . set-κ-xn! with the following types:

make-κ : (X1 . . . Xn −> (κ X1 . . . Xn))

κ? : (X1 −> (+ true false))

κ-x1 : ((κ X1 . . . Xn) −>X1 )
...

κ-xn : ((κ X1 . . . Xn) −>Xn)

set-κ-x1! : ((κ X1 . . . Xn) X1 −> void )
...

set-κ-xn! : ((κ X1 . . . Xn) Xn −> void )

A define-structure definition can be used at top level or as an internal defini-
tion within a λ- or let-expression. An internal define-structure expression is
nongenerative: repeated invocations of its containing λ-expression will construct
identical constructor, predicate, selector, and mutator procedures.

Programs that use define-structure are assigned more informative and more
precise types than those that encode data structures using lists or vectors. Without
using define-structure, an expression parser for Scheme that represented abstract
syntax elements as lists with a distinguishing symbol as the first element (’λ, ’app,
etc.) would have a type like

(rec ([Y1 (+ num nil false true char sym str (vec Y1 ) (cons Y1 Y1 ))])
(Y1 −>Y1 )).

Such a type conveys little useful information about the form of output the expres-
sion parser produces. But with judicious use of define-structure, we can build
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(rec ([Y1 (+ num nil false true char sym str (vec Y1 ) (box Y1 ) (cons Y1 Y1 ))]
[Y2 (+ (And (list Y2 ))

(App Y2 (list Y2 ))
(Begin (list Y2 ))
(Const (+ num nil false true char sym str) sym)
(If Y2 Y2 Y2 )
(Lam (list sym) (Body Y3 (list Y2 )))
(Let (list (Bind sym Y2 )) (Body Y3 (list Y2 )))
(Let* (list (Bind sym Y2 )) (Body Y3 (list Y2 )))
(Letr (list (Bind sym Y2 )) (Body Y3 (list Y2 )))
(Or (list Y2 ))
(Prim sym)

(Delay Y2 )
(Set! sym Y2 )
(Id sym)
(Vlam (list sym) sym (Body Y3 (list Y2 )))
(Match Y2 Y4 )
(Record (list (Bind sym Y2 )))
(Field sym Y2 )
(Annotation Y1 Y2 ))]

[Y3 (list (+ (Define (+ false sym) (box Y2 ))
(Defstruct

sym
(cons sym Y1 )
sym
sym
(list (+ (Some sym) None))
(list (+ (Some sym) None))
(list (+ false true)))))]

[Y4 (list (Mclause Y5 (Body Y3 (list Y2 )) (+ false sym)))]
[Y5 (+ (Pconst (+ num char sym str) sym)

(Pvar sym)
(Pobj sym (list Y5 ))
Pany
Pelse
(Pand (list Y5 ))
(Ppred sym))])

(Y1 −> Y2 ))

Fig. 6. Expression parser type.

procedures that have quite informative types. For example, we can represent dif-
ferent abstract syntax elements with different kinds of data:

(define-structure (Id name))
(define-structure (Lam args body))
(define-structure (App fun args))

...

With these definitions, Figure 6 shows the type inferred by our prototype for its
own expression parser. Y1 is the input type to the parser, an “s-expression.” Y2
is the output type of the parser, an abstract syntax tree. Y3 is a list of definitions
(either define or define-structure) that may appear in a λ- or let-expression.
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Pattern-matching expressions use a list of match clauses Y4 , and the first element
of each clause is a pattern Y5 .

As we discussed in Section 4.2, our soft type system restricts polymorphism
to syntactic values. Since define-structure introduces mutation procedures for
constructed values, the values built by defined constructors cannot be considered
syntactic values. Hence our prototype also includes an explicit facility for defining
new immutable forms of data. The definition

(define-const-structure (κ x1 . . . xn))

declares a new type constructor, a value constructor, a predicate, and selectors, just
as define-structure does, but no mutators. Applications of a constructor make-κ
that was introduced by define-const-structure to operands which are syntactic
values can be treated as syntactic values. Programs using define-const-structure
may be assigned more precise types than programs using define-structure. (Al-
ternatively, the type system could implicitly treat as immutable any fields of a
define-structure definition for which the corresponding mutator is never used.)

4.6 Type Annotations

Practical static type systems that support type inference usually include a facility
for explicitly specifying the type of an identifier or expression. Explicit type anno-
tations allow the programmer to embed type information in the source code that
will be automatically verified when the program is changed. This information is
helpful to programmers reading or maintaining a program. Type annotations can
also be used to restrict the applicability of a polymorphic procedure by specifying
a more specific type.

In a static type system, type annotations can be included by simply adding a
new expression form (: τ e) with the following typing rule:

A ` e : τ τ is closed
A ` (: τ e) : τ

Semantically, an explicit type annotation behaves as an identity function. Its typing
rule rejects programs for which the subexpression e does not have the indicated type.

Including explicit type annotations in a soft type system is not as straightforward.
The problem is what to do with annotations that are not satisfied. Bearing in
mind our desire to ensure safe execution, we see two extreme choices, with hybrid
solutions between the two.

At one extreme, we may consider inserting run-time checks at unsatisfied an-
notations. Unfortunately, this solution is generally infeasible. While it is easy to
insert a run-time check for a simple annotation such as (: num e), some annota-
tions can require arbitrarily expensive run-time checks. For instance, the annotation
(: (list num) e) may require an unbounded number of number? tests, as e could be
an arbitrarily long list. Inserting run-time checks for higher-order annotations such
as (: (num −> num) e) is impossible without altering the semantics of the program.

At the other extreme, we can treat type annotations the same way as in a static
type system. When an expression does not satisfy a type annotation, reject the
program. While this solution seems less in keeping with soft typing, it treats all
type annotations uniformly, whether they are simple, complex, or higher-order.
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Our prototype adopts a hybrid solution. For any annotation that is not satisfied,
our type checker inserts an error (see Section 2.7). Any program that reaches an
unsatisfied annotation will terminate with an error message.

4.7 Generic Arithmetic

Scheme’s number system supports arithmetic on representations of small integers,
arbitrarily large integers, rational numbers, complex numbers, and inexact numbers.
These representations are organized into a natural hierarchy, and the arithmetic op-
erators accept values from all representations in the hierarchy. Each arithmetic op-
erator must dispatch on the representations of its arguments, and these dispatches
are often referred to as “type checks.” It seems natural to ask whether soft typing
can be extended to eliminate these dispatches.

To express the different number representations, we might replace the type con-
structor num with the constructors smallint , bigint , rational , complex , and float .
Constants would then be assigned appropriate types according to their magnitude
and syntactic form. Arithmetic operators would use the subtyping provided by
flag variables to accept inputs of any numeric type. But the output types of most
arithmetic operators would have to be imprecise. Even if called with inputs of type
smallint , the operator + may yield results in smallint or bigint . Hence the type
assigned to a small integer induction variable of a loop that uses + to increment
the induction variable would include bigint . This would preclude elimination of the
dispatch in +. Consequently, the soft typing framework described here is too weak
to effectively eliminate dispatches in generic arithmetic operators.

5. EXPERIENCES WITH A PROTOTYPE SOFT TYPE SYSTEM

In this section, we present some experiences and performance results gathered with
Soft Scheme, a prototype implementation of our soft type system for R4RS Scheme.
Soft Scheme infers types for Scheme programs and inserts run-time checks by a
source-to-source transformation from Scheme to Scheme.

5.1 The Utility of Type Information

We present an example to illustrate the utility of type information for reasoning
about Scheme programs and for finding bugs. Our example concerns boolean for-
mulae that have the representation

b ::= #t #f (λ (x) b).

We represent a closed boolean formula which is either true or false with Scheme’s #t
and #f constants. We represent an open formula as a curried procedure that accepts
one argument, an assignment for a free variable, and returns a boolean formula.
Following are some examples of boolean formulae with possible representations:

true : #t
¬x : (λ (x) (not x))
x ∧ y : (λ (x) (λ (y) (and x y)))
x ∨ (y ∧ z) : (λ (x) (λ (y) (λ (z) (or x (and y z)))))

A tautology checker is a procedure that accepts a formula and determines whether
it is true for all assignments to its free variables. The following procedure is a
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tautology checker for boolean formulae:

(define taut
(λ (b)

(match b
[#t #t]
[#f #f]
[ (and (taut (b #t)) (taut (b #f)))])))

For a closed formula, taut returns true or false as appropriate. For an open formula,
taut tries both #t and #f as assignments for the free variable and recursively calls
itself to test the simplified formula.

Soft Scheme inserts no run-time checks for the following program that exercises
taut:

(define taut . . .)
(define a (taut #t))
(define b (taut not))
(define c (taut (λ (x) (λ (y) (and x y)))))

Soft Scheme assigns a, b, and c the type (+ true false). The tautology checker itself
has type

(rec ((Y1 (+ true false ((+ true false) −>Y1 ))))
(Y1 −> (+ true false)))).

That is, taut takes input Y1 and returns either true or false. The input Y1 is the
type of a boolean formula. Y1 is either true, false, or a procedure representing an
open formula that takes true or false to Y1 .

The absence of run-time checks in the above program verifies that it will not suffer
a run-time failure. While impossibility of failure is certainly reassuring information,
large programs usually contain some run-time checks. The types of a program’s top-
level definitions can also indicate program bugs. For example, consider the following
incorrect variation of the above program:

(define wrong-taut
(λ (b)

(match b
[#t #t]
[#f #f]
[ (and (wrong-taut (b #t)) (wrong-taut #f))])))

(define a (wrong-taut #t))
(define b (wrong-taut not))
(define c (wrong-taut (λ (x) (λ (y) (and x y)))))

This program requires no run-time checks. The applications of wrong-taut all yield
the same values for a, b, and c as they do for the correct program. But wrong-taut’s
type

(rec ((Y1 (+ true false (true −>Y1 ))))
(Y1 −> (+ true false)))
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indicates that something is amiss. Open formulae should be procedures that accept
type (+ true false), not just true. Applied to (λ (x) x), wrong-taut yields #f rather
than #t as a tautology checker should.

To further illustrate the utility of type information, consider the following pro-
gram that uses the correct version of taut:

(define taut . . .) (8)
(define d (taut taut))

Soft Scheme inserts no run-time checks for this program. The type checker assigns
type (+ true false) to d. It turns out that taut itself represents the boolean formula
x if some of its functionality is ignored (the last clause [ (and . . .)] of its definition).
Hence taut is a valid input to taut, and the application (taut taut) returns #f. We
can see that the application (taut taut) makes sense with an informal understanding
of presentation types as sets. Observe that the type of an argument should be a
subset of the input type the function expects. In this case, from the presentation
type for taut, we should have

(Y1 −> (+ true false)) ⊆ Y1 .

Expanding Y1 we obtain

(Y1 −> (+ true false)) ⊆ (+ true false ((+ true false) −>Y1 )),

which simplifies to

(Y1 −> (+ true false)) ⊆ ((+ true false) −>Y1 ).

Since a containment τ1 → τ2 ⊆ τ ′1 → τ ′2 implies τ2 ⊆ τ ′2 and τ ′1 ⊆ τ1 (recall that →
is contravariant in its first argument), we need only

(+ true false) ⊆ Y1

which certainly holds.
The application (taut taut) illustrates the importance of our type-swapping ex-

tension for obtaining more precise types (Section 2.6.2). Without this extension,
Soft Scheme inserts three run-time checks into program (8) as follows:

(define taut
(λ (b)

(match b
[#t #t]
[#f #f]
[ (and (CHECK-ap taut (b #t)) (CHECK-ap taut (b #f)))])))

(CHECK-ap taut taut)

These run-time checks indicate that the applications of taut perform unnecessary
tests to ensure that their function positions evaluate to procedures. The problem
is that without type swapping, the Rémy encoding used in our internal types does
not provide the subtyping containment (Y1 −> (+ true false)) ⊆ Y1 . From the
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definition of taut alone, the internal type inferred for taut is9

∀ϕ1ϕ2ϕ3α1α2.
(rec ([Y1 trueϕ1 ∪ falseϕ2 ∪ ((true ∪ false ∪ α1)→ϕ3 Y1 ) ∪ α̃3])

(Y1 → (true ∪ false ∪ α2)) ∪ α̃4).

Typing the application (taut taut) requires replacing α̃4 with true ∪ false ∪ α5.
From its type, taut now appears to be either true, false, or a procedure. Hence the
type checker inserts run-time checks where taut is applied. Since α̃4 is an absent
variable occurring in only a positive position, we can swap it with a fresh type
variable. With type swapping, taut has type

∀ϕ1ϕ2ϕ3α1α2α6.
(rec ([Y1 trueϕ1 ∪ falseϕ2 ∪ ((true ∪ false ∪ α1)→ϕ3 Y1 ) ∪ α̃3])

(Y1 → (true ∪ false ∪ α2)) ∪ α6).

The application (taut taut) does not cause the type checker to insert any unneces-
sary run-time checks.

5.2 Overcoming the Limitations of Static Typing

The tautology checker illustrates a limitation of statically typed languages that our
soft type system overcomes. Our representation of boolean formulae is convenient
for reusing existing procedures such as not and taut itself. But this representation
confounds conventional static type systems like that of Standard ML because con-
ventional static type systems do not permit mixing boolean and procedural values.
To write taut in ML, we must introduce a new datatype formula, injections from
booleans and procedures into formula, and projections out of formula. We can
simulate the new datatype in Soft Scheme by declaring the variants of the datatype
with our data definition facility:

(define-const-structure (C )) (define-const-structure (O ))
(define C make-C) (define O make-O)

Our intention is to use C to inject a closed formula into the imaginary datatype, and
O to inject an open formula into the datatype. Given these definitions, we can write
ml-taut and its applications so as to never mix boolean values with procedures:

(define ml-taut
(λ (b) (match b

[($ C #t) #t]
[($ C #f) #f]
[($ O p) (and (ml-taut (p #t)) (ml-taut (p #f)))])))

(define a (ml-taut (C #t)))
(define b (ml-taut (O (λ (x) (C (not x))))))
(define c (ml-taut (O (λ (x) (O (λ (y) (C (and x y))))))))
(define d (ml-taut (O (λ (x) (C (ml-taut (C x)))))))

9Here we are not using the extension that permits generalizing absent variables. With that
extension, α̃3 and α̃4 are generalized. The application (taut taut) does not need a run-time check,
but two unnecessary run-time checks that can be eliminated by type swapping are still inserted
in the body of taut.
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datatype formula =

C of bool

| O of bool -> formula

fun ml_taut (C true) = true

| ml_taut (C false) = false

| ml_taut (O p) = (ml_taut (p true)) andalso (ml_taut (p false))

val a = ml_taut (C true)

val b = ml_taut (O (fn x => (C (not x))))

val c = ml_taut (O (fn x => (O (fn y => (C (x andalso y))))))

val d = ml_taut (O (fn x => (C (ml_taut (C x)))))

Fig. 7. Standard ML version of taut.

The type of ml-taut confirms that booleans and procedures are never mixed:

(rec ((Y1 (+ (O ((+ true false) −>Y1 )) (C (+ true false)))))
(Y1 −> (+ true false))))

Figure 7 presents the Standard ML version of this program. Since the ML program
explicitly declares formula as a new type where Soft Scheme uses Y1 , the ML
tautology checker has type formula −> bool .

Observe that in order to make taut pass the ML type checker, we introduced
injections and projections both in taut itself and in the data values passed to taut.
These injections and projections add both unnecessary semantic complexity and
run-time overhead. The difficulty of inserting the necessary injections and projec-
tions into data values to be passed to taut impedes reusing existing procedures as
boolean formulae. Hence an ML programmer would most likely choose a different
representation for boolean formulae than ours.

Cartwright and Felleisen [1994] present a more complex example that illustrates
how our soft type system overcomes the limitations of traditional static type sys-
tems. They implement an extensible framework for specifying denotational seman-
tics of programming languages as a set of layered interpreter fragments. Each
layer provides parsing, evaluation, and printing routines for different language
facilities. An interpreter for a complete language is constructed by composing
appropriate layers of interpreter fragments. Cartwright and Felleisen have fully
implemented their framework in Soft Scheme using parameterized modules for in-
terpreter layers. In contrast, Steele [1994] attempts to use a similar approach in
Haskell [Hudak et al. 1992] to compose interpreters from pseudomonads. His pro-
gram implements interpreter layers as association-lists of functions. While the pro-
gram is semantically correct and individual layers are typable, Haskell’s static type
system is unable to type the complete program that composes layers to build an
interpreter. Steele wrote a special-purpose program simplifier to simplify the func-
tion application that composes interpreter layers such that the simplified program
is typable.

5.3 Optimizing Dynamically Typed Programs

Determining the benefit of soft typing to the programming process is difficult.
There is no easy way to perform a controlled study of programmer productivity.
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Program Size (lines) Type checking time (seconds)

Tak 23 0.06
Takl 40 0.08
Cpstak 41 0.07
Div 50 0.10
Ctak 55 0.08
Deriv 58 0.21
Destruct 64 0.15
Fft 116 0.19
Dderiv 127 0.27
Traverse 156 0.29
Puzzle 165 0.33
Interp 197 0.37
Lattice 217 0.28
Browse 218 0.37
Check 275 0.82
Takr 520 1.23
Boyer 607 2.54
Graphs 623 0.55
Nbody 873 1.71
Dynamic 2312 3.95
Slatex 2793 3.21
Nucleic 3329 4.91
SoftScheme 5923 18.17

Fig. 8. Type checking times on 120MHz Pentium.

But several aspects of our prototype are amenable to rigorous measurement and
analysis. We can analyze the frequency with which the prototype inserts run-time
checks; we can determine the effect of soft typing on execution time by comparing
soft typed programs with conventional dynamically typed programs; and we can
measure the speed at which our prototype analyzes typical programs.

5.3.1 Minimizing Run-time Checking. To investigate the effectiveness of our
prototype at minimizing run-time checking, we applied Soft Scheme to a suite
of programs ranging in size from a few dozen lines to several thousand. Fig-
ure 8 indicates the sizes of the test programs in lines of source code and the
times required to type check them under Chez 5.0 on a 120MHz Pentium with 64
megabytes of physical memory. Interp implements an extensible denotational frame-
work [Cartwright and Felleisen 1994]. Unlike the other programs in our benchmark
suite, Interp was engineered specifically for Soft Scheme. The purely functional
program Lattice enumerates the lattice of maps between two lattices. Check is a
simple polymorphic type checker. Graphs counts the number of directed graphs
with a distinguished root and k vertices, each having out-degree at most 2. This
program makes extensive use of mutation and vectors. N-Body is a Scheme im-
plementation [Zhao 1987] of the Greengard [1987] multipole algorithm for com-
puting gravitational forces on point-masses distributed uniformly in a cube. Dy-
namic is an implementation of a tagging optimization algorithm [Henglein 1992a]
for Scheme. Slatex is a package for typesetting Scheme code.10 Nucleic is a con-

10Obtained from the Scheme Repository at cs.indiana.edu.
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Fig. 9. Static and dynamic frequencies of run-time checks.

straint satisfaction algorithm used to determine the three-dimensional structure of
nucleic acids [Feeley et al. 1994]. It is floating-point intensive and uses an object
package implemented using macros and vectors. SoftScheme is our soft type checker
soft typing itself. The remaining programs in our test suite are Scheme versions of
most of the Gabriel Common Lisp benchmarks.11

Figure 9 summarizes run-time checking for our test suite. The percentages indi-
cate how frequently our system inserts run-time checks compared to conventional
dynamic typing. The static frequency expressed by the left-hand graph indicates
the incidence of run-time checks inserted in the source code. The dynamic fre-
quency expressed by the right-hand graph indicates how often the inserted checks
are executed. For example, Soft Scheme places run-time checks at 9% of the po-
tential sites for run-time checks in the Boyer benchmark. Only 5% of the potential
sites Boyer encounters during execution involve run-time checks.

Some programs such as Div, Fft, Browse, and Nucleic have a higher dynamic
incidence of run-time checks than their static incidence. These programs have run-
time checks in frequently executed inner loops. Fft is particularly notable: only
20% of its sites require run-time checks, yet 40% of sites encountered at execution
require run-time checks. We examine Fft in detail in the next section.

Some programs such as Destruct, Check, Boyer, and Graphs exhibit a lower dy-
namic incidence of run-time checks than their static incidence. These programs
have run-time checks in less frequently executed code. While more precise type

11Ibid.
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Fig. 10. Execution times for 150MHz Mips R4400.

assignment could reduce the static incidence of run-time checks, this reduction is
unlikely to have much effect on the execution times of these programs. At the
extreme, Tak, Cpstak, Interp, and Takr have no run-time checks at all because they
are statically typable in our underlying static type system.

5.3.2 Execution Time. Figures 10 and 11 indicate the breakdown of execution
times for our test programs under Chez Scheme 5.0 on a 150MHz Mips R4400 and
a 120MHz Pentium. The times are normalized with respect to execution time un-
der Chez Scheme’s optimize-level 2, which performs some optimizations but retains
run-time checks to ensure safe execution. The black section indicates the fraction
of execution time that each program spends doing useful work. This fraction was
measured by using optimize-level 3 to turn off all run-time checks. The grey and
white sections indicate time spent performing run-time checks. Together, they in-
dicate the time the benchmarks spend performing run-time checks under ordinary
dynamic typing, i.e., the difference between optimize-level 2 and optimize-level 3.
Since Chez Scheme uses local analysis at optimize-level 2 and higher to safely elimi-
nate some run-time checks, these programs would spend an even greater fraction of
execution time performing run-time checks with a naive compiler. The grey section
indicates the time each benchmark spends performing run-time checks under soft
typing. This fraction was measured by using optimize-level 3 to turn off all run-time
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Fig. 11. Execution times for 120MHz Pentium.

checks other than those explicitly inserted by Soft Scheme.12 Thus the white section
indicates the execution time soft typing saves by eliminating unnecessary run-time
checks. On average, this amounts to 11% on the Mips machine and 14% on the
Pentium machine.

Soft Scheme significantly decreases time spent performing run-time checks for
most of the benchmarks, even though these programs were not written with soft
typing in mind. Whether this reduction leads to a significant performance improve-
ment depends on how often the code containing the eliminated checks is executed.
For example, programs such as Takl, Fft, Traverse, and Check do not expose enough
type information to enable the type checker to remove critical run-time checks. Pro-
grams such as Tak, Cpstak, Ctak, Destruct, Interp, and Takr spend no appreciable
fraction of time performing run-time checks. But Puzzle and Dderiv illustrate the
dramatic benefit (speedup by a factor of two or more) that can be obtained when
run-time type checks are removed from inner loops.

5.4 From Prototyping to Production

Soft type systems facilitate both the rapid development of software prototypes
and the evolution of prototypes into robust and efficient production programs. In
this section, we illustrate how Soft Scheme may be used to evolve prototypes into

12Optimize-level 3 still retains argument count checks and some checks in primitives such as assoc
and member.
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efficient production programs. We take six programs that exhibit potential for
improvement from Figures 10 and 11. Guided by the information produced by Soft
Scheme, we apply simple semantics-preserving transformations to rewrite Takl, Div,
Fft, Traverse, Slatex, and Nucleic to make them run significantly faster.

5.4.1 Fft. Inspecting the run-time checks inserted by Soft Scheme into Fft, we
see that all of the checks are vector operations applied to the variables ar and ai, such
as (CHECK-vector-ref ai i). The checks are necessary because both ar and ai have
type (+ num (vec num)). In the Fft source, we find the following code fragment:

(define fft
(λ (areal aimag)

(let ([ar 0] [ai 0])
(set! ar areal)
(set! ai aimag)
...

The arguments areal and aimag to fft are always vectors. The variables ar and ai are
immediately assigned these vectors and never reassigned. Hence num in the types
of ar and ai stems only from their useless initial value 0. By simplifying the code
as follows:

(define fft
(λ (areal aimag)

(let ([ar areal] [ai aimag])
...

our type checker is able to assign type (vec num) to both ar and ai. Soft Scheme
inserts no run-time checks at all in the modified program.

5.4.2 Div. Div contains a procedure that constructs lists of length n:

(define create-n
(λ (n)

(let loop ([n n][a ’()])
(if (= n 0)

a
(loop (− n 1) (cons ’() a))))))

Soft Scheme infers type (num −> (list nil)) for this procedure. Two similar proce-
dures consume the lists created by create-n, and each of these consumers contains
a run-time check at cddr. The code for one of the consumers follows:

(define recursive-div2
(λ (l)

(if (null? l)
’()
(cons (car l) (recursive-div2 (CHECK-cddr l))))))

This procedure clearly consumes only even-length lists. The same is true of the
other consumer. But the result type of create-n includes both odd- and even-length
lists, so the consumers require run-time checks at cddr.
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If we unroll the loop in create-n as follows

(define create-n-even
(λ (n)

(let loop ([n n][a ’()])
(if (= n 0)

a
(loop (− n 2) (cons ’() (cons ’() a)))))))

our type checker infers the type

(rec ((Y1 (+ nil (cons nil (cons nil Y1 ))))) (num −>Y1 ))

for create-n-even. This type expresses the fact that the constructed lists are of even
length. When we replace create-n with create-n-even, the consumers that assume
their inputs are even length lists no longer require run-time checks.

5.4.3 Takl. Takl contains the following routine to determine whether one list is
shorter than another:

(define (shorterp x y)
(and (not (null? y)) (or (null? x) (shorterp (cdr x) (cdr y)))))

For this routine, our prototype infers the following imprecise type:

(rec ((Y1 (cons X1 Y1 )) (Y2 (cons X2 Y2 )))
(Y1 Y2 −> (+ false true)))

The problem is that our simple heuristic to transform if-expressions to match-
expressions does not work for the and- and or-expressions in this code.

Rewriting shorterp in a different style13

(define (shorterp x y)
(cond [(null? y) #f]

[(null? x) #t]
[else (shorterp (cdr x) (cdr y))]))

enables our prototype to infer a more precise type for shorterp:

((list X1 ) (list X2 ) −> (+ false true))

This transformation eliminates two of the five run-time checks from Takl. The
remaining run-time checks cannot be safely eliminated because proving their safety
requires sophisticated reasoning about the lengths of lists.

5.4.4 Traverse, Slatex, and Nucleic. Traverse, Slatex, and Nucleic are larger pro-
grams that construct complicated data structures. They use vectors to encode these
data structures, since they are written in R4RS Scheme. As Section 4.5 discusses,
our prototype assigns rather imprecise types to programs written in this manner.

By carefully rewriting these programs to use define-structure, we can achieve
more precise type assignment and many fewer run-time checks. The resulting code
is also clearer and more abstract than the original. The sizes of these programs
preclude discussion of the specific transformations in this article.

13cond is a macro that expands to a series of if-expressions.
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5.4.5 Improved Execution Times. Figures 12 and 13 present the improved exe-
cution times of the modified test programs.14 The light grey region indicates exe-
cution time that the original program spent performing run-time checks, but which
is eliminated in the modified program. The dark grey region indicates time that
the modified program still spends in run-time checks. In most cases, we were able
to rewrite the programs to eliminate the majority of run-time-checking overhead.

5.5 Problems

Soft Scheme represents the first attempt to construct a practical soft type system.
While we believe our experiment has been largely successful, there are several as-
pects of our prototype that could be improved through either better soft typing
technology or by changing the programming language.

5.5.1 Precision. As the problem of assigning precise static types to programs is
undecidable, any type system must yield conservatively approximate types.15 We
believe that the intuitive models which programmers use to reason about types take
this approximation into account. But we have identified several problems with our
system that result in less precise types than our intuition leads us to expect.

14We were unable to make our version of Nucleic run faster than the original program because
the original source uses macros to inline vector-ref operations, while our more abstract version
of Nucleic makes procedure calls to structure accessors. The overhead of these procedure calls is

quite high. Hence these results compare our version of Nucleic against a modified version of the
original that makes procedure calls to vector-ref rather than using macros.
15A precise type for a procedure such as add1 would completely specify its output for every
possible input, i.e., (add1 0) = 1, (add1 1) = 2, etc.
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Type Representation. Our tidy union types can express most common Scheme
types with sufficient precision. But our system is unable to assign satisfactory types
to four of the R4RS Scheme library procedures. These are map and for-each for an
arbitrary number of arguments; apply with more than two arguments; and append
when the last element is not a list. Soft Scheme assigns imprecise types to these
procedures that sometimes result in unnecessary run-time checks.

For map and for-each, which can apply an N -ary function to N lists, our internal
types cannot represent the requirement that the number of lists match the arity of
the function. That is, a precise type for map would be

((X1 −>X0 ) (list X1 ) −>X0 )
and ((X1 X2 −>X0 ) (list X1 ) (list X2 ) −>X0 )
and ((X1 X2 X3 −>X0 ) (list X1 ) (list X2 ) (list X3 ) −>X0 )
and . . .

Dzeng and Haynes [1994] adapt Rémy’s encoding technique to give a precise type to
variable-arity functions such as Scheme’s map. It seems straightforward to extend
our soft type system to include their encoding. But as their system relies on an
explicit type annotation and does not infer this most precise type when given a
definition of map, it is not clear whether extending Soft Scheme to include their en-
coding would be worthwhile. We have found that simply defining a family of map-k
functions, one for each arity, is an adequate solution for practical programming.

The function apply takes two or more arguments. The first is a function to apply;
the last is a list of argument values; and any intervening arguments are additional
individual argument values, i.e.,

(apply f a1 . . . an l) = (apply f (cons a1 . . . (cons an l). . .)).

Our method of typing variable-arity procedures has directional bias. All elements
in the tail of a variable-length argument list must have the same type, as the tail
of an argument list is represented by a recursive type. Hence Soft Scheme assigns
to apply the internal type

((argϕ1 ((arglist α1)−>∗ ϕ2α2) (argϕ3 (list α1) noarg))−>∗ α2) ∪ ø,

where (arglist α1) and (list α1) are abbreviations for recursive types. This type
causes apply to receive a run-time check if it is passed any individual arguments
a1 . . . an, although the application succeeds. Provided that apply is not used in a
higher-order manner, this run-time check is easily eliminated by transforming the
application as indicated above.

The problem with apply could be solved by making pairs immutable. Recall
that argument lists are encoded using the type constructors arg and noarg . The
mutability of cons prevents its use for argument lists because type constructors for
mutable values must be treated differently from type constructors for immutable
values in algorithms such as type swapping (Section 2.6.2). If pairs were immutable,
we could assign a reasonable type to apply by eliminating the type constructors arg
and noarg and using the type constructors cons and nil for argument lists. The
internal type for apply would be

((consϕ1 (α1−>∗ϕ2α2) α1) −>∗ α2) ∪ ø, (9)
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where α1 matches the entire argument list of the passed function f to the remainder
of the argument list passed to apply.

The function append suffers a similar problem to apply. It takes a variable number
of arguments, the last of which is special:

(append l1 . . . ln v).

Given lists l1 . . . ln and an arbitrary value v, append appends the lists together,
placing v in the tail of the list (where v need not be a list). Soft Scheme assigns
append the internal type

((arglist (list α)) −>∗ (list α)) ∪ ø,

which forces the last argument v to have a list type. When v is not a list, an
unnecessary run-time check results. Unfortunately, we have no solution for this case.

The difficulties with representing types for certain Scheme functions entices one
to consider a more expressive type system, such as that of Aiken et al. (see Sec-
tion 6.1.2). But aside from the algorithmic inefficiency of systems like theirs, more
complicated types will be more difficult for programmers to understand. Overall,
we feel that our type representation provides a good balance between simplicity
and expressiveness.

Reverse Flow. Several typing rules require that the types of two subexpressions
be identical. For instance, if-expressions require their then- and else-clauses to have
the same type (see rule if in Figure 3). Applications of λ-expressions require the
types of arguments to match the types the function expects (see rules ap and Cap
in Figure 3). Consequently, type information can flow counter to the direction of
value flow. This reverse flow of type information results in imprecise types and
unnecessary run-time checks. To illustrate reverse flow, consider the program

((λ (f y)
(f y)
(add1 y))

(λ (x) (if x x #f))
1)

Reverse flow at the if-expression forces the type of x to include false . Reverse flow
again where the expression (λ (x) (if x x #f)) is passed to f forces f to have the type
((+ false T ) −> (+ false T )) for some as yet unspecified type T (which turns out
to be num). Yet again, reverse flow at the application (f y) forces y to have type
(+ false T ). The inclusion of false in the type of y forces a run-time check at the
application (add1 y), despite the fact that y is never bound to #f.

Reverse flow arises when the modicum of subtyping provided by our adaptation of
Rémy encoding fails. In the above example, the encoding fails to provide subtyping
because f is not polymorphic. After rewriting the example as follows

(let ([f (λ (x) (if x x #f))])
((λ (y)

(f y)
(add1 y))

1))
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f is assigned the polymorphic internal type

∀α. ((false ∪ α) −> (false ∪ α)) ∪ ø.

Type swapping (see Section 2.6.2) replaces this type with the internal type

∀ϕα. ((falseϕ ∪ α) −> (false ∪ α)) ∪ ø,

which provides subtyping on the input to f. Hence no reverse flow occurs at the
application (f y), and no unnecessary run-time check is inserted at (add1 y).

Addressing the reverse-flow problem requires more sophisticated type inference
than unification-based algorithms yield. To this end, we have investigated several
adaptations of structural subtyping [Kaes 1992; Mitchell 1991]. Structural subtyp-
ing permits subtyping at all function applications and handles if-expressions more
precisely. By permitting more subtyping, a soft type system based on structural
subtyping could infer more precise types. However, our experience to date with such
systems has been disappointing. The inference algorithms we have constructed for
structural subtyping with union and recursive types consume exorbitant amounts
of memory and execution time for even small examples. The problem is that the
known techniques for implementing structural subtyping do not preserve sharing
between representations of the same type. This sharing is crucial to the efficient
implementation of unification-based type inference algorithms [Rémy 1992], partic-
ularly in the presence of recursive types.

Other possible solutions to the reverse-flow problem are type inference methods
based on constraint solving systems such as those of Aiken et al. [1994] and Heintze
[1993]. Section 6 discusses these systems in more detail.

Assignment. Because assignment interferes with polymorphism, and therefore
with subtyping, assignment can be a major source of imprecise types (see Sec-
tion 4.2). Scheme includes both assignable identifiers and mutable data structures.

Assignments to local identifiers seldom cause imprecise types. We postulate
two reasons for this. First, identifiers cannot alias with other identifiers or data
structures; hence an assignment to a particular identifier only affects the typing
of that identifier. Second, locally bound identifiers are seldom used in a way that
requires polymorphism or subtyping.

Assignments to global identifiers are more problematic. Since assignable global
identifiers are not polymorphic, subtyping does not apply at uses of such identifiers.
Hence these identifiers can accumulate large, imprecise types. Furthermore, the
program development environments usually associated with Scheme assume that
all global identifiers are assignable. As it accepts only complete programs, our
prototype can permit subtyping for global identifiers that are not assignable. But
we see no way of limiting the types of assignable global identifiers other than by
carefully engineering programs to use such identifiers in a disciplined way that
promotes precise type assignment.

In R4RS Scheme, pairs and vectors are the only forms of data structures. Both
are mutable. In the absence of sophisticated analysis, we must assume that any
pair or vector can alias with any other pair or vector. This limits the precision with
which ordinary Scheme programs can be typed. Soft Scheme provides the syntactic
form define-const-structure to enable defining immutable data structures that
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can be typed more precisely. To reduce the potential for imprecise typing, we would
prefer to make Scheme’s pairs immutable. Programmers would then be required to
explicitly construct reference cells where mutable values are required. This is the
solution that Standard ML adopted and has proven practical for accommodating
both polymorphism and assignment in the same language. As a pragmatic hack
to improve typing of existing Scheme programs, our prototype assumes that pairs
are immutable if the mutation procedures set-car! and set-cdr! do not appear in the
program.

5.5.2 Type Size. While our presentation types are concise and easy to under-
stand, especially in comparison with types such as those that Aiken et al.’s [1994]
system infers, the types our system infers for procedures can still be quite large.
Figure 6 illustrates a conceptually simple type that occupies an entire page.

Ordinary static type systems solve this problem in two ways. Both solutions
could be adapted to a soft type system. The first solution involves introducing
abbreviations for commonly used types. In its full generality, this solution requires
detecting subgraphs of a type that are isomorphic to the expansion of some abbrevi-
ation. The routine that prints types detects such subgraphs and contracts them to
the abbreviated name. Soft Scheme does this for the fixed set of abbreviations list ,
arglist , and −> . It should be feasible to permit user-defined type abbreviations,
provided that the number of abbreviations is fairly small.

The second solution to keeping types small involves introducing a new type name
when a new datatype is declared. The Standard ML declaration

datatype metaval = Int of int
| List of metaval list
| Closure of metaval -> metaval

introduces constructors named Int, List, and Closure. All of these constructors
yield values of type metaval . But adapting this solution to soft typing invokes
the problems associated with type annotations (see Section 4.6). The constructor
Int can only be applied to values of type int ; the constructor List can only be
applied to lists of metaval ; and the constructor Closure can only be applied to
functions from metaval to metaval . The run-time checks required for applications of
constructors such as List can be very expensive, while the run-time checks required
for applications of constructors such as Closure are uncomputable.

5.5.3 Explaining Run-time Checks. As Tofte [1990, p. 33] and others have ob-
served, with a static type system one must understand why a program fails to type
check in order to repair it. A similar situation exists for programming with a soft
type system. While soft type systems do not reject programs, it is still necessary
for programmers to be able to predict the type system. Understanding why a run-
time check has been inserted or why a procedure has a particular type is essential
to writing programs that have good syntactic type assignment and few run-time
checks.

Our type system is somewhat more difficult to predict than the Hindley-Milner
system. In part, this is because our system includes extra features—union types
and recursive types—that the Hindley-Milner system does not have. The encoding
that our system uses to reduce subtyping to polymorphism also contributes to the
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problem of predicting the type system. Subtyping does not always occur when
it “should.” Our method of handling assignment by generalizing only syntactic
values makes it fairly easy to determine when a procedure will not be assigned a
polymorphic type and hence when subtyping will not apply. But flag variables may
fail to be generalized even for syntactic values (because they are free in the type
environment). Converting internal types to presentation types can obscure the fact
that a flag variable is not generalized.

Initial experimentation with Soft Scheme seems to indicate that the type system
can be predicted reasonably well at the level of presentation types. Our prototype
includes a crude facility to help find the cause of a run-time check, and as a last
resort, the prototype can display internal types.

5.6 Directions for Future Work

So far, our research has concentrated on designing a practical soft type system to
insert run-time checks into complete programs. Several promising directions for
future research lie in finding other uses for the type information inferred by a soft
type system and in analyzing incomplete programs.

5.6.1 Applications of Type Information. Soft Scheme uses type information only
to optimize the placement of run-time checks. We expect that there are several other
important uses for this type information.

Static type systems often couple types to data representations. By doing so,
different types of data can be given specialized representations that the underlying
hardware may be able to manipulate more efficiently. For example, integers may be
represented as 32-bit twos-complement values, while real numbers are represented
as 64-bit floating-point values. In our type system, values whose union type contains
only one component are never mixed with values of a different type, except through
polymorphic functions. A technique similar to Leroy’s [1992b] method for unboxing
values in ML could permit unboxing values of singular union types. Unboxing
certain kinds of values could also simplify the problem of integrating Soft Scheme
with other languages, such as C.

We also believe that type information such as Soft Scheme infers has the poten-
tial to guide many kinds of program-global optimizations. Various Lisp compil-
ers [Beer 1987; Kaplan and Ullman 1980; Ma and Kessler 1990; MacLachlan 1992]
and some object-oriented systems [Chambers 1992; Kind and Friedrich 1993] use
iterative flow analysis techniques to determine type information for optimization.
Only recently has the idea of using type information derived from type inference
for optimization received much attention in the literature.

5.6.2 Applications to Static Type Checking. To design a static type system, one
partitions the data domain into disjoint datatypes, just as we discussed for a soft
type system in Section 2.2. But as static type systems without subtyping or union
types insist that each expression be assigned a single datatype, the partitions must
be larger to yield a useful language. For instance, a single partition or type list
must include both nil and pairs to permit useful manipulations of lists. Larger
partitions mean that more operations include implicit run-time checks even when
their arguments have the correct type. With lists, the operations car and cdr,
which have types ((list X1 ) −> (list X1 )) and ((list X1 ) −>X1 ) respectively, must
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include implicit run-time checks to ensure that their argument is not nil.
A dynamic type system can be seen as a special case of a static type system

with only one datatype. Hence soft typing should be applicable to the individual
datatypes of a statically typed language. It should be feasible to adapt our method
of inferring type information to determine type information for variants in languages
such as Standard ML. This type information could be used to eliminate variant
checks and suppress unnecessary warning messages corresponding to the eliminated
variant checks.

5.6.3 Programming Environment Issues. A programming environment should
provide support for separate compilation and interactive program development.
These are really different facets of the same problem: how to incrementally update
information about a program that was obtained through costly analysis. This anal-
ysis information may include type information, intermediate code, or even machine
code and linkage information.

A complete compiler for a language that includes a soft type system would con-
sist of several phases: type assignment, run-time check insertion, optimization, and
code generation. Modifying our type assignment method to compute type infor-
mation incrementally should be straightforward. We envision using a technique
related to but simpler than one that Shao and Appel [1993] proposed for separately
compiling ML. Types are inferred independently for separate program modules or
definitions. Where a module refers to identifiers from some other module, each
external reference is assigned a fresh type variable. After type inference for the
module is completed, the types of the external references represent the minimum
requirements the module makes of these identifiers. Type information for a complete
program is assembled from the types of individual modules by a minor variation on
the usual type inference algorithm. Each external reference type is unified with the
type of the corresponding definition, or with an instance of the definition’s type if
the definition is polymorphic.

Modifying the phase that inserts run-time checks to be incremental is more diffi-
cult. Whether a primitive within a module requires a run-time check may depend
on how that primitive is used. But some run-time checks can be determined to be
unnecessary regardless of how the module is used. For example, in the definition

(define f
(λ (x)

(if (number? x)
(add1 x)
0)))

the primitive add1 does not require a run-time check regardless of how f is used.
This is easy to detect from the fact that the absent type variable in the input to
add1 does not appear in the type of f. In general, an incremental run-time check
insertion algorithm could determine for each primitive that it

(1) needs a run-time check,

(2) does not need a run-time check, or

(3) may need a run-time check, depending on how its containing module is used.
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In the third case, deciding whether the run-time check is necessary requires type
information for the complete program.

Incremental optimization and code generation for a language that includes soft
typing are mildly more difficult. These phases must accommodate the fact that
run-time checks may become necessary or unnecessary as incremental changes are
made to the program.

6. RELATED WORK

In this section we place our work in the context of other work on soft typing,
optimization, and static type systems.

6.1 Soft Type Systems

While our soft type system is the first practical soft type system to be designed
for a realistic programming language, several other soft type systems have been
developed for idealized programming languages. Our work began as an attempt
to implement and improve a soft type system developed by Cartwright and Fagan.
Coincidentally with our work, Aiken, Wimmers, and Lakshman developed a soft
type system for the functional language FL.

6.1.1 Cartwright and Fagan. Our practical soft type system is based on a soft
type system designed by Cartwright and Fagan [1991] and Fagan [1990] for an
idealized functional language. Cartwright and Fagan discovered how to incorporate
a limited form of union type in a Hindley-Milner polymorphic type system. Their
method is based on an early encoding technique Rémy [1989] developed to reduce
record subtyping to polymorphism. In Cartwright and Fagan’s system (henceforth
called CF ), types consist of either a type variable or a union that enumerates every
available type constructor. That is, CF types are defined as

τ ::= α κf1
1 ~τ1 ∪ . . . ∪ κfnn ~τn (CF Types)

where {κ1, . . . , κn} is the set of all type constructors.
Since a type variable cannot appear in a union with type constructors in a CF

type, one of our types such as

((false ∪ α)→ (false ∪ α)) ∪ ø

must be represented in CF by enumerating all other type constructors in place of
α:

(false ∪ numϕ2 ∪ . . . ∪ (consϕn−1 αn−1 α
′
n−1) ∪ (αn →ϕn α′n))→

(false ∪ numϕ2 ∪ . . . ∪ (consϕn−1 αn−1 α
′
n−1) ∪ (αn →ϕn α′n)).

Hence some types have a much larger representation in Cartwright and Fagan’s
system than they do in our system. These larger types make type inference much
less efficient than in our system. Moreover, the larger types do not have natural
decodings into presentation types. Finally, the CF representation does not support
incremental definition of new type constructors because union types must enumer-
ate all constructors.

Aside from the representation of types, our soft type system differs significantly
from Cartwright and Fagan’s soft type system in several other ways.
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(1) Our system presents types to programmers in a simple presentation type lan-
guage that is easy to interpret.

(2) Our system addresses various features of realistic programming languages (see
Section 4), such as assignment, first-class continuations, pattern matching, data
definition, and type annotations. Cartwright and Fagan’s system deals with
only a functional language with a simple case statement.

(3) We use an operational approach rather than a denotational approach to spec-
ifying the language semantics. As a result our theorems are simpler to prove,
and our theory can incorporate imperative features such as assignment and con-
tinuations. At present, we are not aware of any established techniques based on
denotational semantics for proving type soundness for imperative languages.

(4) Finally, we have implemented our system for a realistic programming language.
We have therefore been able to evaluate the practicality of soft typing as a tool
to improve programming productivity (see Section 5).

6.1.2 Aiken, Wimmers, and Lakshman. Aiken et al. [1994] and Aiken and Wim-
mers [1993] recently developed a sophisticated soft type system for the functional
language FL. Their system supports a rich type language that includes union types,
recursive types, intersection types, conditional types, and subtype constraints.
Their type inference method is based on a procedure for solving type constraints of
the form τ1 ⊆ τ2 by reducing compound constraints to simpler ones. Constraints
are generated by applications. For example, where e1 has type τ1 and e2 has type
τ2, the application (e1 e2) generates the constraints τ1 ⊆ τ3 → τ4 and τ2 ⊆ τ3.
Their theory provides for inserting run-time checks at primitive operations whose
input constraints are not satisfied.

While it seems clear that Aiken et al.’s formal system assigns more precise types to
some programs than our system does, their implementation discards some solutions
for the sake of efficiency. Consequently, their implementation can yield less precise
types than ours for some simple programs. Even with this concession to efficiency,
both their timing results and the complexity of their algorithm indicate that it is
significantly slower than ours. The inferred types are probably too complicated
to be easily interpreted by programmers. Nevertheless, if their system can be
extended to include imperative features (assignment and control) and implemented
with acceptable performance, we believe that it could serve as a good basis for a
stronger soft type system for Scheme.

6.2 Systems for Optimizing Tagging and Checking

A number of approaches for optimizing tagging and checking in dynamically typed
languages have been developed. More recent efforts are based on type systems.
Earlier methods were based on flow analysis techniques.

6.2.1 Systems with a Maximal Type. Several researchers have developed static
type systems that extend a static type discipline with a maximal type >, which is
assigned to phrases that are otherwise untypable. These systems insert tagging and
checking coercions to ensure type safety. Henglein’s [1992b] system for optimizing
run-time tagging and checking inserts only atomic coercions such as num ; > and
>; num that are small, constant time operations. Systems proposed by Gomard
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[1990] and Thatte [1988; 1990] and studied by O’Keefe and Wand [1992], as well
as a more general system proposed by Henglein [1992a], insert compound coercions
such as (list num) ; > and > ; (list num) that may be much more expensive
than atomic coercions.

These systems are designed primarily to optimize tagging and checking, but not
to determine useful type information for programmers. Henglein has implemented
a prototype of his system that inserts tagging and checking operations into Scheme
programs. He reports encouraging results with eliminating unnecessary tagging and
checking. But as his prototype assigns the type (list T ) to both pairs and the empty
list, his prototype does not remove run-time checks at car or cdr. Nevertheless, to
investigate whether Henglein’s system or one like it might be suitable for soft typing,
we adapted Henglein’s prototype to report the types of all identifiers defined by a
program. Running the prototype on its own source code, we found that 50% of all
globally defined identifiers had type > or > → >. Fully 95% of all locally defined
names had one of these uninformative types. As Henglein’s prototype is a fairly
typical Scheme program, it appears that the types Henglein’s system assigns are
not sufficiently informative to meet the goals of soft typing.

While systems with a maximal type may be able to type all Scheme programs,
they provide little information of use to the programmer about the shapes of data
structures or the behaviors of procedures. Furthermore, for Gomard’s and Thatte’s
systems, it is not clear how to construct a semantics for programs written by the
user. It appears that the programmer must understand the coercion insertion
algorithm to understand the meaning of a program.

6.2.2 Systems with Union Types. Henglein and Rehof [1995] extended Hen-
glein’s system for optimizing run-time tagging and checking to include polymor-
phism and union types like ours. They use their system to translate Scheme pro-
grams to typable ML programs, injecting values tagged into an ML datatype with
variants for the different Scheme types. By inferring both tag checking and tagging
coercions, their system permits using untagged data representations (uninjected
ML values). Coercions need not be placed only at primitive operations, and the
system may add coercion parameters to procedures. By adding enough coercion
parameters to a polymorphic procedure that its safety can be ensured in any con-
text, the system supports separate compilation. But inserting checking coercions at
locations other than primitive operations can change the semantics of a program.
Furthermore, it seems likely that passing many extra coercion parameters will have
a significant run-time penalty.

Aiken and Fahndrich [1995] show how to use set constraints to infer tagging
and checking coercions. Their system subsumes Henglein’s original system and is
quite similar to Henglein and Rehof’s system. Since type inference is performed by
solving set constraints, this work suggests the possibility of using more powerful
constraint-based systems to infer tagging and checking coercions.

6.2.3 Flow Analysis. The designers of optimizing compilers for Scheme and Lisp
have developed type recovery procedures based on iterative flow analysis [Beer 1987;
Kaplan and Ullman 1980; Ma and Kessler 1990; MacLachlan 1992]. Some object-
oriented languages use similar methods [Chambers 1992; Kind and Friedrich 1993].
The information gathered by these systems is important for program optimization,
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but it is generally too coarse to serve as the basis for a soft type system. Few of the
systems infer polymorphic types, and none accommodate higher-order functions in
an accurate manner. Most infer types that are simple unions of type constants and
constructions. And regrettably, we have been unable to find any precise formal
definitions of these kinds of systems.

Shivers [1991] developed a family of techniques based on abstract interpretation
to perform flow analysis for Scheme-like languages. His techniques accommodate
higher-order functions and can be used to perform type recovery. The simplest
technique (0CFA) is too imprecise to yield useful types. For a technique suitable for
type recovery (1CFA), Shivers reports times of several seconds under interpreted
T (a dialect of Scheme) to infer type information for procedures of less than 20
lines. However, to infer types for an entire program, the type recovery algorithm
analyzes each procedure with respect to each call to that procedure [Shivers 1991,
p. 121]. Hence this algorithm is likely to be impractical for large programs that
make extensive use of higher-order functions.

Heintze [1993] developed a flow analysis method for higher-order languages based
on ignoring dependencies between identifiers that is essentially equivalent to 0CFA
[Jagannathan and Weeks 1994]. He reports reasonable execution times to analyze
ML programs of several thousand lines. With polyvariance extensions to increase
precision, we believe this analysis can be used to perform useful type recovery.
Flanagan and Felleisen [1995] have implemented a soft type system for Scheme
based on this analysis and are currently investigating its effectiveness.

Jagannathan and Weeks [1994] developed a parameterizable flow analysis frame-
work based on 0CFA. Recently, Jagannathan and Wright [1995] implemented a
specific instance of this framework using a technique called polymorphic splitting
to emulate polymorphism. Their analysis generally yields much more precise types
than our soft typing framework, although the analysis is much more expensive in
both time and space than our prototype. They use their analysis only to optimize
run-time checks and do not attempt to produce useful type information for pro-
grammers. If useful type information could be extracted from their analysis, it could
serve as a foundation for a more precise, albeit more expensive, soft type system.

6.3 Static Typing

Statically typed languages provide all the benefits of types and type checking that
we seek, but at the price of rejecting programs that do not satisfy the type sys-
tem’s arbitrary constraints. Because type checking is a form of program verifi-
cation, any static type checker will reject some programs that do not actually
misinterpret data. These programs satisfy all the abstract criteria of type cor-
rectness and are often useful and concise. They are rejected merely because of
the inherent incompleteness of the type checker. This compromises the ability of
statically typed languages to address new paradigms such as object-oriented pro-
gramming and nourishes a never-ending search for better static type systems. Con-
sequently, realistic statically typed languages such as C usually have some means
of circumventing the type checker. These type loopholes make debugging and writ-
ing portable code more difficult. Modern type-safe languages such as Standard
ML [Milner et al. 1990] and Modula 3 [Cardelli et al. 1989] have sophisticated type
systems that include polymorphism and subtyping to achieve greater flexibility, but
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even implementations of these languages invariably include loopholes, such as the
procedure System.Unsafe.cast in Standard ML of New Jersey.

Several authors [Abadi et al. 1991; 1995; Leroy and Mauny 1993] have developed
extensions that add a dynamic type to the ML type system. These extensions pro-
vide an explicit operation that pairs a statically typed value with its type to yield
a self-describing value of type dynamic. Values of type dynamic can be passed
to and returned from procedures and even exported beyond the programming lan-
guage environment. A value of type dynamic can only be used by projecting it back
to its static type, which requires a run-time check. This projection operation is usu-
ally incorporated in the programming language by extending the pattern-matching
construct. Because of their explicit nature, dynamic type extensions are primarily
useful for limited applications such as persistent storage. These extensions do not
alter the fundamental character of static type systems.

Freeman and Pfenning [1991] and Freeman [1993] have developed a system of re-
finement types for ML that permits more precise type assignment within datatypes.
Their system does not expand the set of typable programs. Rather, with the aid of
explicit annotations, refinement types permit more precise static checking of the use
of variants within datatypes. Refinement types enable the compile-time detection
of more errors and the elimination of some compiler warnings and run-time checks
for variants. But again, refinement types do not alter the fundamental character of
static type systems.

7. CONCLUSION

Our prototype uses an internal representation for types that smoothly extends
the Hindley-Milner type discipline with limited union types and recursive types.
This representation is expressive, compact, efficient to compute, and supports the
incremental definition of new type constructors. When viewed as a static type
system, our internal type system satisfies the usual type soundness property (well-
typed programs cannot go wrong). When used as a soft type system with an
algorithm that inserts run-time checks, a correspondence property ensures that soft
typed programs exhibit the same behavior as their dynamically typed counterparts.

The presentation types our system provides to programmers are natural and easy
to interpret. While principal presentation types do not exist, the translation from
internal types to presentation types ensures that the presentation type displayed
for an expression approximates its internal type. That is, a presentation type may
denote a larger subset of the data domain than its corresponding internal type, but
the reverse cannot happen.

Our prototype accommodates the “grubby” features of realistic programming
languages, such as uncurried procedures of fixed and variable arity, assignment,
and first-class continuations. Support for pattern matching, data definition, and
immutable data facilitates more precise type assignment. The prototype does not
include support for separate compilation.

On a suite of benchmarks that range in size up to 6000 lines of Scheme code, our
prototype typically eliminates 90% of the run-time checks that are necessary for
safe execution without soft typing. Consequently, most soft typed programs run
10 to 15% faster than their dynamically typed counterparts, and a few run more
than twice as fast. For programs of less than 1000 lines, type analysis usually takes
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less than a second. For our largest benchmark (the prototype itself), type analysis
takes 18 seconds on a 120MHz Pentium.

For existing Scheme programs, Soft Scheme is valuable as an optimization tool to
safely eliminate run-time checks. It is less useful as a diagnostic aid to programmers
for two reasons. First, the types it assigns to expressions and identifiers are often too
imprecise to be useful to the programmer. Second, our prototype does not include
a suitable mechanism for explaining to the programmer why a particular run-time
check has been inserted. But when programs are developed with soft typing in
mind, our prototype can provide valuable guidance in structuring programs to
avoid run-time checks.

Soft Scheme and the pattern matching and data definition extensions for Scheme
are freely available from http://www.neci.nj.nec.com/homepages/wright.html .

APPENDIX

A. EXAMPLES

Following are some simple functions with their inferred types. None of these
functions require run-time checks if they are passed appropriate arguments.

(define map ; apply a function to every element of a list
(λ (f l)

(if (null? l)
’()
(cons (f (car l)) (map f (cdr l))))))

;; ((X1 −>X2 ) (list X1 ) −> (list X2 ))

(define member ; search for a key in a list
(λ (x l)

(match l
[() #f]
[(y . rest) (if (equal? x y) l (member x rest))])))

;; (X1 (list X2 ) −> (+ false (cons X2 (list X2 ))))

(define lastpair ; find the last pair of a nonempty list
(λ (s)

(if (pair? (cdr s))
(lastpair (cdr s))
s)))

;; (rec ([Y1 (+ (cons X1 Y1 ) X2 )])
;; ((cons X1 Y1 ) −> (cons X1 (+ (not cons) X2 ))))

(define subst* ; substitution for trees
(λ (new old t)

(cond [(eq? old t) new]
[(pair? t) (cons (subst* new old (car t))

(subst* new old (cdr t)))]
[else t])))

;; (rec ([Y1 (+ (cons Y1 Y1 ) X1 )])
;; (Y1 X2 Y1 −>Y1 ))
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(define append ; concatenate argument lists
(λ x

(cond [(null? x) ()]
[(null? (cdr x)) (car x)]
[else (let loop ([m (car x)])

(if (null? m)
(apply append (cdr x))
(cons (car m) (loop (cdr m)))))])))

;; ((arglist (list X1 )) −>∗ (list X1 ))

(define taut? ; test for a tautology
(λ (x)

(match x
[#t #t]
[#f #f]
[ (and (taut? (x #t)) (taut? (x #f)))])))

;; (rec ([Y1 (+ false true ((+ false true) −>Y1 ))])
;; (Y1 −> (+ false true)))

;; from Aiken et al. [1994]
(define Y ; least fixed point combinator

(λ (f)
(λ (y)

(((λ (x) (f (λ (z) ((x x) z))))
(λ (x) (f (λ (z) ((x x) z)))))

y))))
;; (((X1 −>X2 ) −> (X1 −>X2 )) −> (X1 −>X2 ))
(define last ; find last element of a list

(Y (λ (f)
(λ (x)

(if (null? (cdr x))
(car x)
(f (cdr x)))))))

;; ((cons Z1 (list Z1 )) −> Z1 )

B. SEMANTICS OF TYPES

We used operational semantics throughout this article because we believe that
language semantics and proofs of type soundness are often expressed most clearly in
an operational framework [Wright and Felleisen 1994]. But denotational models of
types as sets of values can also lend valuable intuition to reasoning about programs
and types. In this appendix, we present two denotational models of types as sets
of values for Core Scheme. We present both a denotational model of internal types
and presentation types, and we show that the denotation of an internal type is
always contained in the denotation of its presentation form.
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B.1 Internal Types

We use the ideal model developed by MacQueen et al. [1986] to assign meaning to
the internal types of Section 2.3.

The value domain is the solution of the usual reflexive domain equation

D = N⊥ ⊕T⊥ ⊕ F⊥ ⊕ I⊥ ⊕ (D⊗D)⊕ [D→sc D]⊥ ⊕E⊥ ⊕W⊥

where ⊕ is the coalesced tagged sum construction on domains; ⊗ is the strict
Cartesian product construction on domains; →sc is the strict continuous function
space construction on domains; [ ]⊥ is the lifting construction on domains; N⊥ is the
flat domain of numbers; T⊥ is the domain {#t}⊥; F⊥ is the domain {#f}⊥; I⊥ is
the domain {’()}⊥; E⊥ is the domain {check}⊥; and W⊥ is the domain {wrong}⊥.
Other flat domains can be included as desired. E⊥ introduces an error element that
is returned by invalid applications of checked operations. Our semantics includes
check in every type. W⊥ introduces an error element for invalid operations of
unchecked operations. The error element wrong is not a member of any type. The
product (⊗) and function space (→sc) constructors are strict in both check and
wrong, as well as ⊥.

The meaning of a type τ is an ideal over D. An ideal is a set of values that is
closed downward under approximations, and closed upward to least upper bounds
of consistent sets of values. Let I(D) be the set of ideals of D. To assign an ideal
to open types, we need an interpretation for the type’s free variables. A function
ρ ∈ TypeEnv maps the free type variables of a type to certain ideals of D and the
free flag variables to the set { , }:

TypeEnv = TypeVar{κ1,...,κn} → I(D¬{κ1,...,κn})
∪ FlagVar → { , }.

The labels {κ1, . . . , κn} on type variables that enforce tidiness restrict the sets
of ideals that type variables may denote. Let Dκ name that subset of D that
corresponds to type constructor κ, i.e., Dnum = N⊥, Dcons = D ⊗ D, D→ =
[D→sc D]⊥, etc. D¬{κ1,...,κn} is that subset of D that excludes elements from Dκ1

through Dκn other than check and ⊥. That is,

D¬{κ1,...,κn} = (D−
⋃

κ∈{κ1,...,κn}
Dκ) ∪E⊥.

For notational convenience, let ρ( ) = and ρ( ) = for any type environment ρ.
Given an assignment for the free variables of a type, the semantic function T :

Type → TypeEnv → I(D) defined in Figure 14 maps a type to an ideal of D. We
define the product (×) and exponentiation (→) functions on ideals as follows:

I × J = I ⊗ J
I → J = {f ∈ D→sc D | f(I) ⊆ J}

and we identify their results with the corresponding subsets of D.16 Where f :

16Technically, I × J and I → J are only isomorphic to corresponding subsets of D; see MacQueen
et al. [1986, p. 104].
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T [[ø]]ρ = E⊥
T [[numf ∪ τ ]]ρ = (if ρ(f) = then N⊥ else ∅) ∪ T [[τ ]]ρ

T [[truef ∪ τ ]]ρ = (if ρ(f) = then T⊥ else ∅) ∪ T [[τ ]]ρ

T [[falsef ∪ τ ]]ρ = (if ρ(f) = then F⊥ else ∅) ∪ T [[τ ]]ρ

T [[nilf ∪ τ ]]ρ = (if ρ(f) = then I⊥ else ∅) ∪ T [[τ ]]ρ

T [[(consf σ1 σ2) ∪ τ ]]ρ = (if ρ(f) = then T [[σ1]]ρ × T [[σ2]]ρ else ∅) ∪ T [[τ ]]ρ

T [[(σ1 →f σ2) ∪ τ ]]ρ = (if ρ(f) = then T [[σ1]]ρ → T [[σ2]]ρ else ∅) ∪ T [[τ ]]ρ

T [[α]]ρ = ρ(α)

T [[µα. τ ]]ρ = µ(λI ∈ I(D). T [[τ ]](ρ[α 7→ I]))

T [[∀α{κ1,...,κn}. τ ]]ρ = ∀U (λI ∈ I(D). T [[τ ]](ρ[α 7→ I])) where U = D¬{κ1,...,κn}

T [[∀ϕ. τ ]]ρ = T [[τ ]](ρ[ϕ 7→ ]) ∩ T [[τ ]](ρ[ϕ 7→ ])

Fig. 14. Ideal semantics for internal types.

I(D)→ I(D) is a function of one argument, let

∀Uf =
⋂
I∈U

f(I).

For an appropriate function f : I(D) → I(D), let µf be the unique least ele-
ment x ∈ I(D) such that x = f(x). As all internal type expressions are formally
contractive, all types have an interpretation.

B.2 Presentation Types

We use the same model to assign meaning to the presentation types of Section 3.
Because presentation types do not include flags, the environments that provide

values for open types need only map type variables to ideals of D:

TypeEnv = TypeVar {κ1,...,κn} → I(D¬{κ1,...,κn})

The superscripts {κ1, . . . , κn} on presentation type variables are implicit. The
position of a type variable in a type determines this label, and a type is well formed
only if all its type variables have uniquely determined labels.

Given an assignment for the free variables of a type, the semantic function P :
Type → TypeEnv → I(D) defined in Figure 15 maps a presentation type to an
ideal of D. The extra occurrences of E⊥ that do not arise in the semantics for
internal types ensure that check is a member of singular union types such as num.
In the semantics for internal types, the corresponding type num ∪ ø includes check
because ø includes check.

The semantics treats a simpler form of recursive type µX. T , rather than the first-
order recurrence equations of presentation types. The following function translates
recursive presentation types to this intermediate form:

R[[(rec () T )]] = T
R[[(rec ([X1 T1]) T0)]] = T0[X1 7→ µX1. T1]
R[[(rec ([X1 T1][X2 T2]. . . ) T0)]]

= R[[(rec ([X2 T2]. . . ) T0)]][X1 7→ µX1.R[[(rec ([X2 T2]. . . ) T1)]]]

Again, as all presentation type expressions are formally contractive, all types have
an interpretation.
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P[[num]]ρ = N⊥ ∪E⊥
P[[true]]ρ = T⊥ ∪E⊥
P[[false ]]ρ = F⊥ ∪ E⊥
P[[nil ]]ρ = I⊥ ∪E⊥

P[[(cons T1 T2)]]ρ = (P[[T1]]ρ × P[[T2]]ρ) ∪ E⊥
P[[(T1 −> T2)]]ρ = (P[[T1]]ρ → P[[T2]]ρ) ∪ E⊥

P[[X]]ρ = ρ(X)

P[[(+ P1 . . . Pn)]]ρ = P[[P1]]ρ ∪ . . . ∪ P[[Pn]]ρ ∪E⊥
P[[(+ P1 . . . Pn N1 . . . Nm X)]]ρ = P[[P1]]ρ ∪ . . . ∪ P[[Pn]]ρ ∪ P[[X]]ρ

P[[µX. T ]]ρ = µ(λI ∈ I(D). P[[T ]](ρ[X 7→ I]))

P[[∀X{κ1,...,κn}. T ]]ρ = ∀U (λI ∈ I(D). P[[T ]](ρ[X 7→ I])) where U = D¬{κ1,...,κn}

Fig. 15. Ideal semantics for presentation types.

B.3 Translating to Presentation Types

Section 3 defines a translation from internal types to presentation types. We show
that the denotation of an internal type is a subset of the denotation of its presen-
tation type.

Lemma B.3.1. If T is the presentation form of the closed internal type τ , then
T [[τ ]]∅ ⊆ P [[T ]]∅.

Proof. Translating an internal type τ to a presentation type T involves three
steps.

(1) Replace all useless flag variables in τ with and all useless type variables in τ
with ø. Let the result of this step be τ ′ = useless(τ).

(2) Replace all other flag variables with . Let the result of this step be τ ′′ =
unflag(τ ′).

(3) Translate the type to presentation type syntax. The result of this step is T =
to-presentation(τ ′′).

We need to show that the first two steps preserve all elements of type τ . That is,
we must show that

T [[τ ]]∅ ⊆ T [[useless(τ)]]∅ ⊆ T [[unflag(useless(τ))]]∅.

The first step, useless , replaces flag (respectively, type) variables that occur only
positively in τ with (respectively, ø). We show by induction on the depth of nesting
within the first argument of function constructors that T [[τ ]]∅ = T [[useless(τ)]]∅.
The induction depends on the contravariance property of the function space.

The second step, unflag , changes any remaining quantified flag variables to .
That is, unflag(∀ϕ. τ) = τ [ϕ 7→ ]. We show that T [[∀ϕ. τ ]]∅ ⊆ T [[τ [ϕ 7→ ]]]∅ as
follows:

T [[∀ϕ. τ ]]∅ = T [[τ ]]∅[ϕ 7→ ] ∩ T [[τ ]]∅[ϕ 7→ ] by the definition of T,
⊆ T [[τ ]]∅[ϕ 7→ ] by the definition of set intersection,
= T [[τ [ϕ 7→ ]]]∅ by a simple substitution lemma.

This completes the proof.
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