
High Level Synthesis for Data-Driven Applications
Etienne Bergeron, Xavier Saint-Mleux, Marc Feeley, Jean Pierre David

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal

{bergeret,saintmlx,feeley,david}@iro.umontreal.ca

Abstract— John von Neumann proposed his famous archi-
tecture in a context where hardware was very expensive and
bulky. His goal was to maximize functionality with minimal
hardware. Presently, logical gates are nearly free and single
chips will soon contain billions of gates. However, most current
designs are still based on Von Neumann’s architecture because
processors are built on this model. Nevertheless, the main current
challenge is to be able to design, refine, synthesize and verify
new architectures in a minimum time and with a maximum
computational performance regardless of the gate count. Data
driven architectures enable a high level of parallelism because
instead of a single controller managing all the resources (and
often a single ALU), tens or hundreds of small controllers
can now operate in parallel on local processing units. This
paper presents an environment for the high level description,
refinement, synthesis and verification of such systems. Our own
HDL is presented with its compiler and we show how it can
be used as the intermediate language of a compiler for an even
higher level functional programming language. Ongoing work
will enable the interfacing with other languages (from both
hardware and software communities). We also intend to target
asynchronous designs.

I. INTRODUCTION

John von Neumann imagined a new way to program the
ENIAC machine in 1948 : storing a program in ROM and
letting the machine execute the now well known fetch-decode-
execute cycle. Thanks to this improvement, he reduced the
programming time from several days to a few hours. It was the
starting point of a long era of control dominant architectures,
which still lasts today.

A new approach was introduced in the 70’s by Dennis [1],
who proposed the first token machine, an architecture where
the operations are triggered by data instead of a central con-
troller managing all the computations. Data move on a graph
in the same way as tokens in a Petri net. This architecture
theoretically offers the highest degree of parallelism achievable
because the operations start as soon as data are ready. The
main bottleneck was the implementation of data matching
which is required before a (multiple-operand) operation is
executed.

Both architectures have evolved but the superscalar proces-
sor exceeded token machines in the 90’s by integrating the
token machine approach but on a restrained data set. More
generic than token machines and also much more pervasive in
the industry, the central control won this battle.

The present technological context is however completely
different compared to 1948. Billions of transistors consuming
a few Watts are available in a single chip. Reconfigurable com-
puting allows the implementation of new architectures within

seconds. A chip can run several years before encountering a
failure. The main challenge now is to be able to manage the
implementation of so many resources in a proven safe way and
quickly obtain maximum computation efficiency and minimum
power consumption.

The major alternative to the processor is the design of
dedicated chips in ASIC or FPGA. VHDL [2] and Verilog [3],
which were developed in the 80’s, continue to be the most
widely used HDL in the industry even though they are low
level languages. Significant work has been done to develop
higher level languages capable of targeting hardware : Han-
dleC [4], HardwareC [5], Transmogrifier C [6]. But C-like
languages have complex semantics that make it difficult to
formally prove the correctness of a design. Another approach
aims to model the design at a higher level. SpecC [7],
SystemC [8], SystemVerilog and eSys.Net [9] offer this kind
of high level environment. But once validated, these designs
must be refined, often manually, to get equivalent RTL code.

We believe that functional languages can take an important
role in current hardware design because they are high level
and safe languages, and are based on the same concepts as
token machines and so can in principle lead to highly parallel
architectures. But this is only achievable if the architecture
is built from the algorithm description instead of trying to
adapt the algorithm to fit a given architecture as was done
up to now. Various approaches have already been presented
in previous work (Confluence, Lava [10], Hydra [11]). To
our knowledge, this is the first implementation allowing fully
general recursion. In this paper, we describe an approach to
automatically synthesize an algorithm described in a functional
language by successive refinements.

The paper is organized as follows: Section II describes our
new version of the CASM language and compiler, which will
be used as an intermediate representation of a token machines.
Section III proposes a methodology to compile a functional
language into a specific CASM-based representation of token
machine. The transformations are illustrated by examples
throughout the whole document. Our conclusions and future
work are presented in Section IV.

II. CASM LANGUAGE

The CASM language is designed to ease the development
of hardware components and applications by people with little
or no knowledge of digital circuits. The design philosophy
of CASM is to provide a safe language where the execution
does not deviate from the language semantics. Traditional

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on December 1, 2009 at 17:34 from IEEE Xplore.  Restrictions apply. 



HDLs allow a user to describe circuits whose behavior may
become unstable or unpredictable under special circumstances.
Glitches, gated or synthesized clocks inducing delays, inter-
faces between multiple clock domains, combinatorial loops
and so on can induce non-deterministic behavior. CASM
does not let programmers make this kind of (synthesizable)
errors. All programs written in CASM are synthesizable, fully
predictable and their execution conforms to the simulation.

Twenty years ago, programmers had to be conscious of
the hardware because it was a major limitation in memory
and time. A programmer had to optimize his assembly code
to increase the speed and reduce the memory requirements
as much as possible. Nowadays, most programmers are used
to thinking about an algorithm as a flow chart or a finite
state machine but very few of them are aware of what
happens at the gate or RT level. Most existing HDL serve
to describe the actual physical components and connections
of the circuitry instead of presenting the algorithmic concepts.
But it is difficult to implement these concepts in a common
HDL without spending time understanding all the subtleties
and physical limitations of hardware. These problems should
not be the concern of programmers who are interested in
speedup of a hardware implementation.

Algorithmic State Machines (ASM) charts provide an easy
and intuitive way to describe small algorithms. Figure 1
represents the chart for Euclid’s GCD algorithm. It is easy
to understand the behavior, state by state, of the algorithm
and thus understand how the problem is solved. Nevertheless,
a graphical interface is impractical for large algorithms and is
hard to manage.

Start

N0

N1

0 1

0 1

B := A mod B
A := B

Result := A
RDY := 1

RDY := 0

B > 0

A := inA
B := inB

Fig. 1. ASM Chart : Euclid’s GCD

To write this algorithm in a standard HDL, programmers
must handle the interface of the components and implement a
protocol to accept and confirm the input’s reception (inA,
inB) and Result transmission. Programmers must also
correctly handle state transitions from state N0 to state N1
so that it only happens when data have been received at both
inputs. The return to state N0 must only occur when the result
has been accepted by the outside world.

CASM is an intermediate level language of higher level than

RTL (VHDL/Verilog) but which remains at a lower level than
languages used for software development (C/Java). Our goal is
to obtain a cycle accurate language that allows programmers
to implement efficient algorithms with little formal training in
CASM.

We based the semantics of our language on state ma-
chines. CASM is a textual representation of state machine
charts augmented with higher level synchronization, com-
munication, storage and recursion features, which will be
described in the following sections. Because hardware can be
modeled as a collection of parallel connected state machines
(Mealy/Moore) [12][13], our language can be used to describe
almost all sequential circuits including multiple clock designs.

1. input inA{protocol="FS"}[32];
2. input inB{protocol="FS"}[32];
3. output result{protocol="FS"}[32];
4.

5. asm {
6. register A[32] = 0, B[32] = 0;
7.

8. N0: A := ina; B := inb;
9. goto N1;

10.

11. N1: if (B>0)
12. B = A mod B;
13. A = B;
14. goto N1;
15. else result := A;
16. goto N0;
17. end;
18. }

Fig. 2. CASM Example : Euclid’s GCD

Figure 2 shows the implementation of Euclid’s GCD al-
gorithm in CASM. The reception of inputs is specified
on line 8 in state N0. Inputs are received with a full-
synchronization protocol (FS). The transition to state N1
occurs when all transfers required by state N0 are done. Due
to the ”result := ...” on line 15, the receiver must
also be ready to receive the result before the system can go
back to state N0. While the implementation of protocols and
conditional transitions are cumbersome in typical HDL, they
are much easier in CASM.

The State Machine is a simple conceptual paradigm to
represent an algorithm but it is still not expressive enough
to easily be used as a programming language capable of
describing large and complex components. CASM has builtin
features that express frequently used high level concepts; these
concepts are explained below.

Model
A CASM program is a collection of devices connected

together by synchronized channels. The behavior of these
devices is described by state machines. Every CASM file
contains a device description and may contain instances of
other devices. Figure 2 describes the behavior of the GCD
device. The GCD device contains two registers that are explicit
devices and an implicit state register. It also contains input
and output channels and combinatorial operators. The model
corresponding to this description is shown in Figure 3. A

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on December 1, 2009 at 17:34 from IEEE Xplore.  Restrictions apply. 



transaction is a data transfer from a given source to a given
target. They are activated by the transaction controller and
actually occur when both source and target are ready to
complete.

A B

mod

Device
GCD

State

<0

inA inB

Result

Transaction Controller

Fig. 3. Model of Euclid’s GCD

The square boxes represent device instances, the rounded
boxes combinatorial operators and the gray boxes device
interfaces. Arrows are channels that contain both data and
synchronization signals.

Connections and Transfers
Our language has two kinds of assignments: connections

and transfers. Connections use the = symbol and transfers use
the := symbol. A connection physically connects a source to a
target enabling data transmission implemented by a predefined
protocol. A transaction may occur each clock cycle. Transfers
are a restricted version of connections where only a single
transaction can (and must) occur before a jump to the next
state is processed. In Figure 2, a connection can be found on
line 12 and a transfer can be found on line 8.

Semantics
Each application written in CASM has an implicit clk and

nreset signals that are used by devices and state machines.
When the nreset signal is low, the component does a global
reset. Steps are :

1) Initialize the devices with initial values.
2) Move all state machines to their initial states.
3) Wait until the nreset signal is deasserted.

In Figure 2, the registers will take the initial value of 0 (line 6)
on a global reset and the state machine will move to the first
state (N0).

When an event occurs on the clk signal, all the activated
transactions are processed in parallel. The current state may
be updated if a jump was also activated. From this new
global state, the following evaluation steps are performed in
preparation of the next clock event.

1) Evaluate conditional expressions and activate selected
transactions.

2) Evaluate R-values and completion logic in parallel.
3) If all activated transfers can complete during current

clock cycle, activate the jump to the next state.

4) Wait until next clock event.
In Figure 2, when in state N1, the conditional expression

is evaluated to determine which of the two connections that
continue the calculation (line 12) or the transfer that produce
the result (line 15) must be activated. When the transfer
is activated, the state completion condition depends on the
readiness of the receiver. The transaction will not complete
until the result is consumed. When the receiver is ready, the
transaction and the jump are both activated to immediately
move to state N0 at the next clock event.

Self-synchronized data transfers
Data transmissions are done through channels using stan-

dard protocols. The channel contains implicit signals to syn-
chronize both connected devices. The available standard pro-
tocols are:

• Full-Synchronization (FS) The transaction occurs only
when both receiver and sender are ready.

• Half-Synchronization (HS) The transaction occurs when
the sender is ready. Data is lost if the receiver is not ready.

• No Synchronization (MAIN) The transaction always
occurs.

To avoid breaking transmission invariants and data loss,
stronger protocols cannot be connected to weaker protocols.
For example, an FS channel cannot send its data through a HS
channel.

Extended Expressions
Expressions have an elaborate type system that includes pro-

tocol and variable widths. The type system enforces protocol
(full-synchronized data is definitely consumed and never lost).
Moreover, no precision is lost in arithmetic calculation without
explicit programmer input, even if complex expressions are
evaluated. The compiler infers the width through the expres-
sions.

Protocols are automatically inferred through expressions.
As an example, to perform the sum of two full-synchronized
inputs, the system deduces that the two terms must be present.

CASM provides functions that simplify the implementation
of data-driven applications. Functions like queue, buffer
and pipeline are used to implement pipelined expressions.
The expressions reg = pipeline{cycle=4}(a*b);
and reg = queue(queue(buffer(c)-d) >> e);
are pipelined calculations. A queue acts as a pipeline register
between two stages. Queue is a synchronized component
and it automatically stalls when needed. A buffer consumes
inputs when the sender is ready and thus frees the sender. It
sends the data to the receiver as soon as it is ready, possibly
in the same clock cycle. The pipeline function automatically
produces a pipeline with its expression. The buffer size and
the pipeline depth are parameterizable options.

Recursion
To increase the expressive power of our language, recursion

is allowed. In addition to jumps, one can use the call
instruction to branch to another state and keep a reference

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on December 1, 2009 at 17:34 from IEEE Xplore.  Restrictions apply. 



of the return point of the subfunction. It resembles the JAL
(Jump and link) instruction. The return state is the return point.
In Figure 4, on line 12, there is a call to the fact state and the
return point is the send state. The return, which is a branch
to the first return point on the stack, occurs on line 15.

1. input n{protocol="FS"}[8];
2. output r{protocol="FS"}[32];
3. queue qn{size=16}[32], qr{size=4}[32];
4.

5. always { qn = n; r = qr; }
6.

7. asm fact{depth=1<<(n.width-1)} {
8. stack args{size=fact.depth}[8];
9. register p[32];

10.

11. receive: p := qn;
12. call fact; return send;
13. send: qr := p; goto receive;
14.

15. fact: if (p==0) p = 1; return;
16. else args := p;
17. if (fact.complete)
18. p = p-1;
19. end;
20. call fact; return mul;
21. end;
22. mul: p := args * p; return;
23. }

Fig. 4. CASM Example : Buffered Recursive Factorial

Recursive state machines must specify a stack depth because
it is not possible to statically bound it in the general case.
When state machines are not recursive, the language states
that the stack depth is guaranteed to be large enough and
programmers can safely omit this information.

Anticipative transaction evaluation
CASM can determine whether a transfer has already com-

pleted or can complete in the current clock cycle. The com-
pletion information can be accessed using the complete
attribute. When associated to a state name, the meaning is that
the jump is activated and will occur at the next clock event.
This is illustrated in Figure 4, line 17 where p must not be
modified before being pushed in the stack args. So when in
state fact and (p!=0), the state machine waits until the
queue args is ready to receive new data. As soon as the
condition is met, the jump and the connection between p and
p-1 are activated in order to complete all transactions in a
single clock cycle. When a transfer is conditional on another
complete signal, the system becomes anticipative. This is
illustrated by the example in Figure 5.

1. if (t1.complete) t2: a:=x; end;
2. if (t2.complete) t1: b:=y; end;

Fig. 5. Anticipative transaction example

Transfer t2 is activated only if t1 completes in the current
clock cycle but transfer t1 is activated only if t2 completes in
the current clock cycle. There are theoretically two possible
solutions : t1 and t2 complete together or t1 and t2 do
not complete. The resolution of such ambiguities is processed
by considering that a-priori all transactions complete. When

this is impossible, conflicting transactions are iteratively deac-
tivated until a solution is found. It may happen that no solution
exists, or can be found by this heuristic, which generates an
error at compilation time.

Generic Devices
Generic devices have predefined behavior and synchronized

interface but nothing is stated about their implementation.
Our system provides parameterizable generic devices for
commonly used components such as memories, stacks, and
queues. These components are so widely used that we provide
a syntax that easily fits in a CASM program and different
implementations. The system also allows users to provide an
other implementation that better suits their requirements.

For example, in Figure 4 queues are declared on line 3.
These queues will be used to buffer inputs and outputs. Inputs
are received and added to the queue on line 5. Since the inputs
are queues, the sender does not block when transferring its
data. When a buffer is full, the sender is blocked until there is
some space in the queue. An example of input consumption
can be found on line 11.

A special syntax has been created to easily interface with
these components. For example, the array operator is used to
bind an expression to an address channel. So, one can use the
x := mem[expr]; syntax to read something from memory
and mem[expr] := expr; to write something to memory.

We also provide specific implementations for different
FPGA technologies. Some FPGAs provide embedded mem-
ories, CPUs, or others components. Users can configure the
behavior and the chosen implementation using parameters or
let the compiler choose appropriate parameters.

III. COMPILING FUNCTIONAL PROGRAMMING
LANGUAGES TO CASM

An interesting application of the CASM language is as
an intermediate language for even higher-level hardware-
description languages. It is particularly attractive to use
CASM’s high-level synchronization mechanisms for express-
ing data-flow architectures. Consequently we have begun in-
vestigating the use of the CASM language for implementing a
compiler for parallel functional programming (FP) languages.
Given that we are in an early exploratory stage, we have cho-
sen to use a small FP language with few builtin operators and a
parenthesized prefix syntax based on the Scheme programming
language [14], which is both easy to parse and extend if the
need arises. Currently our FP language is purely functional
(no side-effects are possible), lexically-scoped (variables refer
to the closest enclosing declaration in the program source
code), and strict (arguments are evaluated before the function
is called).

There are several reasons why an FP language makes a good
HDL. The formal semantics of an FP language is typically
smaller and cleaner than that of an imperative language such
as C and Java. This is helpful for verifying the correctness
of programs and also provides a solid framework for the
program transformations and optimizations that are performed

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on December 1, 2009 at 17:34 from IEEE Xplore.  Restrictions apply. 



by the compiler, such as function inlining, loop unrolling,
code motion, partial evaluation, and so on. FP languages are
declarative in nature, which means that the source code is
closer to a specification than an implementation. It is thus
more likely that a subsystem designed for one application can
be reused in another application with little or no change. The
absence of side-effects makes it easy to exploit parallel exe-
cution. Finally, given the existence of compilation techniques
for compiling FP languages to efficient machine code, it seems
that a single FP language could be used as an approach for
hardware/software co-design. Only one language needs to be
learned and used by the designer, and the partitionning of the
system into hardware and software subsystems can be done by
the compiler with some assistance from the designer (through
source code annotations) or possibly fully automatically based
on design constraints (silicon area, processing throughput, etc).

Recursion and Higher-Order Functions

A fundamental problem in compiling a parallel FP language
to hardware is the handling of recursion and higher-order
functions (functions which take functional arguments or that
return functions). These features are necessary for full support
of the FP programming style. To be consistent with our
goal of providing a high-level programming style we would
like to avoid placing restrictions on the type and depth of
recursion and the use of higher-order functions. A (practically)
unrestricted recursion depth can be achieved using a single
large memory to store a stack of call frames for each process.
The problem with this approach is that the memory would
be a bottleneck that limits the system’s parallelism. Moreover
the long access latency of a large memory will reduce the
performance of recursion. Our approach is to use one small
memory for each function return point. This way the access
time is short and different processes can execute in parallel as
long as they are executing different sections of the program.
Memory fragmentation due to alignment is eliminated because
the width of the memory is equal to the size of the frame
associated to that particular return point. To allow several
processes to coexist the frames are explicitly linked in a chain
rather than using a contiguous stack representation.

Closures

The traditional representation of lexically-scoped functions
is the closure; a piece of data containing the value of the
function’s free variables and a reference to the implementation
of the function’s abstraction (i.e. where the free variables are
viewed as additional parameters). Through the continuation-
passing-style (CPS) transformation [15], a functional program
is converted to a form where function returns are emulated
using function calls. After a CPS conversion, all function calls
and returns correspond to tail function calls (for which no
stack frame needs to be pushed on the stack). Each non-tail
function call in the original program is transformed into a tail
function call to the function with an additional “continuation”
parameter, which is a closure that contains the values that are

needed at the return point by the calling function. A tail func-
tion call to the continuation closure corresponds to returning
a result to the return point. Thanks to CPS conversion, the
implementation of recursion and higher-order functions boils
down to the implementation of tail function calls and closure
allocation/deallocation.

In hardware, a CPS converted function is a device that
receives requests through an input channel. A tail function call
corresponds to sending a request containing the parameters to
the input channel of the device that implements the function.
A device typically performs some internal computation on the
parameters received and then sends a request to some other
device (either to return a result or perform a non-tail call of
the source program). Our implementation of closures consists
in adding a small memory local to a device (the closure
memory), wide enough to hold its free variables. A closure
reference is the address of the free variables in this memory
and some tag bits that identify the device that implements
the function. The tag is used in the implementation of tail
function calls to closures to direct a request containing the
parameters and the closure’s address to the appropriate device
for this closure. Upon receiving such a request the device uses
the closure address to lookup the free variables in the closure
memory and combine them with the device’s other parameters
to perform the computation appropriate for this function. Note
that a function with no free variables does not need a closure
memory, but the tag bits are needed to distinguish it from other
closures.

Memory Management

An entry in a closure memory must be allocated when a
closure is created. All free entries are linked in a free list
to simplify the allocation mechanism. When the closure is
no longer needed for the computation it must be deallocated
to make room for future closure creations. This is done by
adding the deallocated entry to the free list. This operation
could be performed with a garbage collector, like in software
implementations of FP languages. However this is hard to
implement in hardware, especially with several distributed
closure memories. Instead we perform automatic deallocation
of continuation closures (the closure entry is freed when the
closure is called) and rely on explicit deallocation operations
in the program for non-continuation closures.

An example: factorial
To illustrate the compilation of recursive FP programs to

CASM, we use the factorial function. The input code supplied
to the compiler is shown in Figure 6. The factorial function
itself is defined on line 1 while line 4, which is the program’s
body, is a call to this function with a free variable (n) as an
input. The resulting circuit will have a single input channel
for the n parameter and a single output channel for the result,
both full-synchronized. Annotations may be added to specify,
for example, n’s width in bits.

The input code is first CPS converted, as described above.
The next phase does a combined control and data flow analysis

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on December 1, 2009 at 17:34 from IEEE Xplore.  Restrictions apply. 



1. (define fac
2. (lambda (x)
3. (if (= x 0) 1 (* x (fac (- x 1))))))
4. (fac n)

Fig. 6. Factorial function, as input

(0-CFA) [16], which attaches an abstract value to every
variable that might refer to a function. Thus, every function
call is annotated with a list of all functions it might jump to.
Finally, the annotated code goes through closure conversion
[17], which makes a closure’s free variables explicit.

r8 := (x − 1)

#2

n

r7 := 1

#5

halt r7

k

k

r6 :=  (x = 0)

k := #2
x := n

x := r8
k := alloc(#5, k, x)

r7 := (x * r7)

r6

k x

Fig. 7. CDFG for factorial

Figure 7 shows a Control and Data Flow Graph (CDFG)
derived from the FP compiler’s output. Processes flow through
solid lines (data + control signals) while dotted lines denote
closure allocations. Each rectangle represents an ASM device
with a single state which performs basic calculations on its
input (direct transfer, primitive operation or closure allocation)
and sends the result to its output. Rectangles with rounded
corners are function calls to closures: they send their input to
either output depending on the closure’s (k) tag bits.

This is illustrated in Figure 8, which represents the continu-
ation to a recursive call to fac (closure #5); the continuation
for this device may be the initial continuation (#2, output
final result) or itself (#5), through merge nodes. At the
top of the device is the closure memory. For an allocation
(e.g. alloc(#5, k, x) in Figure 7), free variables are
received on alloc data and the corresponding address is
sent back on alloc addr. For a call, the address of the

16 1

=0
4

Closure Memory

x
k

read_addr

alloc_addrread_data

alloc_data

result2 kself2 result5 kself5

alloc_data

alloc_addr

selfr7

Fig. 8. Closure #5 device

free variables is received on self, with a result on r7 since
this is a continuation. With self directly connected to the
closure memory, the corresponding variables (x and k) are
automatically fetched. Then, x is multiplied with r7 and the
continuation (k) is called with the result. The call to k is
represented by the multiplexers at the bottom of the figure:
the tag part of k controls the multiplexers while it’s address
part flows through, along with the multiplier’s result.

This is where CASM’s high-level synchronization comes
into play: the FP compiler’s job is essentially limited to
instantiating components and connecting them together; it is
then guaranteed that for every (self, r7) pair received, a
single output will be produced on either (result2, kself2)
or (result5, kself5).

Also, the closure memory is an abstract component and
different implementations can be created in minutes to fit a
project’s specific constraints (target technology, device size,
required performance . . . ) An example of such an instantiation
is shown in Figure 9. This one targets FPGA, with a priority
on speed rather than space; power consumption et al. are
non-issues. It implements a simple “free-list” algorithm with
separate memories for closure data and pointers so that faster
memories can be used (in LUTs, single-port, no read-on-write)
and any transaction can be completed in a single cycle. Every
pointer has one bit added to indicate a full memory: the last
element of the free list is the only one to have this bit on. The
pointer memory is instantiated on line 12 and it’s initial value
is taken from a file named “initfile”. The if structure that
starts on line 15 makes read (dealloc.) requests have a priority
over allocation requests. Finally, lines 18 and 26 ensure that
the “next” pointer is not changed until all other transactions
have either completed or are ready to complete in the current
cycle.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on December 1, 2009 at 17:34 from IEEE Xplore.  Restrictions apply. 



1. input read_addr{"FS"}[AWIDTH]; //read
2. output read_data{"FS"}[CWIDTH];
3. input alloc_data{"FS"}[CWIDTH]; //alloc
4. output alloc_addr{"FS"}[AWIDTH];
5.

6. define CWIDTH; //supplied on instantiation
7. define AWIDTH = pmem.width;
8. define MEM_DEPTH = 1 << AWIDTH;
9.

10. register nxfree[AWIDTH+1] = 0;
11. memory cmem{MEM_DEPTH}[CWIDTH];
12. memory pmem{MEM_DEPTH,"initfile"}[AWIDTH+1];
13.

14. asm {
15. S0: if(request(read_addr))
16. read_data := cmem[read_addr];
17. pmem[read_addr]:=nxfree.[AWIDTH-1..0];
18. if(S0.complete)
19. nxfree := 0::read_addr;
20. end;
21. elsif(request(alloc_data)
22. && !nxfree.[AWIDTH])
23. post addr = nxfree.[AWIDTH-1..0];
24. cmem[addr] := alloc_data;
25. alloc_addr := addr;
26. if(S0.complete)
27. nxfree := pmem[addr];
28. end;
29. end;
30. goto S0;
31. }

Fig. 9. CASM source code for a closure memory

IV. CONCLUSION

Due to the recent technological evolution of computing
hardware the problem of implementing a system has moved
from mapping an algorithm to an existing architecture to that
of constructing a special purpose architecture tailored to the
algorithm. The goal of our work is to design hardware de-
scription languages that allow non-experts to easily implement
high-performance provably correct systems by synthesizing
them from a high level algorithmic description. The CASM
language is inspired from the token machine paradigm where
the system’s operations are triggered by the presence of data.
This gives a programming model where synchronization is
implicit and it enables a high degree of parallelism between
operations. CASM also supports recursion which is absent
from all common HDLs.

Although CASM can be used for directly programming
applications, we have also begun investigating its use as an
intermediate representation for compiling functional program-
ming (FP) languages to hardware. Indeed CASM excels at
expressing data-driven dataflow systems that are conceptually
related to FP languages. Our prototype FP compiler handles
recursion and higher-order functions using the continuation-
passing-style conversion and a combined control and data flow
analysis (0-CFA). To maximize parallelism we use distributed
memories and linked frames to implement the run time stacks
of the processes. A functional closure is implemented by a
device with a local memory containing the free-variables of
the closure. Deallocation of closures is handled automatically
in the case of continuation closures and must be performed
explicitly by the programmer otherwise.

Once our compilers are fully operational we plan to evaluate
their ease of use and performance by implementing realistic

systems. Of particular interest is the speed and size of the
resulting circuit compared to other HDLs. We anticipate some
extensions to CASM and our FP language to improve their
ease of use. Various optimizations are possible to the CASM
compiler to minimize number of registers, delays, connections,
etc. We also plan to target various back-ends including asyn-
chronous designs, which seems to be the best known approach
for designing low power circuits.

Our FP language will be extended with programmer decla-
rations to allow the compiler to determine through analyses the
width of data paths and closure memories (type annotations
and type inference), the size of memories (maximal recursion
depth and number of processes), and absence of deadlocks
when multiple recursive processes are used. Our FP language
also needs a way to link to devices written in other HDL
(CASM, VHDL, etc.).

V. ACKNOWLEDGMENT

This work was supported by the National Sciences and
Engineering Research Council of Canada (NSERC) under its
Discovery Grant program.

REFERENCES

[1] J. Dennis and D. Misunas, “A preliminary architecture for a basic data-
flow processor,” in 2nd ISCA, January 1975, pp. 126–132.

[2] S. A. B. et all, IEEE standard VHDL language reference manual, IEEE
Std 1076-2002. The Institute of Electrical and Electronics Engineers,
Inc., May 2002.

[3] M. M. M. et all, IEEE Standard Verilog Hardware Description Lan-
guage, IEEE Std 1364-2001. The Institute of Electrical and Electronics
Engineers, Inc., September 2001.

[4] Celoxica, “HandleC Home page.” [Online]. Available:
http://www.celoxica.com/methodology/handelc.asp

[5] D. Ku and G. D. Micheli, “HardwareC: a language for hardware design,”
Computer Systems Laboratory, Stanford Univ., Stanford, Calif, Tech.
Rep. SCSL/CSL/TR-90-419, August 1990.

[6] D. Galloway, “The transmogrifier C hardware description language and
compiler for FPGAs,” Proc. Symp. on FPGAs for Custom Computing
Machines, pp. 136–144, April 1995.

[7] J. Zhu, D. D. Gajski, and R. Doemer, “Syntax and semantics of
the spec C+ language, Tech. Rep. ICS-TR-97-16, 1997. [Online].
Available: citeseer.ist.psu.edu/article/zhu97syntax.html

[8] M. B. et all, “SystemC 2.0.1 Language Reference Manual,” 2003.
[9] J. Lapalme and E. M. Aboulhamid, “eSys.Net Home page.” [Online].

Available: http://www.esys-net.org
[10] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava: hardware

design in haskell,” in ICFP ’98: Proceedings of the third ACM SIGPLAN
international conference on Functional programming. ACM Press,
1998, pp. 174–184.

[11] J. J. O’Donnell, “From transistors to computer architecture: Teaching
functional circuit specification in hydra,” in FPLE ’95: Proceedings of
the First International Symposium on Functional Programming Lan-
guages in Education. Springer-Verlag, 1995, pp. 195–214.

[12] G. H. Mealy, “A Method for Synthesizing Sequential Circuits,” Bell
System Tech J. vol 34, pp. 1045–1079, September 1955.

[13] E. F. Moore, “Automata Studies,” Annals of Mathematical Studies, 1956.
[14] R. Kelsey, W. Clinger, and J. Rees, “Revised5 Report

on the Algorithmic Language Scheme.” [Online]. Available:
http://www.schemers.org/Documents/Standards/R5RS/

[15] J. Guy L. Steele, “Rabbit: A compiler for scheme,” Tech. Rep., 1978.
[16] O. G. Shivers, “Control-flow analysis of higher-order languages of

taming lambda,” Ph.D. dissertation, 1991.
[17] A. W. Appel and T. Jim, “Continuation-passing, closure-passing style,”

in POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages. ACM Press, 1989, pp.
293–302.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on December 1, 2009 at 17:34 from IEEE Xplore.  Restrictions apply. 


