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Abstract— Just-in-time (JIT) compilation is frequently used in
software engineering to accelerate program execution. Parts of
the code are translated to machine code at run time to speedup
their execution by exploiting local and dynamic information of
the computation. Modern FPGAs manufactured by Xilinx allow
partial and dynamic configuration. Such features make them eli-
gible platforms for JIT hardware compilation. Nevertheless, this
has not been achieved until now because the mapping between
a bitstream and the programmable points inside these FPGAs
is not documented. In this paper, we propose a methodology to
retrieve the relevant information in logarithmic time per bit by
methodically using the tools distributed by Xilinx. We give a
practical case study which details the analysis of a Virtex-II Pro
FPGA bitstream. The mapping of CLBs, BRAMs and multipliers
has been fully determined. Thanks to this information, we have
been able to prototype tools in the fields of reverse mapping
FPGA bitstreams, low level simulation and custom place and
route. Finally preliminary results demonstrate that a processor
embedded in an FPGA can compile, place and route arithmetic
and logic expressions inside the FPGA within a few milliseconds.

I. INTRODUCTION

In the Von Neumann architecture the behavior of a generic
device, the processor, is partially defined by the internal ar-
chitecture of the processor and partially defined by a program
stored in a memory. To speed up execution of a computation
a processor can generate in memory the specialized machine
code it will run immediately afterwards. Dynamic code gener-
ation is now commonly used in the efficient implementation of
virtual machines for programming languages. It is an integral
part of the just-in-time (JIT) compilation technique [BDB00].
HotSpot [Sun99], for example, uses a JIT compiler to dynami-
cally translate Java bytecode into optimized machine code thus
bypassing the relatively slow interpretation process.

FPGA technology also uses a memory to determine a
circuit’s behavior, but at a much lower level of abstraction.
Most FPGAs are configured at power up time by downloading
a bitstream in their distributed configuration memory. The bit-
stream encodes the set of programmable points that determine
the configuration of the FPGA. A programmable point affects
the local behavior of a small sub-circuit such as a Look Up
Table (LUT), multiplexer, routing logic, and dedicated circuit.
Typically each programmable point is encoded with a small
number of bits in the bitstream. The bitstream thus entirely
defines the FPGA’s behavior and can be seen as a binary
representation of a complex digital circuit expressed at a level
of abstraction close to the gate. Recent FPGAs manufactured
by Xilinx also support partial and dynamic configuration. A

part of the circuit implemented in the FPGA can be modified
at run time while the rest of the circuit is in operation.
The running part can reconfigure the other part through the
embedded configuration port (ICAP). This concept is known as
self-reconfiguration and has been formally defined in 2002 by
Sidhu and Prasanna [SP02]. The present work only addresses
a subset of self-configurating devices : the FPGA. In this
context, the metacomputation concept defined in [SP02] is
actually JIT Hardware Compilation (HC), where HC means
the combination of several steps among the following:

• Generation of a digital circuit at a given abstraction level.
• Synthesis.
• Technology mapping.
• Optimization (delay/area).
• Place and route.
• Bitstream generation (mandatory).
• Configuration (mandatory).

A major hurdle however is that HC is a long and complex
task achieved by proprietary tools and often requiring large
amounts of memory. A full compilation may take several
hours and Gigabytes of memory. A simplistic approach is to
compile before run time a set of possible partial configurations
and to dynamically switch between them at run time. This
is the design flow recommended by Xilinx and all research
projects involving dynamic configuration for recent FPGAs
rely on it. In common practice there is no alternative because
the mapping between the bitstream and the programmable
points in the FPGA is not documented. The use of Xilinx
development flow and tools seems mandatory. Nevertheless,
some applications require actual JIT HC because it is not
possible to compile all the possible configurations before run
time. Typical applications are cryptography (too many keys,
plaintexts or ciphertexts), neural networks (too many topolo-
gies and/or coefficients), pattern matching (when patterns are
known at run time only), generic code accelerator (must apply
to any application, not known at run time), etc.

In this paper, we propose a way to analyze an FPGA
bitstream to find the mapping between a large subset of the
programmable points and their associated bits in the bitstream.
We have focused on the programmable points related to logic
blocks and routing (CLBs), memory blocks (BRAMs) and
multipliers because these are the only resources required to
implemented JIT HC.

Finding the best way to implement JIT HC will require
much research. The Warp project [LSV06] already relates
interesting results for a custom made FPGA. In this paper, we
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do not address this issue. Our work concentrates on the effi-
cient and automatic analysis of commercial FPGA bitstreams.
Our methodology has a logarithmic complexity per bit in the
bitstream and does not make any assumption on the regularity
of the FPGA’s structure. The methodology has proved to be
fully functional for a Virtex II Pro FPGA. Furthermore work
in progress in the field of JIT HC demonstrates that the
cited FPGA can compile, place and route arithmetic and logic
expressions autonomously within a few milliseconds.

The paper is organized as follows: Section II is dedicated
to the related work in the field of FPGA bitstream manipula-
tion and reverse engineering. Section III and IV present the
formalism and the theoretical aspects of our methodology to
analyze an FPGA bitstream. Section V proposes an application
of this methodology to a Xilinx Virtex-II Pro FPGA. Section
VI presents the results. Some work in progress in applications
and tools demonstrate that our approach is fully functional and
promising in the field of JIT HC. They are proposed in Section
VII. Section VIII concludes this work.

II. RELATED WORK

JBits [GLS99] is a tool developed by Xilinx to handle
dynamic reconfiguration. It provides a Java API to generate
bitstreams for partial and dynamic reconfigurations. Version
2.8 of JBits also includes a simulator, but it is no longer avail-
able in more recent versions. Furthermore, JBits is limited to
a restricted set of FGPAs (e.g. JBits 3 only supports Virtex-II).
Many projects that generate or manipulate bitstreams use the
JBits API to abstract the bitstream manipulation. For instance,
JHDLBits [PHP+04], [PHPA04] is a language bridge between
JHDL [BH98] and JBits that allows applications running
in JHDL to handle dynamic reconfiguration. JPG [RS02] is
another tool that uses JBits and the Xilinx description language
(XDL) representation to generate partial bitstreams.

JBits has been used to attempt to reverse engineer a
bitstream. The VirtexTools project [Fra03] tried to use this
approach to reverse engineer the format of Spartan-II XC2S00
bitstreams in order to develop freeware tools for creating and
manipulating such bitstreams. Unfortunately the tools have
limited functionality and the project was abandoned in 2003.
XPART, also developed by Xilinx, is a similar project except
that it does not require a Java framework. Unfortunately, it has
been abandoned too.

Another approach to reverse engineer a bitstream is to
reverse engineer proprietary tools or intermediate files. For
instance, ADB [Ste02] uses the BitFile description (BFD) files,
which describe the bitstream structure. But the format of this
file is proprietary to Xilinx and undocumented.

Some projects just need to manipulate bitstreams in a way
that doesn’t require knowledge of its format. For instance,
Parbit [HL01] uses relative addressing to manipulate opaque
components (modules) through the regular structure of an
FPGA. Such projects would benefit from documentation of
the bitstream format.

It is also possible to manually reverse engineer the bitstream
format by using FPGA editor or Bitgen tools [RW07]. Such
approach relies on the regular structure of the FPGA and

cannot be automated. Each device family requires a manual
investigation, which is a tedious and time consuming job.

Debit [Not07] is a recently announced open-source project
which provides a tool for converting Xilinx bitstreams back
into the XDL representation. This tool supports several devices
in the Virtex family, but not the Virtex-II Pro. The method-
ology used for reverse engineering the Xilinx format relies
on several assumptions referred as “Coherency hypothesis”
and “Morphism hypothesis” [NER08]. These assumptions
require that the structure of the FPGA be regular and known.
Furthermore, each configuration block must be encoded by
the same pattern in the bitstream. Given these assumptions,
the methodology compares the encoding of each configuration
block with their associated bits in the bitstream and deduces
the mapping.

Our methodology, which was outlined in a previous work
[BFD07], does not make any assumption on the regularity
of the FPGA structure but our test case on the Virtex-II Pro
confirms the regularity, with a few exceptions.

Finally, another field of research that is partly related to
the present work is the reverse engineering of processor
instructions [EH00], [HEB01]. Nevertheless, the complexity
of that problem is not comparable to the one addressed in
the present paper since the instruction set of a processor is
usually encoded by 64 bits or less while FPGA bitstreams
require millions of bits, which cannot be split into 32-bit or
64-bit words, as it is the case for computer programs.

III. FORMALISM

An FPGA is a configurable digital circuit. Its behavior can
be tailored to a specific application through the process of
configuration which is performed when the FPGA is powered-
up and may occur during execution in the case of dynamically
reconfigurable FPGAs.

Conceptually, the configuration of a given FPGA is a vector
of programmable point settings, P = �P0, P1, ..., P|P |−1�,
where |P | is the number of programmable points. Pi, the
setting of the programmable point i, determines the behavior
of a specific part of the whole FPGA. Each programmable
point is constrained by the FPGA architecture to a specific
domain of discrete values, Pi ∈ Di.

For user convenience, development environments and doc-
umentation define symbolic names to identify the pro-
grammable points and the set of possible values. For example,
on the Xilinx VP2 (Virtex II Pro), R1C1.SLICE0.FXMUX ∈
{F5, FXOR, F}. Without loss of generality, we will iden-
tify the programmable points and their domains numerically,
i.e. Di = {0, 1, ..., |Di| − 1} where |Di| is the cardinality of
the domain Di. For example, if R1C1.SLICE0.FXMUX is the
programmable point P183 then |D183| = 3, D183 = {0, 1, 2},
and the following encoding is used: 0 ⇒ F5, 1 ⇒ FXOR, and
2 ⇒ F.

In addition to the domain vector D = �D0,D1, ...,D|P |−1�,
the FPGA architecture defines a set of constraints between
programmable points. Each constraint restricts the domain of
a programmable point as a function of the setting of other
programmable points. For example, in a Xilinx VP2 slice, the
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Fig. 1. Typical design flow from design description, to programmable point
settings, to bitstream

configuration domain of the flip-flops, normally {FF, LATCH,
OFF}, is restricted to {FF, OFF} when the reset type is set
to SYNC. A consistent configuration is a configuration that
respects all FPGA constraints.

A bitstream is a vector B = �B0, B1, ..., B|B|−1� of
bits (Bj ∈ {0, 1}) encoding the configuration P which is
decoded during the FPGA configuration process. Obviously
the encoding and decoding techniques used must match. Var-
ious encoding techniques are currently available for FPGAs,
including compressed and encrypted bitstreams.

A common encoding that simplifies the configuration pro-
cess is the plain bitstream. It uses a fixed-length bitstream,
assigns to each Pi a group of possibly nonadjacent bits in the
bitstream that encode the setting of Pi, and assigns to each ele-
ment of Di a distinct encoding bit pattern for this group of bits.
More precisely the address set Ai = {Ai,0, Ai,1, ..., Ai,|Ai|−1}
indicates the set of bit positions in the bitstream that constitute
the group of bits encoding Pi.

Ci,v is a bit vector of length |Ai| which indicates the value
of the bits in the group that codes Pi for the setting Pi = v.
The first bit of Ci,v is the value of the bit whose position in B

is the lowest address in Ai; the second bit of Ci,v corresponds
to the next lowest address in Ai; and so on.

For example, if R1C1.SLICE0.FXMUX is the pro-
grammable point P183 then possibly A183 = {48678, 48734},
and C183,0 = �0, 1�, C183,1 = �1, 0�, and C183,2 = �0, 0�.
This would mean that the encoding of the programmable point
setting R1C1.SLICE0.FXMUX=F5 requires setting B48678 =
0 and B48734 = 1.

Because of the architectural constraints between pro-
grammable points, some bits in the bitstream may be shared
by the encoding of multiple programmable points. Moreover,
some bits may not be directly related to the encoding of pro-
grammable points (constant bits such as framing bits, device
identification bits, . . . ). Some bits may have an arbitrary value
(time stamp, serial number, . . . ), or they may be computed
from other bits in the bitstream (checksums). Finally, some
programmable points may not be related to any bit in the
bitstream, when |Di| = 1 or when the programmable point
has a purely advisory purpose.

The problem we aim to solve is to determine for each
programmable point Pi, the address set Ai and the encoding
bit patterns Ci,0, Ci,1, ..., Ci,|Di|−1. We also aim to determine
which bits of the bitstream are constant, arbitrary, and com-
puted. To achieve this goal, we assume that we have access to
a tool which can generate a plain bitstream from a higher level
description of the programmable points, which is typically
the case. In the following sections, we will call this tool the
BitStreamGenerator.

IV. RELATIONS AND LOGARITHMIC MAPPING

We will make some simplifying assumptions and then
gradually remove the simplifications to handle the general
case. We assume that all programmable points have only two
possible values, X and Y , that there are no constraints between
programmable points, and that every bit in the bitstream is part
of the encoding of a programmable point (i.e. there are no con-
stant bits, time stamps, etc). In this context all assignments of
X and Y to programmable points is a consistent configuration.
It is still the case that several bits in the bitstream can be used
to encode a given programmable point.

We define the relation I →v J , where v is a programmable
point value, as

{i | Pi = v}→v {j | Bj = 1}

This relation maps the set of P ’s programmable points whose
settings have the value v to the set of bit positions in P ’s
bitstream that are equal to 1.

The intersection and complement of such relations are de-
fined using the set intersection and set complement operators:

(I →v J ) ∩ (I � →v J �) = (I ∩ I �) →v (J ∩ J �)

I →v J = I →v J

Given a set of relations R = {R0, R1, ..., R|R|−1}, a
programmable point Pi is isolated within a set R� ⊆ R

when the relation
�

R� has the singleton set {i} as domain,
i.e.

�
R� = ({i}→v {...}). This arises when

∀(I →v J ) ∈ R�, i ∈ I

and

∀i� �= i,∃(I →v J ) ∈ R� s.t. i� �∈ I

The set R fully isolates P when for all Pi there exists a
subset of R that can isolate Pi.

A. Simple case
We will further assume that the programmable point value

X is encoded with only ’0’ bits (at least one) and the
programmable point value Y is encoded with only ’1’ bits (at
least one). Consequently, in the simple case domains contain
only two values (∀i, |Di| = 2), there are no constraints
between programmable points, there are no constant, arbitrary
or computed bits, and relations {}→Y {} and {0, 1, ..., |P |−
1}→Y {0, 1, ..., |B|− 1} hold.

From relation I →Y J we know that setting Pi = Y ,
where i ∈ I, causes some of the bit positions in J to be
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set to 1, so for each a in Ai we have a ∈ J (equivalently
Ai ⊆ J ). This means that by activating some programmable
points we can narrow down the possible positions by looking
at the positions in the bitstream that are activated. By using
a set of relations that isolate Pi we can fully determine Ai.
The exact set is the resulting positions of the intersection of
relations, i.e. {i} →Y J ⇒ Ai = J . As an example, let’s
look at the following mapping:

P = �P0, P1, P2, P3, P4, P5, P6�
A = �{0}, {2, 3}, {1, 4}, {5}, {7}, {6}, {8, 9}�

Consider the set of relations R = {R0, R1, R2, R3}.

R0: {1, 2, 3} →Y {1, 2, 3, 4, 5}
R1: {2, 3, 5} →Y {1, 4, 5, 6}
R2: {2, 4, 6} →Y {1, 4, 7, 8, 9}
R3: {3, 4, 6} →Y {5, 7, 8, 9}

We can isolate P2 with R0∩R1∩R2 and P3 with R0∩R1∩R3.

{2}→Y {1, 4} ⇒ A2 = {1, 4}
{3}→Y {5} ⇒ A3 = {5}

The question is how to efficiently generate a set R that
fully isolates P . A trivial but slow solution is to generate
one relation for each programmable point that maps to their
corresponding positions, i.e. { {i}→Y Ai | i ∈ {0, 1, ..., |P |−
1} }. It is estimated that this technique would take several
years to compute for a large FPGA (millions of points, tens
of seconds for each point). We are interested in a minimal
set of relations with the same properties. We propose to use a
logarithmic mapping.

By definition we have (Pi = X) ⇒ (Bj = 0) and
(Pi = Y ) ⇒ (Bj = 1), where j ∈ Ai. If we consider any
sequence of relations, the sequence of values Pi takes will
match the sequence of values that Bj takes, for all j ∈ Ai.
These sequences can be seen as vectors of bits which are the
binary encoding of integers. We propose to build a sequence of
relations such that the sequence of values Pi takes represents
the integer i (where X is taken as bit 0 and Y is taken
as bit 1). In this way the sequence of values Bj takes will
encode the integer i. The mapping Pi → Ai can then be
deduced straightforwardly, without any time-consuming set
manipulation. To fully isolate P we need |R| = �log2(|P |)�.

Figure 2 shows an example of the logarithmic mapping
technique. The PV table (sequences of programmable points
vectors) is on the left and the BV table (sequences of bit-
streams) is on the right. A relation is a row in both tables.
Columns are the vectors representing integers. The column
P2 contains the encoded value of 2 (010 �→ XY X). B1 and
B4 are the only columns encoding the integer 2. Therefore,
we can deduce the mapping A2 = {1, 4}. This is formalized
by Algorithm 1. Initially all Ai are set to the empty set.

B. Handling fixed and negative positions
In the simple case we assumed that both relations {}→Y {}

and {0, 1, ..., |P |−1}→Y {0, 1, ..., |B|−1} hold. All bitstream
positions in Ai are toggled by the activation of programmable
point Pi and activated bits are always set to 1. A consequence
of this property is that we can use the complement of a relation
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Fig. 2. Simple logarithmic mapping example using 3 relations to determine
the mapping when |P | = 7 and |B| = 10

Algorithm 1: Simple logarithmic mapping
proc mapping (P , X , Y , A) is1

begin2

for k = 0 to �log2(|P |)� − 1 do3

for i = 0 to |P |− 1 do4

if bit k of i = 0 (LSB first) then5

PV [k][i] ← X6

else7

PV [k][i] ← Y8

end9

end10

BV [k] ← BitStreamGenerator(PV [k])11

end12

for j = 0 to |B|− 1 do13

i ← 014

for k = 0 to �log2(|P |)� − 1 do15

i ← 2 ∗ i + BV [k][j]16

end17

Ai ← Ai ∪ {j}18

end19

end20

without another bitstream generation because (I →X J ) ⇔
(I →X J ) ⇔ (I →Y J ).

Typical bitstreams may contain some fixed positions (always
the same value) and negative positions (Bj = 1 when Pi = X

and Bj = 0 when Pi = Y ). The impact on our technique
is that fixed positions are either mapped to A0 or A2|R|−1

because the resulting address contains either only 0 bits
or only 1 bits. Also, negative positions are mapped to the
inverse address. Therefore, modifications to our technique are
required.

Opposite relations I → J and I → J � are used to detect
fixed bits. Bits stuck to 1 are in both sets J and J �. So, J ∩J �

is the set of bits stuck to 1. Similarly J ∩J � is the set of bits
stuck to 0. Therefore, fixed positions are (J ∩J �)∪(J ∩J �).

Algorithm 2 detects positive bits (POS), negative bits
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Algorithm 2: Positive an negative positions
proc status (P , X , Y , S) is1

begin2

for j = 0 to |P |− 1 do3

PX[i] ← X4

PY [i] ← Y5

end6

BX ← BitStreamGenerator(PX)7

BY ← BitStreamGenerator(PY )8

for j = 0 to |B|− 1 do9

if (BX[j]=BY [j]) then10

S[j] ← FIX;11

end12

if (BX[j]=0 and BY [j]=1) then13

S[j] ← POS;14

end15

if (BX[j]=1 and BY [j]=0) then16

S[j] ← NEG;17

end18

end19

end20

(NEG) and fixed bits (FIX). We define the status vector
S = �S0, S1, ..., S|B|−1� where each Sj can take one of the
three values. The algorithm produces two relations; the first
one with all programmable points disabled and the other one
with all programmable points activated. If a bit Bi toggles
from 0 to 1, it is considered positive. If a bit Bi toggles from
1 to 0, it is considered negative. Bits that don’t toggle are
considered fixed and remain in the FIX state.

Algorithm 1 can now be modified to take this information
into account. A call to status must be added at the beginning
of this algorithm and the assignment on line 18 must be
modified: fixed positions (FIX) are ignored, positive positions
(POS) are added to Ai and negative positions (NEG) are
added to the inverse address (Ai).

C. Handling multi-value domains
Algorithm 1 adds positions to Ai that toggle when Pi

toggles from X to Y . Let’s suppose a 3-valued domain X , Y

and Z with the respective coding 01, 11 and 10. When calling
the algorithm with values X and Y , only the first address bit
is found because only the first bit differs between the codings
of X and Y . But, when calling it with values X and Z, all
positions are found.

To find all the positions of a given domain, we must call
the mapping algorithm with enough cases to ensure that all the
related Bj differ in at least one case. But, since we don’t know
the coding, we cannot determine the minimal set of pairs. As
an example, the coding 100, 010 and 001 only needs two calls
to find all 3 positions.

A foolproof technique is to try all the possible pairs (∀v1 ∈
Di,∀v2 ∈ Di, v1 �= v2, �v1, v2�). But since all the Ci,v for a
given i must differ in at least one bit from each other, it is
also correct to consider only pairs with a common reference
(typically, the disabled value if it exists).

Algorithm 3: Multi-value mapping
proc multi-mapping(P , D, A) is1

begin2

for v = 1 to max(|D0|, |D1|, ..., |D|P |−1|) do3

mapping(P , 0, v, A)4

end5

end6

Algorithm 3 performs multiple calls to the simple mapping
procedure. All the programmable points are toggled from the
first value to another value in their domain. During the calls
to the procedure, the positions that differ in the encoding
are accumulated in the address sets. In the end, the address
sets contain all possible positions. Since not all programmable
points have the same domains, the function mapping must
also be adapted to use default values when the problem occurs.
Algorithm 2 must be extended in the same way.

Finally, determining the Ci,j bit-patterns from the Ai is
straightforward since each pattern is the concatenation of the
bitstream bits at the specified Ai addresses for any bitstream
generated from a programming point Pi set at the required
value Di,j .

D. Handling constraints

One must generate consistent configurations for the FPGA
to be processed by the BitStreamGenerator tool. These con-
figurations must satisfy a set of constraints. Satisfying these
constraints is a considerable challenge.

From our experience with Xilinx devices, we identified four
kinds of constraints.

1) dependence constraints : a programmable point can only
be activated if one of its predecessors is activated.

2) configuration constraints : programmable points depend
on some configuration (voltage, I/O protocol, type, . . . ).

3) conflict constraints : programmable points cannot be
activated simultaneously because they share some re-
sources.

4) share constraints : two programmable points must have a
related value (usually a common one) because they share
some bitstream bits. We can see all these constraints in
Figure 3.

Fortunately, in practice these constraints are local con-
straints that concern small sets of programmable points whose
values are related to each other.

The settings of these programmable points can be expressed
as the setting of a single new programmable point with an
appropriate composed domain. For example, if P1 and P2

can each take two values, OFF and ON, but only one of
them can have the ON value, we will replace those pro-
grammable points with a single one with the composed domain
{OFF/OFF, ON/OFF, OFF/ON}. Once all dependencies are
removed in this way, our algorithms can be applied. A problem
could theoretically occur if the number of licit composed
values was so high that it could not be investigated in a
reasonable amount of time. In practice this is not the case
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since FPGA are made of (many) small programmable units
with few dependencies.

In our context, we use a simpler methodology that con-
sists in restricting the domains. D∗ is a restricted domain
of D when ∀i D∗

i ⊆ Di. These restricted domains limit
our algorithm to consistent configurations. By using multiple
constrained domains, we can resolve all the programmable
points as if we were using unconstrained domains. But we
must ensure that we cover all the possibilities for all domains.

Since domain vectors are big, we use a technique to simplify
the definition of constrained domains. We use the concept
of preset tiles to represent partial restrictions. To avoid any
confusion with the physical tiles described in Section VII-
D, we will use the name p-tile. A p-tile contains free and
fixed programmable points. We denote a p-tile by a pair of
sets �free, fixed�. Free programmable points are managed by
our algorithm (as already described) while fixed programmable
points are set to a specific fixed value to have consistent config-
urations. Other points are unused (unconstrained) by the p-tile.
Generating a constrained domain from a p-tile is accomplished
by restricting the domain of the fixed programmable points.
For a given set of p-tiles, programmable points are resolvable
when they are already present in one free set.

As an example, suppose we have 6 programmable points
�A,B, C, D, E, F � with domains {OFF, ON} and the follow-
ing constraints:

• A and B cannot be active simultaneously,
• C must be active when A or B is active and
• D and E cannot be active simultaneously.

To solve the mapping, we can use these p-tiles:

T0: �{A}, {B �→ OFF, C �→ ON}�
T1: �{B}, {A �→ OFF, C �→ ON}�
T2: �{D}, {E �→ OFF}�
T3: �{E}, {D �→ OFF}�
T4: �{C, F}, {}�

The constrained domains for each p-tile can be generated and
solved by using Algorithm 3. The merging of non-interfering
p-tile can optimize the process. We can merge two p-tiles if
they do not have programmable points in common in any set.
As an example, it is possible to merge T0 with T2 and T1 with
T3 and obtain only three p-tiles.

T0,2:�{A, D}, {B �→ OFF, C �→ ON, E �→ OFF}�
T1,3:�{B,E}, {A �→ OFF, C �→ ON,D �→ OFF}�
T4: �{C,F}, {}�

The merging of p-tiles and the generation of constrained
domains is done by our tool. The goal of merging is to
minimize the number of calls to the BitStreamGenerator. The
merging problem can be resolved using a resource allocation
algorithm (linear graph coloring heuristic [WP67]).

Conflict constraints are most of the time due to multiple
drivers on the same wire. This kind of constraint can be
handled automatically by an analysis. For each multiple driven
wire, we produce a set of p-tiles (one per programmable point).
Each p-tile contains the programmable point to activate its
driver in its free set and all others related programmable points
are mapped to the unactivated value in the fixed set.

Dependence constraints can be found automatically by an
analysis that looks for the predecessors.

Configuration constraints are handled the same way by
using p-tiles. But, as it is not possible to determine automat-
ically relations between configurations, the process cannot be
automatic. We must guide the analysis by manually adding
p-tiles which translate the constraints described in the FPGA’s
documentation. Shared constraints are handled the same way
as configuration constraints. But, most of the time, they are
not documented. Usually, compilation errors are raised when
trying to generate an inconsistent configuration. By looking at
error messages, we can determine missing p-tiles.

V. A CASE STUDY: XILINX VIRTEX-II PRO

Xilinx is a leader in the manufacturing of reconfigurable
devices. The Virtex-II Pro has an embedded PowerPC pro-
cessor and is equipped with the Internal Configuration Ac-
cess Port (ICAP), which enables dynamic self-reconfiguration.
These features make this technology very attractive to study
innovative techniques and tools related to dynamic designs.
Virtex-4 and Virtex-5 devices now also offer such capability.
The proposed methodology could easily be adapted to these
devices. As mentioned in the introduction, we have focused on
finding the mapping of CLBs, BRAMs and multipliers because
the other resources are not useful in the context of JIT HC.
In this section, we present the information required to target
Xilinx devices and how it can be found. We also describe how
we adapted our algorithm to Xilinx devices and tools.
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Algorithm 4: p-tile mapping
proc p-tile-mapping(P , D, T , A) is1

begin2

while T �= {} do3

D∗ ← �{}, {}, {}, ..., {}�4

C∗ ← {}5

forall �free, fixed� in T do6

C ← free ∪ {i|(i �→ j) ∈ fixed}7

if C∗ ∩ C = {} then8

T ← T/{�free, fixed�}9

C∗ ← C∗ ∪ C10

forall (i ∈ free) do11

D∗
i ← Di12

end13

forall (i �→ j) ∈ fixed do14

D∗
i ← {j}15

end16

end17

end18

multi-mapping(P , D∗, A)19

end20

end21

A. Requirements
Our methodology requires the following information and

tools:
1) A detailed description of the FPGA’s programmable

points.
2) A way to generate the bitstream from a set of pro-

grammable points.
3) The possibility to extract the vector of bits out of the

bitstream.
In the following subsections, we present how these require-
ments can be satisfied in the context of Virtex-II Pro devices.

1) Detailed description of the programmable points:
Virtex-II Pro devices are documented in [Xil07a], [Xil07b],
which contain a high level description of the FPGA compo-
nents. This documentation is not sufficiently detailed but it is
helpful to understand some of the constraints. A more detailed
description can be obtained by using the Xilinx provided XDL
tool when used to produce a report of a given device. Figure 4
contains a simplified example of an XDL report.

The report contains device information (line 2), tiles (line 3)
and primitive definitions (line 29). A device is a grid of tiles
containing interconnected primitives (e.g. SLICE, TBUF, . . . ).
In the example, the FPGA is made of a 23x35-tile grid. The
relation between the FPGA and XDL is shown in Figure 5

Each tile is declared after the grid dimensions. Line 4
contains the declaration of a CENTER tile (CLB) named
R1C1 which is located at position (2,2) in the grid. Tiles
contain primitive instantiations. For example a CLB on Virtex-
II Pro contains 4 slices (line 7 instantiates one of these). The
instantiation declares the pinout and connections to local wires.
A tile also contains wires that are connected by connections
(CONN) and Programmable Interconnect Points (PIP), which
are configurable connections between wires.

1. (xdl_resource_report v0.1 xc2vp2fg456-6 virtex2p
2. (tiles 23 35
3. [...]
4. (tile 2 2 R1C1 CENTER 8
5. (primitive_site VCC_X1Y16 VCC internal 1 -1
6. (pinwire VCCOUT output VCC_PINWIRE))
7. (primitive_site SLICE_X0Y30 SLICE internal 47 4
8. (pinwire BX input BX_PINWIRE0)
9. (pinwire BY input BY_PINWIRE0)

10. (pinwire CE input CE_B0)
11. (pinwire CIN input CIN0)
12. (pinwire CLK input CLK0)
13. [...]
14. (wire ALTDIG0 0)
15. (wire ALTDIG1 0)
16. (wire ALTDIG2 0)
17. (wire ALTDIG3 0)
18. (wire E2BEG0 2
19. (conn R1C2 E2MID0)
20. (conn BRAMR2C1 E2END_S0))
21. [...]
22. (pip R1C1 W6END_N8 -> W6BEG0)
23. (pip R1C1 W6END_N8 -> S6BEG0)
24. (pip R1C1 W6END_N8 -> N6BEG0)
25. (pip R1C1 W6END_N9 -> W6BEG1)
26. (pip R1C1 W6END_N9 -> S6BEG1)
27. (pip R1C1 W6END_N9 -> S2BEG0)
28. [...] (primitives_def
29. [...]
30. (primitive_def SLICE 47 136
31. (pin BX BX input)
32. (pin BY BY input)
33. (pin CE CE input)
34. (pin CIN CIN input)
35. (pin CLK CLK input)
36. [...]
37. (element FXMUX 4
38. (pin F5 input)
39. (pin F input)
40. (pin FXOR input)
41. (pin OUT output)
42. (cfg F5 F FXOR)
43. (conn FXMUX OUT ==> XUSED 0)
44. (conn FXMUX F5 <== F5MUX OUT)
45. (conn FXMUX F <== F D)
46. (conn FXMUX FXOR <== XORF O))
47. [...] (summary tiles=805 sites=3566 sitedefs=27
48. numpins=83339 numpips=1709085))

Fig. 4. An XDL report for Virtex-II Pro (VP2)

Grid of tiles Tile Primitive

Tiles Primitive

PIN

CONN
CFG

Wire
PIP Elements

Fig. 5. Relation between FPGA and XDL

Primitive definitions follow the tiles declaration (line 29).
They are used as templates for primitive instantiations. Defini-
tions contain the pinout and elements. Elements are the basic
blocks (multiplexers, registers, lookup tables, . . . ) and their
behaviors are not defined in the XDL report. At line 37, there
is a programmable element FXMUX which can be configured
with values F5, F or FXOR (line 42).

There are two kinds of programmable points: PIP and
configurations (cfg). For PIP, the domains contain two values:
active and inactive. Domains for configurations are more
complex. They are defined in the report.

We have shown that it is possible to enumerate the pro-
grammable points and their domains (D) by using an XDL
report in a relatively simple way, which satisfies our first
requirement.

2) Bitstream generation: Design implementation is the pro-
cess that transforms a circuit description into a bitstream for
a given circuit. This process can be divided in different stages
that are implemented by specific tools. Figure 6 shows the
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standard design flow when using the Xilinx ISE Tools.

Standard flow XDL flow

XST

NDGBUILD

MAP

PAR

BITGEN

1001 1 00

Bitstream

XDL

BITGEN

1001 1 00

Bitstream

XDL

XDL

(.vhdl,.v)

(.ngc)

(.ncd)

(.ngd)

(.ncd)

(.bit)

(.xdl)

(.ncd)

(.bit)

Optional

(.xdl)

(.ncd)

(.ncd)

(.ncd)

(.xdl)

XDL

XDL

(.ncd)

Fig. 6. The standard design flow and the XDL flow

These tools can be used from the ISE graphical user
interface, from the command lines or by an external script.
They perform HDL parsing (xst), RTL synthesis (ngdbuild),
technology mapping (map), place and route (par), and finally
the bitstream generation (bitgen). For our purpose, we need
a fine control on the configuration points and these stages
don’t allow it. Nevertheless, Xilinx also provides a way to
insert third party tools in the design flow through a proprietary
language: XDL (Xilinx Description Language) as illustrated
in the dotted boxes of Figure 6. An example of a circuit
representation in this language is shown in Figure 7.

1. design "dummy" xc2vp2fg256-6 v2.38 ;
2. inst "FUNC" "SLICE",
3. placed R16C21 SLICE_X41Y1, cfg "YUSED::0
4. XUSED::0 F::#LUT:D=A1+A2
5. FXMUX::F SYNC_ATTR::ASYNC GYMUX::G
6. G::#LUT:D=A1*A2 _SUPERBEL::TRUE";
7. [...] net "net1", cfg
8. "_NET_PROP::IS_BUS_MACRO:", inpin
9. "FUNC" F1, inpin "FUNC" G1, outpin

10. "FUNC" Y, pip LIOITTERM TTERM_N2MID3 ->
11. TTERM_S2END8, pip LIOITTERM TTERM_N2BEG7
12. -> TTERM_S2MID2, [...] #
13. ;

Fig. 7. XDL file produced by ncd2xdl

An XDL circuit description is composed of a header (line 1),
instance declarations (line 3) and net declarations (line 7).
An instance of a primitive is declared by the inst syntax and
is named by the user in the circuit description. It may be
placed manually by specifying the primitive location described
in the XDL report (R16C21 SLICE X41Y1). Elements are
configured in the cfg string (line 4). In the example, element
FXMUX is configured to the value F and nets are declared
with the net syntax (line 7). It contains pins (inputs and
outputs) and PIPs activated to route the signal.

To satisfy our second requirement, we propose to generate
straightforwardly an XDL representation of the programmable
points’ settings and use the XDL flow, which is described on
the right of Figure 6, to produce the bitstream.

3) Bit vector extraction: Virtex-II Pro configuration relies
on a packet processor. The packet processor is a state machine
with a set of registers that drives incoming data into the target
configuration register. Bitstream data packets consist of a 32
bit header and a body of variable length. Bits which are used
to configure the FPGA are written to the FDRI (Frame Data
Register Input) register at addresses specified by the FAR
(Frame Address Register) register. Without the compression
option, bitgen generates only one packet that writes to the
FDRI, which contains all the configuration bits. It is easy to
extract the bits from this packet and build our bitstream vector
B.

This last point demonstrates that we can fulfill the three
requirements in the context of Virtex-II Pro devices.

B. Application of the proposed methodology

Our methodology applied to the Virtex-II Pro technol-
ogy consists in generating XDL files implementing our pro-
grammable point vector P , processing them with bitgen and
finally extracting bits from the resulting bitstreams to build our
bitstream vector B. As detailed in Section IV the mapping
between P and B can be resolved as soon as each Pi can
be isolated. This is challenging because we can only produce
valid configurations. This is why we have introduced the
concept of p-tile in the same section.

In the context of Xilinx devices, we used different ap-
proaches to produce the p-tiles for interconnection network
(PIPs) and configurations. We want an automatic way to
produce these p-tiles and when this is not possible, we want a
general and simple way to minimize human effort (and errors).

1) Interconnection network: The first kind of p-tiles used
by our algorithm is for interconnections. We have faced two
problems related to nets: simplification and multiple drivers.

Bitgen does not directly produce a bitstream from a con-
figuration vector because it performs some sanity checks and
simplifications. Unconnected nets and useless configurations
are simplified. A way to avoid simplification is to produce
connected nets. We think this task could be automated but
we used a simpler approach. It is possible to use a special
annotation (line 8 of Figure 7) to specify to bitgen that a net
is used by dynamic reconfiguration. This way unconnected
nets are not simplified.

The other problem occurs when there are multiple drivers
on the same segment (connected wires and connections). This
is equivalent to a short circuit and can damage the chip.
Bitgen’s behavior is not the same on ISE6, ISE7 and ISE8.
Older version crash while newer versions report the problem
or simplify the circuit (by disconnecting all the drivers).
To automatically produce valid configurations, we perform a
labeling phase and a graph coloring of the wires. The labeling
phase consists in assigning a unique name to all connected
wires and connections (segments). This way by looking at
wire names of PIPs we know if they drive the same segment.
The second phase consists in splitting the p-tile into sub-p-
tiles free of conflicts. This is achieved by a heuristic graph
coloring that distributes labeled segments in sets where each
segment cannot have more than one driver for the same label.
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Each set can then trivially produce a p-tile and be used by our
algorithm.

The production of configurations for networking is com-
pletely automatic and does not need human intervention. This
technique seems to be possible for all the Xilinx devices but
we did not perform exhaustive tests.

For each PIP we get a set of addresses modified when
toggling it. By looking at our results, we found overlapping
address vectors for different PIPs. We observed that these
overlapping PIPs always drive the same wire and we deduced
that these PIPs are dependent. Theoretically, they must be
considered as a programmable vector (one programmable point
in each dimension) with composed values. We used a simpler
approach that consists in merging the addresses found for each
PIP of a programmable vector since we already calculated
them using Algorithm 1. Since we know that only one PIP
in the vector can be activated at a time, we can deduce the
encoding of each PIP with the merged addresses set.

PIP Ai Coding
R1C1 X3 → E2BEG0 {64951, 67892} 0100 1000
R1C1 Y0 → E2BEG0 {64951, 67895} 0100 0100
R1C1 N2MID0 → E2BEG0 {66421, 69364} 0001 0010
R1C1 S2END2 → E2BEG0 {64951, 69364} 0100 0010
R1C1 S2MID0 → E2BEG0 {66420, 69364} 0010 0010
R1C1 N6END0 → E2BEG0 {66421, 67892} 0001 1000
R1C1 S6MID0 → E2BEG0 {64951, 69367} 0100 0001
R1C1 N2END N9 → E2BEG0 {66421, 69367} 0001 0001
R1C1 N6MID0 → E2BEG0 {66420, 69367} 0010 0001
R1C1 OMUX E2 → E2BEG0 {64950, 67895} 1000 0100
R1C1 OMUX EN8 → E2BEG0 {64950, 67892} 1000 1000
R1C1 S6END1 → E2BEG0 {66420, 67895} 0010 0100
R1C1 E6END0 → E2BEG0 {66420, 67892} 0010 1000
R1C1 E2END0 → E2BEG0 {64950, 69364} 1000 0010
R1C1 E2END2 → E2BEG0 {64950, 69367} 1000 0001
R1C1 W6END0 → E2BEG0 {66421, 67895} 0001 0100

Merged addresses set: {64950, 64951, 66420, 66421,

67892, 67895, 69364, 69367}

Fig. 8. Encoding of the PIPs which drive the same wire (E2BEG0)

Figure 8 shows the resulting encoding for PIPs that drive
wire R1C1 E2BEG0 and the corresponding addresses vector.
As an example, our algorithm found 2 positions for the PIP
R1C1 X3 → E2BEG0 and the encoding can be deduced
from the merged addresses set.

We discovered that some PIPs do not map to any address. As
an example, the PIP R1C1 W6BEG5 → LH12 TESTWIRE
is the only PIP that drives wire LH12 TESTWIRE and it does
not toggle any bit in the bitstream. These PIPs are always
activated and are for internal use only (perhaps as sanity
checks).

2) Configurations: Configurations of elements are also
limited by constraints. Inconsistent configurations that do
not pass the design rule check (DRC) are not generated by
bitgen. Sometimes some configurations are simplified without
warning. We did not find any annotation to avoid simplification
of configurations. In this case, the only way we found was to
write p-tiles manually.

The required number of p-tiles is reasonably small because
all primitives are identical. By using this documented regular-
ity, we can generate p-tiles from templates. Figure 9 shows
two templates used for p-tiles having type SLICE. The first
one resolves CYINIT and the second one resolves CY0F and

CY0G. We wrote 11 templates by hand to resolve SLICE. This
is probably not the minimal set but works fine.

Free Elements Fixed elements
BXINV::BX BXOUTUSED::0

CYINIT CYSELF::1 CYSELG::1
COUTUSED::0
CYINIT::CIN COUTUSED::0

CY0F BXINV::BX BYINV::BY
CY0G BXOUTUSED::0

BYOUTUSED::0
CYSELF::F CYSELG::G
FXUSED::0
FXMUX::F GYMUX::G
XUSED::0 YUSED::0
F::#LUT:D=0 G::#LUT:D=0

Fig. 9. Slice configuration presets

Configuration points have domains with multiple values.
When performing the proposed algorithm we must keep track
of the encoding.

Element Ai Value Coding
DXMUX {44284} 1 �→ 1

0 �→ 0
CEINV {50174} CE B �→ 0

CE �→ 1
CLKINV {50156} CLK B �→ 1

CLK �→ 0
FXMUX {48678, 48734} F �→ 00

FXOR �→ 10
F5 �→ 01

Fig. 10. Encoding of some programmable points of R1C1 SLICE X1Y31

As we can see in Figure 10, encodings are not the same for
different (and similar) elements.

VI. RESULTS

We have applied our methodology to a Xilinx Virtex-II Pro
device (XC2VP2). Our implementation is highly parallel. All
the p-tiles can be processed in an independent way and all the
calls to the BitStreamGenerator are independent from each
others. Solving the mapping for the XV2CP2 (around 30 p-
tiles) took four computer-days (Pentium-4, 2.8 GHz, 2 GB)
and required 2282 invocations of bitgen. We fully determined
the mapping of the networks (1706269 PIPs) and the 97029
configuration points of components (slices, tbuf, . . . ) for all
CLBs, BRAMs and multipliers. We also successfully solved
the mapping of a Spartan3 (XC3S50) device in a day to
demonstrate that the technique is also applicable to other
FPGAs.

Each position in the bitstream has an absolute and a relative
address. A relative address is composed of a block address,
a major frame address, a minor frame address and the offset.
The Virtex-II Pro has three block addresses: CLB, BRAM-
Interconnect and BRAM.

Our algorithm finds the absolute addresses. By calculating
the corresponding relative addresses, we can represent our
results in a graphical way. This is illustrated in Figure 11,
which shows the address area whose mapping has been found.
The black pixels represent bits of unknown mapping while the
gray and white pixels are known.
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Fig. 11. Graphical map of XC2VP2 bitstream frames

A column of pixels is a minor frame where each pixel maps
a bit in the bitstream. The minor frames are grouped in wider
columns to form major frames, which are clearly visible in
the CLB address space. The first major frame configures the
global components such as the clocks. The second and the
last major frames configure the IOB. In the middle of those
columns, we can observe the 22 major frames, each consisting
of 22 minor frames, which correspond to the FPGA CLBs.
We can differentiate the interconnection network from the
configuration bits by the white and gray colors respectively.
The configuration bits are the first minor frames of the CLB
columns.

In Figure 11, we can see that the first major frame is
incomplete, as well as the BRAM and BRAM-Interconnect
blocks. This phenomenon can be explained by the fact that
we have not implemented the required p-tiles for global
components and specialized sites. Essentially, we focused on

the sections required by our final goal: JIT HC. Resources
such as RocketIO, DCM, ICAP, IOB ... only require static
configuration.

It is important to note that our algorithm does not assume
any regularity in the structure of the FPGA. Other approaches,
which rely on the relatively small number of configuration bits
for a given sub-block, would indeed fail to find the mapping of
a large block since the complexity is exponential in the number
of configuration bits. Our algorithm, due to its logarithmic
complexity, can find the mapping of large and non redundant
blocks. Evidently, our results do confirm the regular structure
of the Virtex-II Pro. The results obtained by the calculation
of the relative addresses match the Xilinx documentation on
the configuration of the Virtex-II Pro [Xil07b] and confirm
the applicability of our technique. An interesting point is that
we have detected a few exceptions in this regularity, which
would not have been possible if we had assumed it (e.g. the
mapping of a CLB depends of its row position : bit positions
are mirrored).

VII. TOOLS AND APPLICATIONS

Our initial goal was to dynamically synthesize, place and
route logic and arithmetic expressions to implement JIT HC.
This point is detailed in Section VII-E. Nevertheless, our
methodology has enabled many other research avenues and
the development of novel tools. This section briefly describes
these applications, which are currently in the state of work in
progress.

A. Regenerating XDL from bitstream

Once we are able to extract the configuration of the pro-
grammable points from a bitstream, we can try to generate an
XDL file from the obtained configuration. An FPGA is almost
never used at it’s full capacity and many resources are actually
unused. An XDL file generated blindly from this configuration
data would fail the DRC. The typical errors are components
with unconnected inputs or outputs, useless PIPs in a net, etc.

However the Xilinx tools will accept to convert an XDL file
that contains design errors by using a special command line
switch. But even if a blindly generated file can be converted to
a “.ncd” file, it would not be manageable because all the sites
of the FPGA would be instantiated while most of them would
be unused (just containing a default configuration). Therefore,
we need to find a way to purge the FPGA configuration file
from all useless data.

We have written a Useful Element Collector (UEC) al-
gorithm to fix this problem. This algorithm propagates the
usefulness property (some logic is useful if it contributes to
the computation of at least one output) from the outputs to
the inputs of all the elements and PIPs. When the UEC runs
through an element or a wire, it is marked as useful. The list of
the useful wires is used to generate the list of the nets included
in the configuration by means of the union-find algorithm. The
used sites can be deduced from these nets since a site needs
to be connected to a net to be used. Finally, we remove all the
configuration data that is useless and we produce a valid XDL
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file, free of DRC errors and with exactly the same semantics
as the original design.

To validate our results, we generated a simple circuit (32
bit clocked adder) using the normal Xilinx design flow. The
generated circuit can be viewed in Figure 12. With our tools,
we generated a new XDL (“.xdl”) file from the corresponding
bitstream (“.bit”). We observed that the original and the
regenerated circuits were identical, which shows that it is
possible and quite easy to reverse-engineer circuits whose
bitstream is not encrypted.

Fig. 12. FPGA editor screenshot of a reversed bitstream of a 32 bit adder

To confirm our approach we designed two simple circuits
in VHDL, a clocked multiplier (8x8 → 16 bits) and a 16
bit CRC generator. And we generated their bitstreams using
the normal Xilinx design flow. After this, the bitstreams
were processed with our tool to obtain XDL descriptions.
Finally, new bitstreams have been regenerated from these XDL
descriptions using standard Xilinx tools. We noticed that the
original bitstreams were identical to the regenerated ones.

B. Low level FPGA simulator

We created an FPGA simulator which can simulate a Virtex-
II Pro device from its configuration bitstream. This event
driven simulator is implemented using simple FPGA elements
such as multiplexers, inverters, XOR/AND/OR gates, LUTs,
etc. All the components are connected together as described
in the XDL device report.

The Xilinx tools can simulate static designs but cannot cope
with dynamic behavior. This limitation makes it hard to debug
these kinds of applications. The end objective of this project is
to demonstrate the simulation of dynamically reconfigurable
designs.

0 100 ns 200 ns 300 ns 400 nsTime
CLK
RESET
CLKHC15CLKH_OMUX13
R1C19OMUX13
R1C19VCC_PINWIRE
R1C19X2
R1C19X3
R1C19XQ3
R1C19Y0
R1C19Y2
R1C19Y3
R1C19YQ2
R1C20E2MID9
R2C12BX2
R2C12OMUX_W14
R2C15VCC_PINWIRE
R2C19OMUX6
R2C19OMUX9
R2C19OMUX13
R2C19OMUX_S2
R2C19X0
R2C19X1
R2C19Y0
R2C19Y1
R2C19Y2
R3C12YQ2
R3C13BX0
R3C13COUT0
R3C13COUT1
R3C13F4_B3
R3C13G2_B0
R3C13OMUX13

Fig. 13. Low level simulation of a 32-bit adder

The simulator produces Value Change Dump (VCD) files,
which are readable by standard tools. In our experiments, we
were able to easily simulate an FPGA implementation of an
8-bit counter and a CRC generator/validator circuits. We are
now planning the simulation of an FPGA implementation of
a microcontroller. As mentioned earlier, this simulator is still
a work in progress, especially for the implementation of the
FPGA sites. With some modifications, our simulator will fully
simulate the FPGA with dynamically modified bitstreams.

C. Custom Bus Macro

Bus macros [LP02] are used as a communication channel
between dynamic regions. On the Virtex-II Pro, they are im-
plemented with tri-state buffers. As there are only two TBUF
in a CLB, the limitation of 2 bits per CLB is often a bottleneck
in the communication between modules. However, the use of
tri-state buffers is not a physical limitation but a software one.
The interface routing must be the same for all the instances
of a dynamic module. With the Xilinx tools, it is possible
to specify constraints on the placement of components but
not on the routing. A bus macro forces the placement of two
tri-state buffers. As there is only one path possible between
these components, all instances have the same routing. This
way, interfaces are compatible when a dynamic module change
occurs.

To overcome this limitation and still use the Xilinx tools,
we produce custom bus macros (Figure 14). The general idea
is to produce the modules without connecting them. Then a
link phase connects the nets between the modules just after
their instantiation. A similar idea was implemented in [RW07].
But instead of parsing directly the bitstream, they convert the
design using the xdl tools and parse the textual representation
of the design.

Some constraints force the placement of the communication
logic between the modules to be near the boundaries. By using
a custom tool, we produce a partial configuration for each
instance of the dynamic module. This partial configuration
must then be merged with the partial configuration of the static
module.
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Custom Bus Macro

Fig. 14. Custom bus macro interfacing

In our prototype, we force the communication to be latched
and place some registers on the boundaries between the static
and the dynamic parts (placement constraints). We parse the
static bitstream and the dynamic bitstreams of the modules
to determine which wires are used. Finally, we use a routing
algorithm to find a path between the registers and we produce
the partial bitstream to configure these paths.

The technique of custom bus macros [RW07] requires static
analysis of the XDL representations of modules. An advantage
of producing bus macros directly from the bitstream is that we
can also produce them for dynamically generated modules.

D. Abstract Annotated Tiles

Typically, the granularity of the components handled by
Run-Time Reconfigured (RTR) systems is the module. This
granularity is not fine enough to realize a JIT that needs basic
instructions (such as arithmetic operators, logic operators,
multiplexers, . . . ). To fix this problem, we proposed annotated
tiles [BFD07]. The idea is to provide a set of fine-grained
tiles annotated with the information necessary to handle them
correctly.

Figure 15 shows a pipeline built by merging basic tiles. To
be able to produce this kind of module, tiles must be able to
overlap and cannot pass through bus macros.

With the information obtained by the proposed technique,
we produce tiles without using the Xilinx tools. Instead of
representing a tile as a rectangular set of bits, our tiles contain
a mask to specify which bits are actually used. This mask can
be used to merge overlapping tiles. Tiles can be merged if
and only if they do not use common resources. Abstract pins
are used to represent a set of interconnection points. Tiles

OperatorConstant Routing

Module

Abstract pins

2

2 2 2

Tiles:

Pipeline:

Fig. 15. Construction of a pipeline based on annotated tiles expression 2+2+2

produced by our tool are annotated with such pins to specify
their interfaces.

Fig. 16. Dynamic design produced with abstract annotated tiles

These tiles can be used as basic blocks by a hardware com-
piler. The compiler has to connect basic tiles together without
conflict to implement the required expression. Figure 16 shows
an example of dynamically generated cores by using a set of
abstract annotated tiles.

E. JIT Hardware Compilation
JIT compilation can be seen as code dynamically translated

and optimized for the target architecture. The JIT HC [BFD08]
shares the same idea but instead of producing code, the com-
piler produces a partial configuration for an FPGA. Because
specialized modules are faster, some applications should have
speedups when using this kind of execution by increasing the
functional density [WH97].

There are two major problems with JIT HC. The first
one is algorithmic. In the general case, JIT HC needs a
fast place and route algorithm. The VPR [BR97] and River
Side On-Chip Router (ROCR) [LVT04] are some examples of
research projects trying to address these problems efficiently.
The second problem is the lack of information regarding the
target circuits. Until now, it has not been possible to write a JIT
backend without using the Xilinx tools. In order to investigate
JIT HC, we implemented a prototype system on the Xilinx
ML310 demo board containing a VirtexII-Pro VP30.
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Bus Macro

PPC

Dynamic Zone

Fig. 17. Design to support JIT (Virtex-II Pro VP30)

Figure 17 is an FPGA editor screenshot of the design we
implemented to support JIT HC. The left part of the design is
the static part of the system. The right part has two dynamic
zones (upper and lower) that will be filled with the modules
produced on-the-fly by our compiler running on the PowerPC.
Each zone has its own interface Bus Macro to the static zone.

We ported the Gambit-C interpreter for the Scheme lan-
guage [KCE98] to run on the embedded PowerPC. We added
the synthesize primitive, which translates a functional
closure to a hardware pipeline. Finally, we used the bitstream
information to write a JIT backend. Our compiler implements
several phases to parse a Scheme expression and produce the
partial bitstream. The design is able to load them dynamically
through the ICAP module.

The most intricate part is the place and route algorithm.
Currently we are able to synthesize simple designs (32-bit
arithmetic and logic expressions) in less than 20 ms (parsing:
a few microseconds, placement: 5 ms, routing 15 ms, PowerPC
405, 350 MHz). More complex designs such as the 28-stage
MD5 hash calculator depicted in Figure 18 may require up
to 500 ms. We limited this design to 28 stages (instead
of 64) because the number slices available in the dynamic
zone did not permit a full implementation. These results are
very preliminary and must certainly not be considered as the
best performances achievable. They are reported here just to
convince the reader that the concept of JIT HC is promising

PPC
405

PPC
405

Fig. 18. 28-stage MD5 dynamically produced by a JIT

and that this work opens new avenues in the field of hardware
accelerators.

VIII. CONCLUSION

We have presented a methodology to determine the mapping
between the relevant parts of an FPGA bitstream and its
programmable points in order to implement JIT hardware com-
pilation. This methodology only requires a detailed description
of the FPGA’s programmable points, a tool to generate the
bitstream from them and a way to access the bits. Thanks to
the use of an algorithm with logarithmic time complexity, we
have been able to determine the bitstream format of a real
device in a few days on a single computer.

This information was necessary to further investigate the
field of JIT hardware compilation. Other topics such as dynam-
ically reconfigurable design simulation, dynamic connection of
pre-compiled modules etc. are also concerned. In addition to
the proposed methodology, our results demonstrate that it is
now possible to perform JIT hardware compilation inside an
FPGA and to simulate dynamically reconfigurable designs.

An important byproduct of this research is a demonstration
that plain bitstreams do not protect the IP of a circuit, even
if the bitstream format is not documented by the manufac-
turer. Given that there are cryptographic ways to protect the
bitstream, we urge the manufacturers to fully document the
format of their bitstreams to allow third-party design tools
and to open new and promising opportunities in the field of
dynamically reconfigurable hardware.
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