
 265

978-1-4244-2332-3/08/$25.00 © 2008 IEEE

Using Dynamic Reconfiguration to Implement
High-Resolution Programmable Delays on an FPGA

Etienne Bergeron
Marc Feeley

DIRO, Université de Montréal

{bergeret,feeley}@iro.umontreal.ca

Marc-Andre Daigneault
Jean Pierre David

GRM, École Polytechnique de Montréal

{marc-andre.daigneault,jpdavid}@polymtl.ca

Abstract—A digital circuit can be viewed as a network of
transistors switching between low and high voltages. These
transistors and the wires interconnecting them cause delays in
signal propagation. In most cases, designers aim to minimize
the delays in order to increase processing speed. Nevertheless,
some applications such as delay lines, time to digital converters,
asynchronous logic and others require the ability to precisely
control a delay between two points in a circuit. This paper
proposes a novel way to control the delays in an FPGA by
dynamically configuring the routing matrices to build a path
with the required delay and to calibrate the delays. Such low-
level configuration is possible with a dynamic reconfiguration
library we developed for Xilinx FPGAs. Our experiments on
Virtex-II Pro devices show that any differential delay in a range
of 947ps can be reached with a precision of +/- 18ps.

I. INTRODUCTION

Field-Programmable Gate Array (FPGA) technology has
matured a long way since its beginnings in the early 80’s.
Time-to-market is an increasingly important factor and, due
to their high density, which is equivalent to millions of logical
gates, FPGAs are gaining importance in many applications.
Furthermore, as some devices allow for run-time reconfigura-
tion, new concepts such as virtual hardware have emerged and
much research has been conducted in the area of dynamically
configurable hardware. These concepts could be the premises
of the next computing revolution since manufacturers such as
Intel, AMD and HP seem to consider using them or interfacing
to them. However, modern work in this area faces a critical
problem: the lack of tools.

Over the years, several research projects in the area of
dynamic reconfiguration have used the JBits SDK [GLS99] for
the Virtex FPGAs manufactured by Xilinx. One idea behind
using a library such as JBits is to get a finer granularity level
in the design process and to reduce the limitations imposed
by Xilinx’s standard design flow. But as the technology kept
progressing with the Virtex-II Pro, Virtex-4 and Virtex-5 fami-
lies (all offering the capability of run-time reconfiguration), no
complete tool or library such as JBits has been made available
to designers and researchers to keep up with theses advances.

In a previous work, we have been able to understand the
mapping between an FPGA bitstream and the programming
points in Xilinx FPGAs [BFD07]. Since then, other researchers
have published similar information [NR08]. Xilinx is also
keenly interested in developing tools in this field [LBM+06].

Undoubtedly, low-level dynamic configuration will take an
important place in the near future. In this paper, we present
a new advance towards bridging the gap between the low-
level dynamical configuration possibilities offered by modern
Virtex FPGAs and current development tools. We developed a
compact C library and related tool set for low-level dynamic
reconfiguration, which currently supports Virtex-II Pro and
Spartan-3 devices. In order to illustrate some of the new
possibilities offered by this library, we present an application
to delay management in a Virtex-II Pro FPGA.

Some applications require precise and known delays. This
issue has already been addressed for clock signals by using
programmable phase lock loops which change the phase of
a clock signal. But this approach relies on the cyclic nature
of clocks. Applications such as Time to Digital Converters
(TDC), delay lines and asynchronous logic require the ability
to measure and possibly modify the delay between two points
in a circuit. These applications have always been confronted
to a range/resolution dilemma and seldom FPGA implemen-
tations are mentioned in the literature [Kho06]. Indeed, even
if current FPGAs offer many degrees of freedom to adjust the
delays, proprietary tools are designed to optimize them, i.e. to
minimize the delay of selected (critical) paths.

From a more general point of view, some applications
require to control the configuration of an FPGA at the finest
granularity, which is currently impossible with the standard
design flow. The tools and methodology we developed offer
such a fine control and the ability to modify the design’s con-
figuration at run-time. The experiments conducted on a Virtex-
II Pro FPGA demonstrate that with dynamic reconfiguration it
is possible and easy to have a very fine control on the delays
by taking advantage of the architecture of the switch matrices.
Our approach, which allows very precise programmable delay
circuits, could lead to full FPGA integration replacing external
dedicated devices.

Section 2 presents the library, which is part of our dynamic
reconfiguration framework. Sections 3 and 4 explain the pres-
ence of delays in FPGAs and propose a way to control them.
Section 5 gives the implementation details concerning delay
measurement and calibration, and gives experimental results.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on December 1, 2009 at 17:40 from IEEE Xplore. Restrictions apply.

 266

Reconfigurable API

User Application

Reconfiguration
Dynamic

Frames Cache

FPGA

Backend

Device
Architecture
Definition

write_frame

get_tile
set_cfg
set_pip

writeback

set_word

Virtex 2 (Pro) Serial

Library

Dynagic

Reconfiguration

get_word
read_frame

Virtex 4
Spartan 3

HWICAP
Bitstream

Figure 1. Dynamic reconfiguration framework

II. DYNAMIC RECONFIGURATION FRAMEWORK

The DYNAGIC group [BDFD] is implementing development
tools for dynamic applications. A tool of central importance
is the dynagic library which abstracts the reconfiguration
mechanism of Xilinx FPGAs. The purpose of this library is
to allow an alternative design flow to the one offered by
Xilinx [Xil04]. The main limitation of the Xilinx’s flow is that
it does not allow dynamic generation of modules; all modules
must be statically generated.

Our library supports on-the-fly construction of fine-grained
modules at the same level of abstraction as FPGA Editor. The
developer can activate/deactivate each programmable point by
using a C API.

As the design in Figure 1 shows, the library is divided so
that it is possible to plug specific modules that abstract parts
of the required functionality.

The device architecture definition provides functionalities
related to a specific FPGA family (e.g. Virtex-2, Virtex-2 Pro,
Spartan-3, Virtex-4. . .). The reconfiguration backend provides
raw access to the FPGA configuration memory. As dynamic
applications may run in different contexts (embedded or on
a host), the library has different implementations. The frame
cache provides faster reconfiguration performance by caching
read/write operations. Thus, by using the reconfiguration API,
it is possible to construct a dynamic application with its
specific needs.

Figure 2 shows an example of using the library. The
dg_open function initializes the library. The reconfiguration
backend (ICAP, JTAG, serial port, ...) is dynamically selected
depending on the first program argument (argv[1]). Thus
it allows the same program to run on a host PC or on the
embedded processor. The dg_get_tile function returns a
handle of the tile at a specific location of the device grid. The
dg_get_site function returns a handle to a site in a specific
tile. The dg_set_cfg sets the value of a programmable
point at a specific site. The dg_set_pip function activates
a programmable interconnect point (PIP) in the switch matrix
of a specific tile.

#include "dynagic.h"

#define LUT_NOT_G2 ˜0x3333
#define LUT_F3 ˜0xF0F0

int main(int argc, char** argv) {
dg_system_t sys;
dg_tile_t tile;
dg_site_t slice;

dg_open(&sys,argv[1]);
dg_capture(&sys);

tile = dg_get_tile(&sys, 1, 1);
slice = dg_get_site(&sys, tile, V2_COMP_SLICE1);

dg_arch_set_lut(slice, V2_RESS_G, LUT_NOT_G2);
dg_arch_set_cfg(slice, V2_RESS_GYMUX, V2_VAL_G);
dg_arch_set_cfg(slice, V2_RESS_YUSED, V2_VAL_0);
dg_arch_set_lut(slice, V2_RESS_F, LUT_F3);
dg_arch_set_cfg(slice, V2_RESS_FXMUX, V2_VAL_F);
dg_arch_set_cfg(slice, V2_RESS_XUSED, V2_VAL_0);

dg_arch_set_pip(tile, V2_WIRE_Y1, V2_WIRE_DY1);

dg_frames_cache_writeback(&sys);
dg_close(&sys);

}

Figure 2. dynagic library example

III. DESIGN CONSIDERATIONS FOR THE DELAY CIRCUIT

A digital signal is transmitted from a source component
to a target component by routing it through a chain of
intermediate components. Each one propagates the signal to
the next component in the chain until the target is reached.
The FPGA’s configuration determines which route the signal
will take. Each component on a route contributes to the total
delay from source to target. The delay depends on wire length
and capacitance, transistor switching speed, temperature, and
other factors.

On a Xilinx Virtex FPGA, the intermediate components are
either wires, logic elements, or switch matrices (which prob-
ably contain wires, pass transistors and buffers). A common
approach of implementing a delay on Virtex devices is to route
the signal through a chain of N look-up tables (LUTs). The
LUTs have a propagation delay of roughly 250ps, so the total
delay is roughly N×250ps plus the delay of the routes needed
to interconnect the LUTs in a chain and connect them to the
source and destination. Each connection typically adds a delay
in the hundreds of picoseconds, but sometimes more than a
nanosecond. Some tools, FPGA Editor in particular, can give
a maximum delay for these connections but not the actual
or expected delay. So LUT-based delays suffer from a rather
coarse resolution, and a substantial uncertainty on the actual
delay.

The approach we developed uses only the switch matrix to
implement the delay. The switch matrix is a component which
can be configured to transmit a signal from one of several
input pins to one (or more) of its output pins. The pins of the
logic elements and the inter-tile network wires are connected
to these inputs and outputs. For a given pair of input and output
pins there is typically a very large number of ways to route the

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on December 1, 2009 at 17:40 from IEEE Xplore. Restrictions apply.

 267

signal within the switch matrix. This is due to the architecture
of the switch matrix which can route a signal from an input
pin to an output pin unconnected externally, and bounce the
signal to another output pin (see Figure 3).

inputs

bounce

switch
matrix

B

A

C

D

outputs

Figure 3. A switch matrix configured with the routes A → B and C → D
of depth 3 and 1 respectively

We define the depth of a route as the number of switch
matrix wire segments that are used. The depth is also the
number of PIPs that must be activated in the configuration
to create this route. The total delay of a route depends on
the choice of wire segments and is roughly proportional
to its depth. There is a considerable disparity in the delay
contributed by the switch matrix wire segments. Given the
high number of possible routes, many different delays can
be obtained. A table of routes up to a certain depth and the
associated delay could be created and used by a tool to achieve,
between an input and output pin, a delay as close as possible
to the desired delay in a certain time range.

The actual delay of a route is influenced by device properties
which can vary from part to part, and by environmental
parameters such as temperature which can vary over time. To
achieve repeatability and accuracy it is desirable to calibrate
the device during its operation. To reduce the drift over time
caused by temperature changes the delay for the set of routes in
the table must be measured repeatedly throughout the device’s
operation. To do this we use dynamic reconfiguration.

IV. SWITCH MATRIX ROUTES

The switch matrix routes used by our method are intention-
ally non-optimal, so they cannot be generated with standard
tools. The set of pins and PIPs contained in a switch matrix
are described in the device’s XDL report generated with
the command “xdl -report -pips ...”. We have used
that information and a simple depth first search to create a
database of all the possible routes from inputs to outputs up
to a depth of 9.

To test our approach we have generated the routes between
the output of LUT G in SLICE1 of a CLB (pin Y), and the
inputs F1, F2, F3 and F4 of LUT F in the same slice. There
are 546 different routes with a depth ≤ 9. Other pins could
have been used, but these were chosen because they are easy
to connect to other components. The signal to delay must be
routed to one of the inputs of LUT G and the delayed signal
will be on the output of LUT F (pin X). The switch matrix

must be configured to implement the appropriate route for the
desired delay, LUT F must be configured to propagate the
output of the switch matrix to its output pin X, and LUT
G must be configured to propagate the appropriate input to
the output pin Y. This approach allows the total delay to be
adjusted without changing the routing of the signal to LUT
G and from LUT F (see Figure 4). Note that the routing to
LUT G and from LUT F can be avoided in some cases by
using these LUTs to perform useful operations. Avoiding the
LUTs altogether is also possible, but it increases the difficulty
of delay measurement and calibration.

LUT G

route delay (D)
switch matrix X

YG1

G4

F1

F4

signal

LUT F

delayed signal

Figure 4. Configuration of the switch matrix and LUTs when a signal is
being delayed

V. DELAY MEASUREMENT AND CALIBRATION

The switch matrix delay for a given route can be measured
with a ring oscillator and a ripple binary counter driven by
the oscillator (see Figure 5). A ring oscillator could be built
by configuring LUT G as an inverter and LUT F as a buffer,
and sending the output from pin X to an input of LUT G. The
signal at pin X is also sent to the ripple counter. This oscillator
might exceed the maximal switching frequency of the FPGA
so to be safe we added 2 other buffers in the feedback loop to
slow down the oscillator to under 400MHz. Given an accurate
time base, such as an external crystal, it is a simple matter to
read the counter after a given route has been configured, and
to read it again after T seconds. The difference X is related
to the period P of the oscillator by the formula: P = T/X .
The half period of the oscillator is equal to the switch matrix
routing delay D plus R, the propagation delay of the LUTs
and the routing to connect them. So D = P/2−R. It must be
observed that, while R is an unknown, it is unaffected by the
switch matrix routing. This means that the delay difference
between two routes can be obtained. This is often the most
important information (an absolute time is rather useless when
the routing delay of the incoming signal can’t be known
precisely). If needed R can be approximated by choosing a
route with a delay that is known to be short (using the maximal
delay reported by FPGA Editor). If we use the shortest route
(Y1 → F3 B1 → F3 B PINWIRE1), which has a reported
maximal delay of 53ps, the half period measured is 1364ps,
so R = 1338ps +/- 27ps.

During calibration, the tile containing the delay line and a
few other CLBs are reconfigured dynamically to implement

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on December 1, 2009 at 17:40 from IEEE Xplore. Restrictions apply.

 268

LUT G

32 bit ripple counter

X

YG1

G4

F1

F4

switch matrix

LUT F

route delay (D)

Figure 5. The configuration of the switch matrix and LUTs when the route’s
delay is being measured

the ring oscillator and ripple counter. The value of the counter
is accessed by the processor through the ICAP. It takes less
than 10 seconds to measure the half period of over 500 routes.
This could be made faster using a dynamically reconfigured
dedicated control circuit. To verify the stability of the delays
we performed the measurements 20 times. The measured half
period for a given route varied by at most 1ps. We also per-
formed a linear regression to try to explain the half period as a
linear function of the maximal delay (M) reported by FPGA
Editor. The regression gives P/2 = 1317ps + 0.598 × M .
Figure 6, which plots the residual errors, shows that there is
a good correlation between M and D.

1400 1600 1800 2000 2200 2400

−
8

0
−

6
0

−
4

0
−

2
0

0
2

0
4

0
6

0

Fitted values

R
e

si
d

u
a

ls

lm(half_period ~ reported_max_delay)

Residuals vs Fitted

350

142
292

Figure 6. Residual errors for P/2 = 1317ps + 0.598 × M

Table I gives the switch matrix route delay (D) obtained
by substracting 1338ps (R) from the half period measured for
the routes. To save space, out of the 546 routes measured,
only the 10 shortest delay routes and the 2 longest are shown.
Switch matrix route delays between 266ps and 1213ps, a range
of 947ps, are spaced at most 36ps apart. This means that for
any target delay in this interval a route exists whose delay
is no more than 18ps away from the target. The precision
increases substantially if we restrict the delay to a subinterval
in the larger delays. For instance, between 708ps and 1213ps,
a range of 505ps, the error is +/- 8ps. This higher precision is
due to the increasing density of route delays for longer routes.

26ps Y1 F3 B1 F3 B PINWIRE1
138ps Y1 W2BEG4 F3 B1 F3 B PINWIRE1
138ps Y1 S2BEG4 F3 B1 F3 B PINWIRE1
153ps Y1 OMUX6 F3 B1 F3 B PINWIRE1
207ps Y1 S2BEG2 F1 B1 F1 B PINWIRE1
208ps Y1 E2BEG1 F1 B1 F1 B PINWIRE1
266ps Y1 OMUX6 W2BEG2 F3 B1 F3 B PINWIRE1
268ps Y1 OMUX4 W2BEG2 F3 B1 F3 B PINWIRE1
273ps Y1 OMUX15 E2BEG9 F4 B1 F4 B PINWIRE1
279ps Y1 OMUX15 N2BEG9 F4 B1 F4 B PINWIRE1

...
1209ps Y1 E2BEG1 BX0 BY3 BX3 BY2 BX1 BY1 F1 B1

F1 B PINWIRE1
1213ps Y1 S2BEG2 BX0 BY3 BX3 BY2 BX1 BY1 F1 B1

F1 B PINWIRE1

Table I
MEASURED SWITCH MATRIX ROUTE DELAYS FOR ROUTES BETWEEN Y

AND F1, F2, F3 AND F4.

The number of routes increases exponentially with the route
depth, whereas the route delay increases roughly linearly with
the route depth.

VI. CONCLUSION

Switch matrices in Virtex FPGAs allow numerous ways to
route a signal for a given pair of input and output points. Stan-
dard tools automatically configure these matrices to attempt to
get the minimal delay for a given set of routing constraints.
We have presented a dynamic reconfiguration library with a
flexible and efficient API allowing the dynamic configuration
of an FPGA at the finest level of granularity. Thanks to this
library, we have been able to generate custom routes in the
switch matrices and measure their delays. This information
was used to implement a way of controlling the delays in an
FPGA with a precision varying from 8ps to 18ps, depending
on the required delay range. This work gives a taste of the
previously unimplementable applications now achievable with
our library.

REFERENCES

[BDFD] Etienne Bergeron, Marc Andre Daigneault, Marc Feeley, and
Jean Pierre David. Dynagic Web Page. http://www.dynagic.org.

[BFD07] Etienne Bergeron, Marc Feeley, and Jean Pierre David. Toward
On-Chip JIT Synthesis on Xilinx Virtex-II Pro FPGAs. In 50th
International Midwest Symposium on Circuits and Systems/5th
International Northeast Workshop on Circuits (MWCAS/NEW-
CAS), Montreal, Canada, August 2007.

[GLS99] S. Guccione, D. Levi, and P. Sundararajan. JBits: A Java-based
interface for reconfigurable computing, 1999.

[Kho06] Amir Mohammad Amiri; Mounir Boukadoum; Abdelhakim
Khouas. Low Dead Time, Multi-hit FPGA-Based Time-to-
Digital Converter. Circuits and Systems, 2006 IEEE North-East
Workshop on, pages 29–32, June 2006.

[LBM+06] Patrick Lysaght, Brandon Blodget, Jeff Mason, Jay Young, and
Brendan Bridgford. Invited Paper: Enhanced Architectures,
Design Methodologies and CAD Tools for Dynamic Reconfigu-
ration of Xilinx FPGAs. In FPL, pages 1–6, 2006.

[NR08] Jean-Baptiste Note and Eric Rannaud. From the Bitstream to the
Netlist. In Sixteenth ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2008.

[Xil04] Xilinx. Two Flows for Partial Reconfiguration: Module Based or
Difference Based. Technical report, Xilinx, September 2004.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on December 1, 2009 at 17:40 from IEEE Xplore. Restrictions apply.

