
Hardware JIT compilation for off-the-shelf

dynamically reconfigurable FPGAs

Etienne Bergeron, Marc Feeley, Jean Pierre David
{bergeret,feeley}@iro.umontreal.ca, jpdavid@polymtl.ca

DIRO, Université de Montréal
GRM, École Polytechnique de Montréal

Abstract. JIT compilation is a model of execution which translates
at run time critical parts of the program to a low level representation.
Typically a JIT compiler produces machine code from an intermediate
bytecode representation. This paper considers a hardware JIT compiler
targeting FPGAs, which are digital circuits configurable as needed to im-
plement application specific circuits. Recent FPGAs in the Xilinx Virtex
family are particularly attractive for hardware JIT because they are re-
configurable at run time, they contain both CPUs and reconfigurable
logic, and their architecture strikes a balance of features.
In this paper we discuss the design of a hardware architecture and com-
piler able to dynamically enhance the instruction set with hardware spe-
cialized instructions. A prototype system based on the Xilinx Virtex
family supporting hardware JIT compilation is described and evaluated.

1 Introduction

Software just-in-time (JIT) compilation is a well-known technique for improv-
ing the execution speed of virtual machine interpreters. The virtual machine
identifies through run-time profiling which program parts are critical to its per-
formance (so called hot spots) and compiles these parts into optimized machine
code that is directly executed by the processor. Because the program’s behavior
evolves throughout its execution, the virtual machine continually monitors the
program to find the new hot spots to compile. The compiled code is often stored
in a limited size cache which contains the most recently compiled parts of the
program. Speed-ups are obtained when the monitoring and compilation effort
are more than compensated by the execution time savings of the compiled hot
spots. For this reason, time-consuming complex optimizations are typically not
performed by JIT compilers.

Hardware just-in-time compilation is an extension of this model to field-
programmable gate arrays (FPGAs). Figure 1 contrasts the software and hard-
ware JIT models. FPGAs are highly parallel configurable digital circuits whose
behavior can be tailored to a specific application in the field through the pro-
cess of configuration. Normally this configuration is performed at power-up, but
some FPGA families, namely the Xilinx Virtex II [19] and above, can recon-
figure sections of the device at run time. This FPGA family also supports up



Central
Processing

Unit
Sequential
execution

Configurable
Logic
Unit

Parallel
execution

Program
Memory

Data
Memory PeripheralsDMA

Software
JIT compilation

Hardware
JIT compilation

System
bus

Fig. 1. Software and hardware JIT models

to two classical processors inside the reconfigurable logic, which can be used to
implement a virtual machine interpreter in software. A hardware JIT compiler,
embedded in the virtual machine interpreter, will compile program hot spots
into the low-level description (bitstream) of a digital circuit performing the same
computation. The circuit’s layout and position in the reconfigurable logic as well
as its interconnection with the processor running the virtual machine interpreter
are determined dynamically.

Circuit synthesis, placement and routing are rather time-consuming tasks. It
is not uncommon for standard synthesis tools to take several minutes on a high-
performance workstation to produce the bitstream for a simple computation.
This high cost of compilation must be amortized on abnormally long running
hot spots to achieve any speed-up. In order for hardware JIT compilation to
be useful for executing more typical programs, it is necessary to decrease the
compilation time by a few orders of magnitude. This is the obstacle we tackle in
this work.

Since the bitstream format of dynamically configurable FPGAs is not docu-
mented by the vendors, all the related work involving dynamical configuration
are based on vendor-supplied proprietary compilation tools. Our recent work [1]
has enabled us to extract enough information on the bitstream format to be able
to generate partial bitstreams on-the-fly in a fraction of a second without any
proprietary tool. We believe this is a key result on the road to general purpose
reconfigurable computing.

This paper describes the fast synthesis technique we have designed for a
hardware JIT compiler. Sections 2 and 3 report on related work and give some
background information on FPGAs. We describe a prototype compiler in Sec-
tion 4. An evaluation of its performance is given in Section 5. We specifically
focus our attention on the synthesis times.

2 Related Work

Reconfigurable architectures such as PipeRench [8,16] and WASMII [15] gave
birth to the concept of virtual hardware. The idea is analogous to virtual memory.

2



Since the hardware resources on a chip are limited, it may be interesting to “store
hardware” out of the chip and “swap hardware” when required. Such hardware
manipulations require a dedicated area of the chip that is configurable. This
means that it is possible to alter the logic or the connections via software. The
store and swap mechanisms thus actually access the configurations bits, which
are also called bitstream.

Xilinx Virtex II and above FPGAs, which support dynamic reconfiguration,
have also been used for virtual hardware implementation [4]. Two synthesis flows
are proposed by Xilinx to handle the creation of dynamic modules using their
tools [18]. Essentially, each possible global configuration of the FPGA must be
pre-compiled using the standard synthesis process. Then, partial bitstreams are
extracted from the complete bitstream for each module. The swapping from one
configuration to another is achieved by sending a partial configuration to the
FPGA. Standard tools were not originally developed for this type of compilation
and their use imposes severe limitations on the design of virtual hardware. At
present, it is still very difficult to develop, debug and guarantee the stability of
dynamic applications.

The RTR-JVM (Reconfigurable Run-Time Java Virtual Machine) [9] pro-
poses a different approach where the concept of dynamic configuration is in-
tegrated in the language and its virtual machine. This architecture allows the
dynamic loading of hardware modules produced from Java source code and trans-
lated to VHDL code. By profiling the hot spots, the system is able to identify
good candidates for hardware implementation. The main limitation of this sys-
tem is that modules are produced statically (by the standard synthesis flow) and
preliminary executions are required.

Warp processors [11] are another example of hardware virtualization. The
authors propose to translate binary code to hardware [17] in order to make
the production of dynamic modules transparent to the user. The advantage of
this mode of execution is that it can be integrated to a conventional processor.
That work is based on a custom FPGA [12] as well as custom tools, compilers
and algorithms [13,14], which benefit from the regular structure of the custom
FPGA. A drawback of custom FPGAs is that they lag commercial ones in terms
of size, speed, and cost. The Warp project nevertheless demonstrated that JIT
compilation is viable on modern FPGAs.

We believe that on-the-fly generation of dynamic modules is appealing and
needs more investigation. In this paper, we demonstrate that these techniques
are applicable to commercial FPGAs despite their limitations in terms of archi-
tecture and synthesis tools.

3 Target Architecture

Our methodology assumes a dynamically reconfigurable FPGA with an em-
bedded processor as illustrated in Figure 2. The application and the compiler
are stored in an external memory and run on the embedded processor. Some
peripherals can be mapped inside the FPGA configurable logic, allowing the

3



application to perform input/output. This zone is static, which means that it
is configured at power-up and will not be modified later. The rest of the logic
constitutes the reconfigurable zone, which will behave as a hardware cache for
the dynamically generated specialized instructions. The compiler produces these
instructions on-the-fly and configures the dynamic zone to make them available
to the application through standard I/O instructions.

Inputs/Outputs

Embedded 

Static 

processor

Ex
te

rn
al

 
m

em
or

y

Reconfigurable

peripherals

zone for dynamic
instructions

FPGA

Fig. 2. Diagram of a system supporting dynamic reconfiguration on a FPGA

In practice, we use Xilinx Virtex-II Pro devices, which are one of the few
commercial devices currently supporting dynamic and partial reconfiguration.
Moreover, these devices (and later series) are the most dense FPGAs available
on the market. Figure 3 shows the layout of a small Virtex-II Pro device with
one embedded PowerPC processor.

CLB

JTAG

IOB

ICAP

PPC405
PowerPC

BRAM
Multiplier

Fig. 3. Virtex-II Pro Device Grid

4



A FPGA is mostly a grid of configurable blocks that can be interconnected
in a configurable way. Input/Output Blocks (IOBs) are physically connected to
the external pads. They are placed on the grid’s periphery. Configurable Logic
Blocks (CLBs) are the heart of the processing power of the FPGA. Basically, each
CLB contains user-defined lookup tables (LUT), registers and a programmable
routing matrix to manage the connections to other CLBs. Virtex-II Pro FP-
GAs also contain hard-wired cores to increase the design density. The densest
FPGA (2VP100) is equipped with 2 embedded PowerPC processors running at
400 MHz, 12 clock management devices, 444 18x18 bit multipliers, 444 block
RAMs (18 kbits each) and almost 100000 CLBs spread all over the chip.

Some special blocks are located at the chip’s periphery. The JTAG block is
a serial interface provided for low level debugging. The Internal Configuration
Access Port (ICAP) is used to configure the FPGA. In our architecture, it is
connected statically to the PowerPC processor to enable dynamic configuration
through standard I/O instructions.

Given this architecture, the challenge we face is to quickly generate the con-
figuration of the dynamic zone to enable efficient JIT hardware. More precisely,
we have to configure the blocks and their interconnection. This is addressed in
the next section.

4 Compiler Architecture

The next step is to build an execution environment running on the processors.
Instead of writing a whole system from scratch, we decided to port the Gambit [6]
Scheme to C compiler to the embedded PowerPC. This way, we inherit all Scheme
features and a dynamic execution model (dynamic software module loading,
dynamic code interpretation, etc). Gambit uses a fast interpretation technique [7]
and gives access to the AST representation of the running program which the
JIT compiler uses.

Many languages can benefit from this kind of execution and we believe they
can use a common back-end. High-level language synthesis, which consists in
choosing how high-level concepts are mapped to hardware, is the most language-
dependent phase but the running time of this phase is not a bottleneck. We have
already addressed this issue in a previous work in the context of a static hardware
compiler [2].

The hardware JIT compilation process follows the standard phases used to
produce a FPGA bitstream: synthesis, technology mapping, place and route, bit-
stream generation and configuration. The synthesis phase translates a Scheme
expression into a representation that explicitly indicates how high-level concepts
are implemented (e.g. pipeline, state-machine,. . . ) to take advantage of hard-
ware. The technology mapping phase attempts to map components generated
by the synthesis to patterns and resources existing on the FPGA (multipliers,
block RAMs, slices,. . . ). The place and route phase finds a location for each
of the resources and connects them by assigning appropriate wires. Finally, the

5



bitstream generation produces a partial bitstream that will be downloaded into
the configuration memory in the configuration phase.

In a static compiler, these phases are optimized to produce a high-density,
fast and low-power design. Problems faced by a JIT compiler are not the same
and new techniques must be developed; the compilation time is one of the most
important aspects. To minimize it, some trade-offs must be made. Thus, we
prefer greedy algorithms over computation-intensive algorithms that could yield
a more optimized design.

In the following sections, we describe the algorithms and design choices made
at each phase of the compilation.

4.1 Source Language and High-Level Synthesis

High-level synthesis of digital systems consists in transforming a behavioral (al-
gorithmic) description of a design into a RTL (register transfer level) description
of the design. This phase determines how the high-level concepts of the program-
ming language are translated to low-level primitives.

Decisions must be taken on how high-level concepts can be implemented in
hardware. For example: should a function be implemented as a pipeline able to
handle parallel calls, or as a state machine, much more compact but unable to
handle parallelism? Other decisions must be taken such as which communication
protocol to use between software and hardware.

We chose to use Scheme [10] because it is a dynamic language quite easy to
use and learn. Scheme provides a small set of primitive constructs with which
most high-level features can be implemented. This simplifies the structure of the
compiler.

To elegantly provide dynamic compilation to hardware, our compiler is made
available as a user-callable synthesize primitive. This primitive maps a function
object, possibly a closure, onto the reconfigurable hardware. The sole parameter
is a function and it returns a function which performs the same computation in
hardware (i.e. semantically synthesize is the identity function). If the compila-
tion fails, the primitive returns the argument unchanged. Thus, the complexity
of hardware synthesis is hidden behind a single function.

This approach meshes nicely with function closures which remember their en-
vironment of definition. For people versed in functional programming languages
dynamic hardware synthesis with this extension is very natural. Hardware spe-
cialization is simply viewed as the partial evaluation of the function body given
the binding of variables in the definition environment (i.e. the closure’s free
variables).

Figure 4 shows a use of the synthesize primitive. The call (adder 4) re-
turns the closure which is an instance of the lambda-expression at line 3. This
closure is a specialized version of an adder which always adds 4 to its argument.
By passing this closure to the synthesize primitive, the system dynamically
compiles the closure, configures the dynamic zone and returns another closure
able to communicate with the dynamic instruction. When map calls that closure,

6



1 (define adder
2 (lambda (x)

3 (lambda (y)
4 (+ x y))))
5

6 (pretty -print
7 (map (synthesize (adder 4))
8 ’(1 2 3 4 5 6 7 8 9 10))

Fig. 4. Hardware synthesize/invocation of a specialized instruction

the argument is sent to the hardware’s input and the result is obtained from the
hardware’s output.

High-level synthesis is complex because many issues must be taken into ac-
count (e.g. memory access, global variables, continuations, threads. . . ). In our
current prototype, we only support simple expressions containing arithmetic and
logic operators. Much work remains to be done to determine how to perform
high-level synthesis on general purpose languages.

4.2 Technology Mapping

Technology mapping consists in transforming technology-independent logical cir-
cuits into a technology-dependent mapping on a given technology. Typically, this
phase is driven by a set of technology patterns defined in a library. Mapping is
constrained by characteristics such as available physical gates, delays, available
power and area.

Compiler back-ends solve a similar problem when generating code. Two ap-
proaches are typically used: top-down and bottom-up. The top-down approach,
often called Maximal Munch, consists in finding, in the library, a pattern that
matches as much as possible from the root of the tree. Parts that were not
matched are processed in the same way. Another approach is to use dynamic
programming to find a way to cover the tree with a set of patterns.

Our pattern library is designed to be a bridge between a high-level language
and the low-level requirements imposed by the FPGA fabric. A typical operator
has a height of 4 CLBs and uses one slice column (i.e. half of a CLB column).
The use of a column of slices can be justified by the way fast carry chain logic
works. We decided to use 4 CLBs (and 16-bit operators) because the configura-
tion process works with 32-bit words and a CLB is 3 bytes wide. Thus, we obtain
operators representable by a sequence of three 32-bit words. In addition, embed-
ded multipliers are 18x18-bit and can implement 16-bit multiplication directly.
Figure 5 shows typical operator patterns of our library.

In our prototype, we decided to use a fast top-down approach. This phase
takes less than a millisecond to perform mapping of a specialized instruction. It
does not require much memory and is far from being the bottleneck of synthesis.

7



Carry chain

Switch matrix

CLB

16 bit routing 16 bit operator

LUT
Slice

(2 LUTs / Slice)
(2 Slices / Column)

2 operators / 4 CLBs

Fig. 5. Mapping of operators onto the FPGA fabric

4.3 Place and Route

Placement consists in finding a location for each component of the design. Loca-
tions are chosen to minimize the distance between dependent components and
to maximize the probability of success of the routing phase. Sometimes, other
criteria such as power consumption must also be taken into account. Routing
consists in finding a path through static wires for each net.

Placement and routing are the slowest phases of synthesis on FPGA. Run-
ning times of several minutes are common for these phases. Although phases are
run separately, they are interdependent. A good placement facilitates routing,
whereas a bad placement makes routing extremely complex. Because of the com-
plexity of these phases, their algorithms are crucial to be optimized if we want to
attain short compilation times. To understand current fast techniques, we briefly
explain the VPR and the ROCR tools which are the fastest available algorithms
for FPGA compilation. We then describe algorithms accelerating these phases.

The VPR (Versatile Place and Route) [3] tool uses the simulated annealing
algorithm for placement. The basic idea is to perform a random initial place-
ment of all components. At each iteration, components are randomly swapped
with a probability function of temperature and cost. The temperature gradu-
ally decreases until a threshold is reached. The VPR routing algorithm is an
improvement over the Pathfinder negotiated algorithm [5]. Initially, it routes all
nets with the shortest path regardless of the availability of resources. Dijkstra’s
algorithm is used to find the shortest path. At each iteration, every route is
sequentially re-routed by the lowest cost path. The cost of using a resource is a
function of the overuse of that resource. At the end of the iteration, the costs
of routing resources are adjusted accordingly to the amount of overuse in the
previous iteration. By gradually increasing the cost of oversubscribed routing

8



resources, the algorithm forces nets to avoid them and to use alternative routes.
Although VPR is quite fast, it is not fast enough for JIT place and route.

ROCR (Riverside On-Chip Router) [13] is designed for hardware JIT compi-
lation. It uses the basic cost model of VPR. To perform routing, it uses a global
and detailed routing algorithm. The design of the fabric allows the algorithm to
represent routing between CLBs as routing between switch matrices to which
CLBs are connected. The global routing algorithm works like the VPR algorithm.
Nets are initially routed with a greedy algorithm. Instead of un-routing all nets,
only illegal nets are re-routed in an iteration. While using the same routing cost
model as the VPR router, ROCR incorporates a small routing adjustment cost
to all routing resources used by an illegal route. The routing adjustment cost
discourages the greedy routing algorithm from selecting the same initial path
in subsequent iterations. Once global routing is done, ROCR performs detailed
routing which consists in assigning the channels (path in the switch matrix) used
for each route. Two routes present a conflict when both routes pass through a
given switch matrix and are assigned the same channel. This problem can be
solved by a graph-coloring algorithm. The use of Brelaz’s vertex coloring algo-
rithm allows a linear time approximation which is good enough for solving the
routing problem. ROCR takes advantage of the regular and basic structure of
the switch matrix of a custom made fabric. It is an order of magnitude faster
than VPR and uses an order of magnitude less memory.

To obtain a faster place and route algorithm, we explored several approaches.
As JIT systems are typically used for high-level languages, we chose to restrict
ourselves to fixed-width operators. We reduced the size of the problem by in-
creasing the granularity of the operators, which operate on 16-bit integers. We
also allowed algorithms to fail when problems are too complex, with a fallback
invoking the more expensive algorithms.

Placement To simplify the placement algorithm, all operators are placed on
a horizontal line whose height equals 4 CLB. Thus, the placement problem has
only one dimension.

We implemented a classical simulated annealing algorithm. It takes about
120 ms for a circuit of 30 operators and 300 nets. This algorithm gives quite
good results and routing always succeeded in our tests.

In our search for a faster algorithm, we attempted to implement a simpler
algorithm which worked surprisingly well on our tests. We performed initial
placement by flattening the expression tree in the topological order of the data
dependencies. Then we performed a peep-hole optimization by trying every pos-
sible permutation of operators in a sliding window and kept the result with the
lowest cost. This algorithm is greedy because it always keeps a better candidate
when it finds one and never goes back to a worse solution. The algorithm loops
until a stable state is reached. It usually needs about 3 iterations to find the
best candidate, which takes less than 2 ms. The sliding window is illustrated
in Figure 6. Notice that a CLB can have two overlapping operators (one for

9



each column of slices) and the routing matrix is shared by the two operators
(Figure 5).

16−bit bus16−bit operator

Sliding window

Fig. 6. Fast placement with peephole minimisation

This algorithm only requires a few kilobytes of memory. The results are not
as good as the ones obtained by the simulated annealing algorithm but this does
not affect the performance of the final circuit.

Routing Routing is more complex than placement. Figure 7 shows routing re-
sources used in our algorithm. FPGA routing resources consist of switch matrices
connected by external wires. There are various kinds of external wires: simple,
double and hex. Simple wires connect direct neighbors, double wires connect
the first and second neighbors, and hex wires connect third and sixth neigh-
bors. Longer paths are routed through multiple switch matrices using multiple
external wires.

Configurable
Switch Matrix

Routed Net

Primitive Pin Primitive Pin

External wires
Double wires

Direct wires

Hex wires

Switch matrix
output wire Switch matrix

input wire

Fig. 7. Routing resources and a typical route

A typical route starts from a primitive pin, passes through a switch matrix,
uses a wire to another switch matrix and ends at another primitive pin. All

10



programmable interconnect points (PIP) are in the switch matrix and nothing
is configurable outside the CLB.

The routing algorithm is split into two levels: external and internal routing.
The algorithm applies a sequence of greedy external routers that call different
internal routers to manage the routing inside the switch matrices. By carefully
pairing external and internal routers and by applying greedy and efficient algo-
rithms first, it is possible to minimize the routing time and obtain an efficient
routing.

Internal Router Paths inside a switch matrix and their corresponding Pro-
grammable Interconnects Points (PIP) are determined by the internal router.
Internal routing is hard to achieve because the switch matrix is irregular, not
fully connected and paths may be of various depths. This router finds the short-
est path in the switch matrix from an input wire to an output wire. It takes into
consideration all used resources and may fail if there is no path or if the routing
is too complex.

The first internal router is implemented using a lookup table. The short-
est paths from all inputs to all outputs of a switch matrix are pre-computed.
Therefore, if a resource in the shortest path is already used, the routing simply
fails.

The second internal router uses depth-first traversal. This algorithm is faster
than Dijkstra’s algorithm because paths are usually very short. The depth-first
search was implemented by a set of mutually recursive functions that represent
the connectivity of the switch matrix. Thus, there is no data manipulation, only
fast code execution. We ordered the recursive calls to maximize the likelihood
of reaching an output point.

External Router The external router drives the algorithm to determine where
the next switch matrix is and which external wire is taken between switch ma-
trices. As stated above, it uses an internal router as a helper to solve connections
inside the switch matrix. External phases are sorted in such a way that most of
the nets will be routed rapidly at the beginning while the remaining nets will be
routed by a slower and more complex algorithm at the end.

The direct phase routes nets that can be routed only by using direct wires.
Thus, only direct neighbors can be routed by this phase. The next phase, general
routing, tries to route nets that only use one double or hex wire. As the placement
minimizes the distance between neighbors, after these two phases, almost all nets
are routed except those passing through more than one switch matrix or larger
than 6 CLBs. So, the next phase is greedy routing. The idea is to find recursively
the best path through switch matrices by jumping as close as possible to the
target. The last phase uses dynamic programming to find a valid path and is
able to route any net unless resource conflicts make it impossible.

Figure 8 shows examples of nets routed by each phase. As we see with the
direct and general phases, only one external wire connecting two switch matrices
is used. Greedy and dynamic routing use multiple external wires. We see the

11



Direct

General

Dynamic

Greedy

Fig. 8. Typical routes obtained with the 4 external routers

difference between greedy routing and dynamic programming routing: the greedy
routing always jumps as close as possible. In the example, it jumps the longest
possible path (6 CLBs) twice. The dynamic routing is able to find an alternative
route but it is slower. It is used when conflicts occur with the greedy algorithm.

Nets cache Each external router keeps a cache of routed nets to determine if
another net can be routed the same way by applying a translation. There are
many cache hits because we use fixed-width operators and all the bits of a given
operator are often routed in the same way.

5 Results

We synthesized the design on the ML310 demo board made by Xilinx. This sys-
tem board has a Virtex-II Pro FPGA (2VP30) and 256 MB of external memory.
The board has more components (e.g. PCI Bus, VGA, Ethernet connector. . . )
but they were not used in our basic design; we only used the external memory,
the FPGA and the serial link. The program is running on the processor and
communicates through a console attached to the serial link.

Figure 9 shows a FPGA editor screenshot of a specialized intruction dynam-
ically generated by our compiler. We observe the horizontal placement of 4 CLB
high operators.

To achieve high processing rates it is important to have a close coupling
of the processor and the dynamic instructions to minimize the communication
costs. It is also important for the dynamic instructions to exploit parallelism, for
example with a pipelined circuit. Because these aspects are orthogonal to the
placement and routing problems tackled in this paper we have used a less efficient
interface adequate for testing the correctness of the synthesized circuits. In our
prototype the input and output of the dynamic instructions are not interfaced
to the processor bus. The parameters and results are communicated through the

12



Fig. 9. Specialized instruction dynamically produced by the JIT compiler

Internal Configuration Access Port (ICAP). The parameters become constant
values and the result is read back from the state of the output register. Given
the relatively slow speed of the ICAP interface, application speed-ups are not
possible. To solve this issue we must work-around Xilinx design flow limitations;
this work is still in progress. Given our goal to show that compilation time can be
low enough to support hardware JIT compilation, we focus our attention on the
synthesis phases. Therefore, instead of benchmarking applications, we evaluate
the time needed to perform the placement and routing which are the bottlenecks
of synthesis.

slices nets Place (ms) Route (ms)
S.A. fast-place dynamic no-table no-cache fast-route

48 80 3 0 3 2 4 2
64 112 8 0 5 3 5 3
80 144 7 0 4 3 3 3
144 272 47 2 12 5 4 4
224 432 166 6 227 143 19 14
440 864 763 46 1161 385 101 50
Table 1. Place and route times for specialized intructions

Table 1 shows place and route times for expressions of various sizes (from 6 to
55 operators). For the placement, we compare the simulated annealing implemen-
tation with our fast implementation. We observe that our fast implementation
is about 20 times faster. It is important to note that our simulated annealing
implementation is already faster than current hardware synthesis tools because
it also performs one-dimensional placement of fixed-width operators.

The last set of columns shows the routing time of expressions. By disabling
the cache, we observe that the routing speed is halved. We also observe the speed-
up obtained by using pre-computed tables for switch matrices by comparing the
fast-route and the no-table columns. The dynamic column shows the worst case
of our algorithm when all nets are routed with the dynamic programming router.

Typical routing tools use the Pathfinder and Dijkstra’s algorithm. At each
iteration, they re-route wires. Our algorithm is not iterative and routes each
wire only once. Dijkstra’s algorithm’s speed should be similar to the dynamic

13



router speed. As VPR uses an iterative algorithm with Dijkstra’s algorithm, its
speed should be of the same order. Our algorithm does not iterate and only
applies a sequence of greedy routers. Speed-ups come from the fact that most
nets are routed by a faster router. Table 2 shows how many nets are routed by
each internal and external router. Almost all nets are routed by the direct and
general routers and a few nets really need a depth-first traversal to find a path.
This explains why our algorithm is efficient.

nets pre-computed tables depth-first traversal
direct general greedy dynamic direct general greedy dynamic

80 56 16 0 0 8 0 0 0
112 68 32 0 0 12 0 0 0
144 56 80 0 0 8 0 0 0
272 140 120 0 0 12 0 0 0
432 136 252 35 0 8 0 0 0
864 224 532 88 0 0 0 0 0

Table 2. Number of nets routed by each internal phase

6 Conclusion

We have described a hardware JIT compiler for dynamically reconfigurable FP-
GAs. At run time, the JIT compiles function closures to a hardware circuit which
is downloaded to the reconfigurable zone of the FPGA. The JIT performs all
the normal phases of hardware synthesis including placement and routing. To
achieve good compilation speed we use a set of routing algorithms of increasing
complexity which are tried in a cascade. Most if not all of the work is usually
performed by the cheaper algorithms. The prototype we have built for the Xilinx
Virtex II Pro FPGA demonstrates that modest sized functions can be compiled
to hardware in a few milliseconds. Our experiments show that naive algorithms
and lookup tables significantly speed-up placement and routing.

Various heuristics and naive fast algorithms may be adapted to FPGAs de-
pending on their specific characteristics. We do not claim to have the best set
of algorithms. Our claim is that compilation times compatible with JIT compi-
lation are attainable on current reconfigurable FPGAs. We hope that our work
will spur further research on hardware JIT compilation for general-purpose lan-
guages.

References

1. Etienne Bergeron, Marc Feeley, and Jean Pierre David. Toward On-Chip JIT
Synthesis on Xilinx Virtex-II Pro FPGAs. In 50th International Midwest Sympo-
sium on Circuits and Systems/5th International Northeast Workshop on Circuits
(MWCAS/NEWCAS), Montreal, Canada, August 2007.

14



2. Etienne Bergeron, Xavier Saint-Mleux, Marc Feeley, and Jean Pierre David. High-
level synthesis for data-driven applications. In IEEE International Workshop on
Rapid System Prototyping, pages 54–60, 2005.

3. Vaughn Betz and Jonathan Rose. VPR: A new packing, placement and routing tool
for FPGA research. In Wayne Luk, Peter Y. K. Cheung, and Manfred Glesner, ed-
itors, Field-Programmable Logic and Applications, pages 213–222. Springer-Verlag,
Berlin, 1997.

4. G. Brebner. The swappable logic unit: a paradigm for virtual hardware. In FCCM
’97: Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing
Machines, Washington, DC, USA, 1997.

5. Carl Ebeling, Larry McMurchie, Scott A. Hauck, and Steven Burns. Placement
and routing tools for the Triptych FPGA. IEEE Trans. Very Large Scale Integr.
Syst., 3(4):473–482, 1995.

6. Marc Feeley. Gambit-C. http://www.iro.umontreal.ca/˜gambit.
7. Marc Feeley and Guy Lapalme. Using closures for code generation. Computer

Languages, 12(1):47–66, 1987.
8. Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi, Matt Moe,

and R. Reed Taylor. PipeRench: A reconfigurable architecture and compiler. Com-
puter, 33(4):70–77, 2000.

9. Brian Greskamp and Ron Sass. A Virtual Machine for Merit-Based Runtime Re-
configuration. In IEEE Symposium on Field-Programmable Custom Computing
Machines, April 2005.

10. Richard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised5 Report
on the Algorithmic Language Scheme. ACM SIGPLAN Notices, 33(9):26–76, 1998.

11. R. Lysecky, G. Stitt, and F. Vahid. Warp processors. ACM Transactions on Design
Automation of Electronic Systems, pages 659–681, July 2006.

12. R. Lysecky and F. Vahid. A configurable logic architecture for dynamic hard-
ware/software partitioning. In Design Automation and Test in Europe Conference,
2004.

13. R. Lysecky, F. Vahid, and S. X.-D. Tan. Dynamic FPGA routing for just-in-time
FPGA compilation. Design Automation Conference, pages 954–959, 2004.

14. R. Lysecky, F. Vahid, and S. X.-D. Tan. A study of the scalability of on-chip rout-
ing for just-in-time FPGA compilation. IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 57–62, 2005.

15. Xiao ping Ling and Hideharu Amano. Performance evaluation of WASMII: a data
driven computer on a virtual hardware. In PARLE ’93: Proceedings of the 5th
International Conference on Parallel Architectures and Languages Europe, pages
610–621, London, UK, 1993. Springer-Verlag.

16. H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. Reed Taylor.
PipeRench: A virtualized programmable datapath. Proceedings of the IEEE 2002
Custom Integrated Circuits Conference, pages 63–66, 2002.

17. G. Stitt and F. Vahid. Binary Synthesis. ACM Transactions on Design Automation
of Electronic Systems, 12(3):34, 2007.

18. Xilinx. XAPP290: Two Flows for Partial Reconfigurable Core Based on Small Bit
Manipulations. Technical report, Xilinx, September 2002.

19. Xilinx. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet.
Technical report, Xilinx, June 2005.

15


