ACTA Informatica Manuscript-Nr.
(will be inserted by hand later)

Efficiently building a parse tree from a regular expressiort

Danny Dubé and Marc Feeley*

Universie de Monteal C.P. 6128, succ. centre-ville, Mogdit Canada H3C 3J7

Received: — / Accepted: —

Abstract. We show in this paper that parsing with regular expressions instead of
context-free grammars, when it is possible, is desirable. We presereftdiorithms

for performing different tasks that concern parsing: producing thereat representa-
tion and the internal representation of parse trees; producing all jopsifse trees or

a single one. Each of our algorithms to produce a parse tree from anstmimg has

an optimal time complexity, linear with the length of the string.melaver, ambiguous
regular expressions can be used.

Key words: regular expression — parse tree — parsing — context-free grammar — ambi-
guity — time complexity

1. Introduction

In language theory, regular expressions and context-free grammarsamng #re most
important tools used to recognize languages. These are simple modeldiaiethtef
algorithms exist to make them practical. Finite deterministic and deterministic
automata, push-down automatd, (k) andL R(k) parsers are all part of this technology.
In many application fields, such as compiling, the interest is not omgdagnizing
languages, but also in parsing them. That is, given a grammar and a $taing t
generates, constructing a parse tree for the string which indicates batrithg can be
derived from the grammar. The task of parsing is traditionally doirggusontext-free
grammars. Still there are cases where a kind of parsing with regulaessipns is
desired. For example, it is the case when one wants to recover a floatingipoiber
from a string like-1.234e5 . The string as a whole matches the regular expression
describing floating point numbers, but parts of it (sign, integerfeation, exponent)

* Research supported in part by the Natural Sciences and &rgig Research Council of Canada.
** E-mail: {dube,feeley }@IRO.UMontreal.CA .

2 D. Dubke and M. Feeley

must be extracted in order to obtain useful information. For sirggdelar expressions,
such extraction is usually done in ad hocway.

Parsing is often done using algorithms with linear complexity based ®(k) or
LL(k) grammars. Unfortunately, the set of regular expressions does hiottfa class
of LR(k) grammary, ambiguous regular expressions are hét(k).

To be able to parse with any grammar, even an ambiguous one, we must asa gen
tools such as Earley’s parser ([E70]) or the dynamic programmingadd#ee [HU79],
CYK algorithm). These algorithms have cubic complexity in thesvorse.

There are some tools which allow to parse specifically with regular esipres In
the REGEXP package (see [RE87]) and in the regular expression tools included in th
EMAcs text editor (see [Emacs]), one can mark a sub-expression of a regpfassion
to indicate that a substring matching the marked sub-expressioniisaieBhe result
is either the substring itself or a range (pair of integers) indigatihere the characters
can be found in the original string. If the sub-expression is matateay times, there
is a substring for each match (or for only one of them). This facilityas completely
satisfactory. It can pose problems when more than one sub-expresgsianked (using
“\("and ") "), like in:

(a+\(c\)?b+\(c\)?)*

It is not possible to unambiguously determine where tfedppear in the repetitions,
even if all the occurrences ot’*are noted. For example, the stringsatbcab and
‘abcacbbboth cause the same informations to be saved: ohgtring per mark. So,
extraction by marks (and bgd hoctechniques) is not powerful enough to provide a
clean and general solution.

What we show in this paper is that complete parsing with general regylegssions
can be done in linear time. We present a set of techniques that provide cemaise
trees and that do not impose restrictions on the kind of regular esipnssone can use.
The techniques are efficient in the sense that they have a linear time cdyivi¢he
length of the string to parse. Our approach is interesting since themarg cases
where regular expressions are the most natural description one has.

Indeed, although the set of regular languages is smaller than the 4a®(&)
languages, many useful languages are regular. Configuration files for iysteyns
can be described by regular expressions. In some cases, assembly sourcanfiles
be regular. If the assembler does not support advanced features like nsnaes
files basically contain lines with an optional label, an operator and its opgrahts
some assembler directives and sectioning commands. All this gives artanduage.
Finally, in the processing of natural languages, regular expressiomstsnes are the
most appropriate tools. They can be used in various lexicon-relates|, taskobust
parsing, and in automatic language identification. They can be used as ariaygteo
definition of the language to recognize, allowing fast processing diretoregularity.
In some situations, like in the processing of Finnish, where tbedsrdon’t have a
specific order, they are a good solution to an otherwise difficultlproljsee [LIN85]).
One can find more complete descriptions of the use of regular expnesaimatural
language processing in [MN97] and [GM89].

We present our techniques in the following order. Section 2 present#idefirand
conventions that we use. Among which is the description of the pass themselves.

1 Strictly speaking, the regular expressions are not corfitegt grammars. But we can give to a regular
expression a natural equivalent grammar. For exampte,r’|r” can be transformed into the substitution
rulesT, — T | T, andr = r™,into T, — € | Ty T

Regular expressions and parse trees 3

We give them arexternaland aninternal representation. Section 3 presents a non-
deterministic automaton used to generate the external representatioracfeatpee
and Section 4 presents another one for the internal representation. Thd seton
most useful but the first is simpler. Section 5 presents an improverhtd preceding
techniques using deterministic automata. Finally, Section 6 presents ragieetho
obtain an implicit representation of the set of all parse trees. This taohisgneeded
when a regular expression is ambiguous and there are many parse tregsocwlires
to different parses of the same string.

We present many observations and properties throughout the teki.eity, we do
not include their proof. The proofs are usually simple but longtadibus. We believe
the reader should easily be able to convince himself of the truth otatensents.

2. Definitions, conventions and tools
2.1. Notation

Let X be the set of symbols used to write the strings that we parse. Wesdtheampty
string as. The length of a string is |w|. Strings are concatenated by writing them one
after the other.

The techniques described here are based primarily on automata. The automata are
simply represented by graphs. The start state is indicated by aifjn. The accepting
states are depicted as double circles. Every edge has a string attached foaitjrigd
what prefix of the input string should be consumed when a transgiomaide through
the edge. Aw-transition is a transition that consumesMost of the automata that we
introduce are non-deterministic. Their nodes are usually denoted gngttersp, ¢
or s. For a deterministic automaton, we use a hat on the node labelsgas in ~

L(r) is the language of the regular expressioh(G) is the language of the context-
free grammaf. L(A(r)) is the language accepted by the automatr).

Paths in a graph are denoted by writing the sequence of node labels. Watsepar
labels by dashes if there can be confusion between them. Concatenated pathtseare wri
one after the other and separated by dgtdrf a concatenation, the last node of a path
must be the same as the first node of the following path.

In general, we try to use distinct letters to denote different thingsh sy andw
for strings and- for regular expressions.

2.2. Regular expressions

We define the seR of regular expressions as the smallest set such that the following
hold:

{FUSU{() | € R}

RguU{r*|reRpg}
REU{rors...Th-1|n>2Ar; € RE,VO<i<n}
Ry U{rolr|...Jrp—1|n>2Ar; € RT,V0<i<n}
RE

&
_|
U 1V U 1U 1Y

4 D. Dubke and M. Feeley

We prefer to define the set of regular expressions with set inequalitiesrrthan
with a context-free grammar because it simplifies the remaining of ttseptation.

The set of regular expressions that we consider is almost the starmdanid/e omit
the positive closurer() and the optional operatar?) which are simple modifications of
the Kleene closure-{). Note also that we did not introduce the empty regular expression
(»), which corresponds to the empty language. First, the problem ofhfiradparse tree
for a stringw matching) never occurs. Second, a complex expression containing the
expressiorf) can easily be reduced to the expresdiatself or to an expression that
does not contaiff.

2.3. Parse trees

We first describe the kind of parse trees that our automata should creste ftring.

An importantissue is that a regular expression may represent an arabiguatext-free
grammar. The expressiodn|b|ab) is ambiguous because some strings sucluadave

more than one possible parse tree.

Let7 denote the set of all possible trees dhdR x ¥* — 27 the function giving
the set of valid parse trees from a regular expression and a stringisT gk, w) is
the set of all valid parse trees coming from the decompositiom atcording to the
grammar represented by the regular expressidior our purpose, parse trees are built
with symbols of Y, with lists, and with selectors. More formally, we can defihas
the smallest set such that:

ceT, Vee X
#i:teT, VieN, VteT
[to,t1,. .. tn1] €T, V>0, Vt; €T, 0<i<n

Let us describe formally the parse treedir, w). Note thatl'(r, w) # 0 if and only
if we L(r).

T(e,w) = {{[]}; ifw=¢e

0, otherwise
{c}, if w=c(wherece X)
Tle,w) { ¢, otherwise
T((r"),w) = T(' w)
n>0A
T(r’*,w) - [tO, - -;tn—l] vO0 <i<mn, Elw,' € X*, st

W=wWwo.. - Wp—1 N\
t; €T, w;),V0O<i<n

VO<i<n,dJw; € X¥* st
[to,---stn_1] | w=wo... wp—1 A
t; € T(r,v,wi),VO <i<n

{#i t;|0<i<nAt;eT(r;,w)}

T(ro...rp—1,w)

T(ro|...|rn—1,w)
This is the meaning of each case:

— Caser = e. The corresponding parse tree is the empty list: [].

Regular expressions and parse trees 5

— Caser =c € Y. The parse tree returned in this case is the symiiself.

— Caser = (r"). The parentheses are used only to override the priority of the opgrato
They do not affect the shape of the parse trees.

— Caser = r'*. The parse tree returned in this case is a list containing sub-trees. That
is, if matcheaw, thenw is a concatenation of substrings all matchingr’, and
there is one sub-tree per sub-match.

— Caser =rg...r,_1. Aparse treeis a list of length. Each sub-tree of that list is a
parse tree of a substring; of w according ta-;.

— Caser =ro|...|r,—1. Each parse tree is a selector indicating which subexpression
has permitted a match and in which way.

It is obvious that a parse tree gives a complete description of a partimatch.
Given the regular expression used in the match, we can interpret theiesrsad find
a derivation for the string. Note that with our parse tree representatio different
regular expressions both matching the same string can have the sashpase trees.
For exampleT'(a*, aaa) = T(aaa, aaa) = {[a, a,a]}; in the first case, the list comes
from a repetition; in the second case, the list comes from a concatenatidine ©ther
hand, parse trees coming from two different strings must be differece & parse tree
contains all the symbols of the string in order.

Here are a few examples. The last two show ambiguous regular expr&sthe
last one shows a regular expression for which all the strings ilatguage have an
infinite number of parse trees.

T'(alb|c, b) {#1:b}
T(a"b*c*,aabbbcc) = {[[a,a],[b,b,b],[c,c]]}
T((alaa)*, aa) {[#0: a,#0 :a],[#1 : [a,a]] }
T((a™)",€) {0, m, . o . o1, om .- 3

2.4. External representation of parse trees

Note that the parse trees jn are only mathematically defined and we have not given
them an actual representation. They first have an external representatioreprbaen-
tation consists in writing them down as strings.

We choose that their textual representation is identical to the one wénutbetext
before. The alphabet that we use to write thex'is {'[,*,", T ,"#,"" } U D, where
D is the set of digits in a certain base. For examples {0, 1, 2, 3} in base 4.

Lists are written as a finite sequence of elements between square brackets)([and]
and separated by commas, such@®,c]. Selectors are written as a natural number
and a parse tree, each of these being preceded by # and :, respectively, asdru#3 : [

2.5. Internal representation of parse trees

The parse trees ifi also have an internal representation. That representation consists
in building trees using data structures. This section describes thatsstductures.

The data structures needed are: the empty list, pairs, symbols and spkscsor-
Pairs are simply the traditional two-field data structures used td bsti. However, we
will use a non-traditional representation of lists: last-to-fistsl That s, the last element

6 D. Dubke and M. Feeley

of a list is immediately accessible while an access to the first requiresatiergal of
all the pairs of the list. This representation is unusual but it is as &asyplement
as the traditional one. We use it for technical reasons explained in Sec®oim 4ur
representation of lists, the first field of a pair references an element obth{¢hk last
element) and the second field references the rest of the list (the first elenvghes)
we need to build a pair, we use the following functiomakepair(ts, t2), wheret; is an
element added at the end of the list

A selector-pair has two fields. The first contains an integer which represents
the number of the alternative chosen in a match. To build a selector-paitse.
makeselecto(i, t).

To evaluate the complexity of our algorithms, we assume that the bpsrations
on these data structures can be done in constant time.

3. External representation non-deterministic automaton

This section describes how to build a non-deterministic automaton@mdduse it to
build the external representation of the parse trees, and explains $@mproperties.
The automaton is very similar to the finite non-deterministic autom#tat we use in
language theory to recognize a regular language. The main difference isitieradf
output strings to some edges of the automaton. When the automaton artasesition
through such an edge, it outputs the string that is indicated.

We start by explaining the process of producing a parse tree usingutioena-
ton. Then we present the construction rules and an example. Next, weomseatne
properties related to the automaton. Finally, we discuss performanesiss

3.1. Obtaining a parse tree

Let w be generated by and letAg(r) be the external representation automaton cor-
responding ta-. In order to describe precisely the computations happening with our
automaton, we ussonfigurationsA configuration is a tupley, w, v) that indicates that

the automaton is currently in stapethat there is still the string to be read from the
input, and thav is the string that has been output until now.

The initial configuration of the automaton ig(w, €), wheregq is the start state. As
with a finite state automaton, a transition can be made using an edge édge starts
from the current state; and, the (input) string associated with theisdgerefix of the
remaining input. So, let us assume that our automaton is in configur@tias,, v,)
and there exists an edgdrom p to ¢ that consumes)’ and outputs/’ (if there is no
output string.e is the default). Ifw’ is a prefix ofw,, that is, if there exist, such
thatw, = w'w,, then the edge can be taken. By doing so, the automaton goes into the
configuration ¢, w,, v,), wherev, = vpv'.

The automaton has successfully output a parse tree if we can make transiiito
a configurationdy, €, v), whereg; is the accepting state. In such a casis,the desired
parse tree. In cases wherés ambiguous and has many derivations, is only one of
the possible parse trees.

3.2. Construction

Figure 1 presents the construction rules for the external represerdatmmatom g (r)
corresponding to a regular expressienThe construction rules are described in a

Regular expressions and parse trees 7

An(e): > [G]
@AE(r'>@
€

€ €
Ap(r™): : Ap() :
Lo« |

)

V

Ap((r)):

Ag(ro...rm) (Wherem =n — Landn > 2):

1O IO R YR
€ €

Aprol ... [rm): #0 AE(’"O)

(wherem =n — 1 > .

andn > 2) € - €
@@

Fig. 1. Construction rules for the external representation automa

#m :

recursive manner. These rules are similar to those presented in [ASUSGHEIT 9]
with the exception that we add output strings on the edges. Notehbattart and
accepting states of an automaton included in a bigger one lose their speciahgneani

3.3. Example

Let us see an example to help understand the way the automaton workdl gémsider
the regular expressior= (a|b|ab)* and the stringv = ab. Clearly,r is ambiguous ang
has more than one derivation. In fact, there are two different parse treesfizording
tor:

T((alblab)*, ab) = {[#2 : [a, b]], [#0 : a, #1 : b]}

The first corresponds to the derivation where the Kleene closure causa®meti-

tion of the internal expression am@ is chosen among the three choices. The second

corresponds to the derivation where two repetitions occur and:fitsenb are chosen.
Figure 2 shows the automatdi; (). Each path from state O to state 1 that consumes

w Will cause a parse tree to be output. One can see that there are exactlghypass.

Thoseare0-2-8-10-11-12-13-9-3-1and0-2-4-5-3-2-6-7-3

-1

8 D. Dubke and M. Feeley

m

—
—

BN KU NN~ ol [R Sl S
™
m

Fig. 2. The external non-deterministic automaton associated|toab)*.

| First path | Second path |
(O, ab,) 0, ab, ¢€)
2, ab,) (2, ab,)
(6, ab, [#2:) (4, ab, [#0:)
(10, ab, [#2:]) (5, b, [#0:a)
(11, b, [#2:[a) (3, b [#0:a)

(12, b, [#2:]a,) 2, b, [#0:a,)

(13, ¢, [#2:[a,b) | (6, b, [H#0:a,#1:)
O, ¢ [#2:[a,b]) | (7, € [#0:a,#1:b)
B, ¢ [#2:[a,b]) | B, € [#0:a,#1:b)
A, & [#2:[a,b]]) | @, € [#0:a,#1:0])

[Result: [#2 : f1, b]] | Result: [#0 :a,#1 :b] |

Fig. 3. Two traces ofAd g ((a|b|ab)*) on ab.

Figure 3 shows the sequence of configurations that the automaton goegth
for each of these paths. It is important to note in each sequence the firguatibn
(0, w, €) and the last (Je, v).

3.4. Observations

We can make many observations about the automaijg(n) created from:

Correct language: The automaton accepts the same language as the one generated by
the regular expression, that i6(Ag(r)) = L(r). Indeed, our method is similar to
that presented in many papers (see [ASU86, HU79]).

Linear size: The size of the automaton (the number of states and edges)igeaxly
with the size of the regular expression. We measure the sizeifelementary
symbols: €, ‘¢ (ce X),'(,?)," *"and |

Soundness: The parse trees for a string output using the automatooregct parse
trees for the string. More formally, i is a path from the start state to the accepting
state ofAg(r) anda consumesw, thena causes a valid parse trees T'(r, w) to
be output.

Exhaustiveness: The automaton can output any of the valid parse trees. L§t, w),
then there exists a pathgoing from the start state to the accepting statd g{r)
and consuming that causesto be output.

Regular expressions and parse trees 9

Uniqueness: There is only one way to produce a particular treeal et as, two
different paths traversing g (r). Then the trees; andt, that are output during the
two traversals are different.

Note that the last three properties concdin(r) for r in general. That is, they are
true even ifr is a sub-expression of another expression. It implies that a patrsiag
Ag(r) may cause the consumption of just a part of the input string thatisnfto the
global automaton. Similarly, it may cause the production of just atsedof the whole
tree. This fact is important if one wants to prove these properties.

3.5. Complexity

We have not yet given a totally complete method to produce a parse treeaorh
deterministic automaton creates a valid parse tree as long as we have foatictlaat
fulfills all the conditions. We describe a method to find such a patiaméext paragraphs
and another one in Section 5.

In order to find an appropriate path, we simply forget momentarily tieattare out-
put strings on the edges and use an algorithm simulating a non-deistiocdutomaton
such as the one described in [HU79]. Then, by following the path arglutirtg the
strings, we get our parse tree.

We do not repeat the description of the simulation technique here. Whaidstant
to us is its complexity. The technique finds a path in ti@gw| x n), wherew is the
string that we want to parse amdis the number of states of the automaton. Since we
know that the number of states of the automaton grows linearly wittsittee of the
corresponding regular expressiarthe technique takes a time @(|w| x |r|).

When we have found an appropriate path, we simply have to folldwatighA g ()
and output the strings indicated on the edges. It tak@gs| x |r|) to follow the path
and to output the parse tree.

So, the whole process of writing a parse tree by simulation té@s| x |r|) in
time. In situations where is known, we can consider that the technique takés|)
in time. Still, the hidden constant heavily depends-on

Evenif the steps of finding a path and following it both hat& aw| x |r|) complexity,
it is reasonable to think that the search for a path has a greater hidden tamsiten
average case. It could be profitable to get a faster algorithm for findiradich path.
Section 5 presents a method to search for a path in @tie|), where the hidden
constant does not depend aralthoughr must be known a priori.

4. Internal representation non-deterministic automaton

Section 3 describes an automaton that we can use to output the external repi@sen
of a parse tree from a string generated by a regular expression. Whainéoxdo here
is to build the internal representation of a parse tree using datasescso, instead of
adding output strings to some edges of the automaton, we add coistreminmands.
When a path traverses the automaton and consumes the whole inpytk#isgquence
of commands that is emitted formsexcipeto build a parse tree.

We start by describing the instrumentation that is required to botketmal parse
trees. Then we present the construction rules and an example. We omit tioelis
properties of this automaton because they are very similar to thosee gfrévious
automaton.

10 D. Dubke and M. Feeley

4.1. Instrumentation

In order to build the internal representation of a parse tree, we augneeatitbmaton
with a stackand somestack operations

4.1.1. The stack

The function of the stack is to contain the different pieces of the paeseunder
construction. This stack does not turn the automaton into a push-dotematon. The
automaton can only send commands (stack operations) to it and cannot reat from i

On most edges of our automaton there are stack operations to performh&oaw
transition is made through an edge, a part of the input string may =iomd and a
stack operation may be performed on the stack. The automaton is builthnasway
that, if a path is followed from the start state to the accepting statef éimalt ipath has
caused the consumption of the input string then the resulting effettteostack is that
a valid parse tree has been pushed on it.

Now, we define the stack functions. The three basic stack functiorsuatepop
andtop.

pusHt, s) returns the stack with the new tree added on top.

pop(s) returnss without its top element. The argument stacks not altered by this
operation.

top(s) returns the top element of the stack

4.1.2. The stack operations

The operations that can be found on the edges of the automapaigite snoc , and

sel . Push adds a tree on top of the stack. Tijngsh operator always has a constant

tree as first argument. For examppeish [] is an operator that takes a stack and
pushes the empty list on top of 8noc? takes the top two elements of the stack, groups
them in a pair and places the result back on top of the stack. One can see that we can
build arbitrarily long lists on the stack with succesgiesh andsnoc operatorsSel

takes the top element of the stack and encapsulates it in a select@elThgperator
always has a constant integer as first argument.

(push t)(s) pusHi, s)
snoc (s) = pushmakepair(top(s), top(pop(s))), po(pop(s)))
(sel d)(s) push{makeselecto(i, top(s)), pof(s))

4.2. Construction

Figure 4 presents the construction of the internal representationetenministic au-
tomaton. The functiod ; returns the internal automaton associated to a regular expres-
sion.

2 This name is the reverse obns , which is a common name for the function that adds an elenment i
front of a list. We usesnoc in reference to our reversed implementation of lists.

Regular expressions and parse trees 11

Al > push6 [1

He D a®

(») ar6) @
€

VAT € €
e push [] Al snoc
L« |

snoc

Ar((r)):

V

Af(ro...rm) (Wherem =n — 1 andn > 2):

€ € €
(o 1) A9 @) o () e @)
push [] snoc snoc
€ €
Ar(rol. .- |rm): sel 0
(wherem =n — 1 >| :

andn > 2) € - €
Ar(rm)
sel m

Fig. 4. Construction rules for the internal representation automa

The rules forr = r'* andr = rg...7,_1 are those involved in the creation of lists.
It is because of these rules and the fact thafr) reads its input from left to right (i.e.
normally) that we require a special implementation of lists (see Sect®ni2would
be possible to use only traditional lists if we changed the two miestioned above
and made the automaton read its input backwards (from right to left).

4.3. Example

We illustrate the operation of the automaton with the same regutaession and string
as in the example for the external representation automaterfu|b|ab)* andw = ab.
Figure 5 showsi r(r).

There are two paths that consume0-2-8-10-11-12-13-9-3-1and0
—-2-4-5-3-2-6-7-3-1. Figure 6 shows the sequence of configurHian
the automaton goes through along each path. The first path is particlilestsative of
the importance of using the reversed implementation of lists.

12 D. Dubke and M. Feeley

€

push []
7 a
/\/O push a
€ € b
.\ ush[] K8 push b

€ @ N € b oy €
8 ush[f®push Wenoc @push 39 snoc
€

snoc

Fig. 5. The internal non-deterministic automaton associated |tgdb)* .

| First path | Second path |
O, ab, [D | O ab,)
(2, ab, (m | 2 ab, [m
(8, ab, m | @ ab, [m
(10, ab, (.mm | & b, [a,[1D
(11, b, [a,[1,[ID | B b, [#0 : a,[]])
(12, b, [al,[ID | @ b [[#0 : a]])
(13, ¢ [o,[al,[I) | 6 b, [[#0 : a]])
O ¢ [a,0L,[I) | (7, & [0, [#0 : a]])
(3, e, [#2:[a,b],[1) | (3, €, [#1:b,[#0:a]])
@1, €, [[#2 : [a,b]D) | (3, €, [[#0:a,#1:0])

[Result: [#2 : f, b]] | Result: [#0 :a, #1 : b] |

Fig. 6. Two traces ofd((a|b|ab)*) on ab.

5. Deterministic automaton

As explained in previous sections, we expect the search for a valid pathnon-
deterministic automaton to be quite expensive. So we develop hereeandstic
equivalent to the non-deterministic automaton generated for a regyleassion-. We
arbitrarily choose to give the explanations using the internal aattmm but these also
apply to the external automaton.

The algorithm using the deterministic automaton can find a valid paith@O(jw|).
Note the path itself has generally a lengtt(r| x |w|). The reason why it takes less
time to find the path than it would take éaitputit is because the algorithm only creates
a skeletonof the real path. It only returns the identity of numerous sub-paths.
concatenation of those sub-paths would give the desired path.

5.1. Construction

Basically, the construction of the deterministic automaton is alrdesitical to the usual
construction used in language theory (JASU86, HU79]), so we willrearite it here.

The difference resides in the fact that we collect some information abeuttation

between the deterministic automaton and the non-deterministic onexmMérewhat

is the nature of this information, but we do not formally descrhmeway it should be
computed. We assume it is sufficiently straightforward.

Regular expressions and parse trees 13

We must keep two matrices of information, which we denote as functioes her

f(p,c,q) wherep'is a deterministic state (corresponding to a set of non-deternginisti
states)¢ € X' andg a non-deterministic state. The functigmeturns a patlx from
some stat@ in p to the state that goes through@atransition first, and then, through
zero or mores-transitions. It is easy to identify because it is the first state in

g(q) whereq is a non-deterministic state. The functigrreturns a pathy from the
non-deterministic start state gahat goes throughk-transitions only.

In order to describe the usage of the automaton, we first introduce gsariables.
We have astringy = cg...c,_1,Wherec; € X for0 < i < n—1.psq- andg,.. are the
start state and the accepting state of the non-deterministic autorgtgnrespectively.
The deterministic start statejis;;,:. The deterministic states are distinguished by the
hat they have on their name. Naturafly;,.: is thee-closure ofps;a,-

The first step in using the deterministic automaton consists in psingethe input
stringw with it. One has to note each state in which the automaton goes into. telius
Pos - - -, Pn those states. Note thadiart € Pstart = Po ANAGace € Pn-

The second step consists in recovering the complete path travergingand con-
sumingw. We do this by finding: + 1 sub-pathsy to «,,, in reverse and concatenating
them togethery; consumes;_1, 1 < i < n. aq starts atpg,,+ anda,, ends aty, ...
Here is the technique:

Initialize the tail of the path.

p’I’L = Qacc

Find the sub-path; that consumes;_;.

Qg
Pi-1

f(piflvci*]-?pi) } i:n,n—l,---al

the first state iny;

Find the sub-path going .
ao = g(po)

Recover the whole path.

=0 ... Qp

By taking care of just keeping a reference to each sub-path and not copying them
entirely, we then have a skeleton of a valid path through the non-digtistimautomaton
in time O(n) (where the hidden constant does not depend)orSubsequently, the
skeleton allows one to make a traversal of the real path in ¢hfrex |r|).

One might worry, with reason, about the size of the matrixffain the worst case,
the argumenp ¢an take 207D values, the argument | £| values andy, O(|r|) values.
Each answer can be of lengf}(|r|). In practice, thoughy fakes much less thar¥¢"!
values. Nevertheless, it is possible to re-expiessterms of three smaller matricés.
It is also possible to use table compressioryas it tends to be sparse and as many of
its defined entries are similar. Such approaches are beyond the scopepajtbis

3 Smaller in the sense of being only one- or two-dimensiomateiad of three-dimensional s

14

5.2. Example

D. Dubke and M. Feeley

The following example illustrates the way the deterministic automatorks. Let

r = (ab)* andw = abab. ThenA,(r) is:

b

€

€
Q/ push[]

€ o\ € N\ O o €
.\ ush[f\%ﬁush[f\%ush 2 snoc

€

(B)
\%ush b\7/ snoc 3

€
snoc

snoc

The deterministic automato«ﬁll(r) we can build fromA(r) is:

a

OO

where

0={0,1,2,4}
1={56}
2={1,2,3,4,7}

The functionsf andg associated to the deterministic automaton are:

0 1

2

)]

~NOoO O WNELO
FEERRERER[s
FEERRRERER]®

(o]

\‘

w

FoO S|

67

FaaEEEER|s
(o)

FEERRERER[s

0
01
02
L

024

L
L
L

<Q
|
~NOoO o~ WNEO

If we feedfi[(r) with the input stringw, the automaton goes through this sequence

of states:

ﬁo = Oaﬁl = i:ﬁz = é7ﬁ3 = i7?2\4:

We recover the pathy in A;(r) this way:

as = f(ps,b,1)
Qa3 = f(ﬁZv (l,pg)
Q2 = f(ﬁl: bapZ)
Qa1 = f(ﬁOv aapl)
a0 = g(po)

a = Q-1 -Q2- Q304

[1 | B T R |
obhobo
|
N OO N
|

-1 (p3=16)
(p2=4)
—-2-4 (p1=6)
(po=4)

0-2-4-5-6-7-3-2-4-5-6-7-3-1

Itis easy to verify that this path goes from the start state to the accegpéiteg consumes
w and causes the push of the valid parse tree.

Regular expressions and parse trees 15

6. Representation of the set of parse trees

The previous sections describe ways to obtain a parse tree represhatd@rbmposi-
tion of a stringw according to a regular expressiorHowever, only one of the possible
parse trees is built. In cases where there are more than one possiblérgarks a
string, one might be interested in obtaining the complete set of fféesis, obtaining
T(r,w) instead of a certaine T'(r, w).

6.1. Considerations

There are some important considerations we must take into accountntevalito get
an algorithm able to returid’(r, w). First, it is unrealistic to try to return aexplicit
representation df'(r, w). The set s, in general, too big. For example, the cardinality of
T((a*)*, €) is infinite, that ofT'((a|a)*, a™) is exponential, and that @f((a*)***, a™) is
polynomial of degreé. So, it is clear that we must return anplicit representation of
T(r, w).

Second, existing techniques for context-free grammars such as dynagrepr
ming and the Earley parsing (see [HU79] and [E70]) produce an impdipiesentation
of the set of parse trees. Itis a tree-like representation: each “node” tfdghisontains
the set of all the different “sub-trees” that could be referenced by the nbdeisT there
is a node for the set of parse trees of each non-terminal and each substhiegrgfut
string. We say that the node compacts all the parse trees of a subsriarated by a
non-terminal (see [JM93]). Unfortunately, both algorithms haviena complexity of
O(|w|®), wherew is the string to parse. In particular, they still exhibit this ticam-
plexity even if we restrict the context-free grammars to be only tadioss of regular
expressions.

Since our interest is in efficiency and since we restrict ourselves toaiegut
pressions, we are able to present an algorithm producing an implicésemation of
T (r,w) in linear time. It takes the form of a context-free grammar which generages t
set of parse trees. That is, the grami@ar, produced is such thdi(G, ,,) = T'(r, w).
For the sake of simplicity, we present an algorithm producing a grartiabgenerates
the external representation of the trees.

6.2. Construction

We describe how to produce the context-free gram@iay, such thatL(G, ,) =
T'(r,w). The idea behind the algorithm producing it is simple. et R, w € L(r)
and Ag(r). The grammar is created in such a way thanitnics Ag(r) consuming
the input stringw. That is, doing a substitution using a rule corresponds to making
transition in the automaton. Figure 7 gives the algorithm. Therakguo first produces
rules simulatinge-transitions and:-transitions, respectively. The main non-terminal
corresponds to the initial configuration. Finally, the last rulé&ésdnly one that can end
a derivation, which is equivalent to recognizing the reaching of the accegititgyafter
the consumption of the input string.

The indices off?; , mean thai symbols of the input string have been consumed and
that Ag(r) is in statep. The set of strings thaP; , can generate is the set of strings
that Az (r) can output if it is in state and has already consumed the firstymbols

16 D. Dubke and M. Feeley

Make-Grammatd g (r), w)
{ Supposav =cg. ..c,—1, Wheree; € X' }
{ Suppos@stqrt @andpacc are the start and accepting statesigf (r) }
Fori = 0 ton (inclusive)
For each edge in Ag(r)
{e= }
If w;, =€ Then
Produce ruleP; , — woutP; g
Else Ifi < n And w;,, = ¢; Then
Produce ruleP; , — woutPi+1,4
Mark Po 5., ... @s the main non-terminal
Produce rulePy, p,.. — €

Fig. 7. Algorithm producing a context-free grammar that generatesnplicit representation faf (r, w).

of w. Formally, here is the relation between the non-terminals of the gramnubthe
configurations in whicd g(r) can be:

vP; , corresponds top(w", v) wheredw’ s.t.w = w'w" and|w'| =i

This relation allows us to easily obtain many properties of the grammambglating
properties of the external representation automaton.

The algorithm has a time complexity @(|r| x |w|). The|w| factor comes from the
outer loop, which enumerates each position in the input string. Thex loop iterates
on the edges ofi(r). Recall that the number of edges. iz (r) grows linearly with
the size ofr. This justifies the factofr|. Since a production may be produced at each
iteration of the inner loop, the algorithm generates a grammar whicfjas x |w|)
productions: Our algorithm is optimal in its time complexity in the followirsgnse.
Once the regular expression is known, the algorithm is able to ger@raf in time
O(|wl), which is the best any algorithm can do.

The algorithm generally produces a grammar that is not d€&mat is, there are
useless and unreachable non-terminals. We could have given an adaptetiraltjoait
avoids this problem, but it would have been more complex and, as V¢ @at in
Section 6.5.1, it is not a serious problem.

6.3. Example

We illustrate our algorithm with a simple example. ket w = abe. Figure 8 shows
Ag(r). Figure 9 shows the grammé&f = Make-Grammatd z(r), w). In order to make
things clear, we have separated the productions correspondingddrtesitions and
thec;-transitions, the final production and the main non-terminal.

4 The fact that our algorithm creates a grammar v@tfjr| x |w|) productions does not automatically
imply that its time complexity i€)(|r| x |w|). This is because the right hand side of the productionstis no
necessarily bounded in length. In particular, when,; = #i :, it might be arbitrarily long. It take®(log)
to denotei in, say, decimal digits. Nevertheless, this is not a big fenmbbecause an easy modification of the
algorithm can eliminate this problem. That is, we can modio that it create®(|r| x |w|) productions,
each having a right hand side of at most four symbols. It isst@mw technical and we won'’t present it here.
We consider this problem solved for the remaining of the. text

5 Some authors prefer to talk abaetlucedgrammars.

Regular expressions and parse trees 17

Ef\af\ef\bf\ef\c €
>O @O OO OO0

Fig. 8. The external representation automaton correspondingeteetiular expressiodmbc.

Poo — [Pz | Pio — [Pi2| Poo — [P2| P3p0 — [P32
Pz — ,FPa | Pz — Pia| Pos = ,Pa| P33 — P34
Ps — ,Pe | Pis — Pig | Pos = L Pe | P35 = P
Poz = 1P | Pi7 — 1Pui | Po7 = 1P| P37 — 1P
Pz — aPi3 | PLa — bPs5 | Pag — cPaz

Main non-terminalPp o P31 — €

Fig. 9. The grammar Make-Grammat((abc), abc).

Note that the productions corresponding to theansitions are present for each
position in the input. On the other hand, those correspondinged-transitions are
present only for the position where the next input symbal. islote also the presence
of useless and unreachable non-terminals. For exarmfipleis unreachable anbh ¢ is
useless. There is only one derivation that we can make with this grammar:

Poo — [Po2 — [aP13 - [a,P14 - [a,bP5
— [a’: b: P2,6 — [a7 b7 CP3,7 — [a7 b: C]P3,l — [a7 b7 C]

The string that is produced by the derivation is effectively the onlg@tee ifl'(r, w).
Note that the path that we can extract from the derivation20-3—4—-5—-6—7—1)
is a path traversingl g (r) and consuming that outputsd, b, c].

6.4. Observations

The correspondence between the paths through an automaton and the derivétio
the grammar allows us to obtain many interesting results quite easily.

Adequacy: Any string generated B, ,, is a valid parse tree ab according to-, and
conversely. That isL(G.) = T'(r, w).
Unambiguousness: The gramméfs,, produced by our algorithm are unambiguous.

Notice that the grammars (and the languages they generate) produced by our al-
gorithm are regular. So it should be possible to represent the samgedges with
regular expressions or finite automata. However, we prefer conteigiammars for
two reasons. First, we have no guarantee that the smallest regulassixpris as short
as its corresponding context-free grammar because regular expressiooiSitive the
sharing ability that context-free grammars have. Second, even if is&ige to produce
a finite automaton as compact as its corresponding context-free grammeasadose
in clarity due to the necessity to formally describe it.

18 D. Dubke and M. Feeley

6.5. Use of the grammar
6.5.1. Useless and unreachable non-terminals

The grammars generated by our algorithm have useless and unreachablemipalser
The unreachable ones do not pose a real problem since they simply caagseaagito
have more productions than necessary.

The useless non-terminals are a more serious problem because they mapenake
generation of the set of parse trees more costly. For example, a genefatiertrees
by simple recursive descent would lose much time repetitively tryorgenerate trees
and backtracking from a useless non-terminal.

Of course, one might think of an optimization consisting in nothmgrion-terminals
that have not generated any sentence. This “optimization” could simply Eesbby
a pre-processing phase of the grammar which consists in detecting andngrtiw/
useless non-terminals. An algorithm to remove those is describedUigH The idea
is to mark every non-terminal that is useful and then to remove the urmtharies.

The complexity of this cleaning algorithm is (L x [), whereL is the number
of productions andlis the length of the longest right-hand side among the productions
We know that the number of productions in our grammars ©(r| x |w|) and that
the length of the right-hand side of our productions is bounded bgnstant. So the
overall complexity of the algorithm i©(|r| x |w]).

So the cleaning of a grammar allows the generation of the set of parse tiegsa us
naive recursive descent algorithm. Under the condition that thereyisdmite number
of trees, naturally.

6.5.2. Infinite sets of parse trees

For certain- € R andw € L(r), there may be an infinite number of parse trees. In such
a case, it is obviously not possible to generate all the parse trees.

Evenif one is ready to enumerate as many trees as necessary to find a particular one,
some care must be taken to make sure that the enumeration eventually reaeies ev
possible tree. A grammar that has been cleaned before the search allows the search to
proceed without loss of time because of useless substitutions.

Another option is to pay special attention in the design of the regufaessions in
order to avoid situations whel(&'(r, w)| = co. This way, one can enumerate the parse
trees in any order without ever risking to fall into an infinite compotat

6.5.3. Relation between the grammar and the regular expression

Unfortunately, the relation between the grammar generated by our algaaitdnits
regular expression is not obvious. The grammar is conceptually retatieel automaton
and not to the regular expression. There is no relation between a moimédand, say,
a sub-expression of the regular expression.

This may pose a problem in applications where a sophisticated hewggstich
through the set of parse trees is used to find a good one instead ofdyngteln natural
language parsing, for example, plausibility estimation can be donkeobdsis of the
structure of the regular expression. But it would be difficult tagtdt to work on the
basis of the paths in the automaton.

Regular expressions and parse trees 19

We believe that non-terminals like the following would be mortuitive. The
non-terminal@,- ,,» would generate the trees for the substringof w according to
the sub-expressiorl of . That kind of non-terminal is closely related to the regular
expression and, consequently, related to the intention inspirindgtsign of the regular
expression. Unfortunately, a grammar based on these non-terminaid b@wmuch
more expensive to generate because the number of non-terminals grogsadyatic
function of |w| instead of as a linear one. Since we are interested in efficiency, we
consider that an algorithm producing such a grammar is beyond the dobjseanticle.

6.6. Grammars for the internal representation

It may not be clear what grammars for the internal representation could & thie
internal representation of a parse tree is not even a string. Neverthbleggammars
we have described may be adapted to become an implicit representation déthalin
trees.

We know that, in order to produce the internal representation of a paesedne
must apply appropriate stack operations on a stack and take the top element. T
appropriate sequences of stack operations are those prescribed by travetbals
internal representation automaton. So we can adapt the algorithm of Higareuild
grammars generating these sequences of stack operations. From each sequence that is
generated by a grammar, one can build a parse tree.

As with the grammars for the external representation, those for temal repre-
sentation suffer from the same poor relationship with the origieglilar expression
and the parse trees. A more intuitive representation would be onlasimihe one used
by the dynamic programming and Earley’s parsers: one node for eactxpubssion
r' of r and each substring’ of w which contains the different parsesw»f according
to /. Two mathematical models that could provide such representations ararregul
tree automata and regular tree grammars (see [B67] and [H68]). Howegkrepre-
sentations necessarily have a quadratic number of nodes (states ormoralg);, one
for each substring, and so, they cannot be produced efficiently. We cotisad¢hese
approaches are beyond the scope of this article.

7. Conclusion

In this paper, we have shown that parsing with regular expressitres) it is possible, is
desirable. There are efficient algorithms to do most of the tasks oné b@ghterested
in: external representation vs. internal representation; one parse trakk @6them.
Moreover, there is no restriction on the particular regular expressina might use.

Each of our algorithms to produce parse trees from an input string himsea t
complexity that is linear in the length of the string. So they are ptinsal. Even
the construction of non-deterministic automata is efficient (butm®tonstruction of
deterministic ones, though).

It is not possible to achieve such efficiency by simply consideringalee expres-
sion as a context-free grammar and using a parsing tool based on grarndaes,
some regular expressions are ambiguous and the fast algorithms lmasédi) and
LR(k) grammars cannot be used. Moreover, the general algorithms such as the Ear-
ley parser and the dynamic programming method show their worst case taulei

20 D. Dubke and M. Feeley

complexity on some ambiguous grammars; some of which come direottyfiegular
expressions.

Unfortunately, one of our results is not completely satisfactory. Jiaenmar that
we produce as the implicit representation of the set of parse trees (Sédidhis too
artificial. The link between the original regular expression and the gramepresenting
the parse trees of a string is not natural. It might complicate the pafesearching
in the set for a parse tree corresponding to a certain criterion. Thifisageems
unavoidable to have an algorithm with linear time complexity.

References

[ASU86] Aho, A.V., Sethi, R., Ullman, J.DCompilers Principles, Techniques and Todsldison-Wesley.
1986

[B67] Brainerd, W.S.Tree generating systems and tree automBtaD. Thesis. Department of Mathe-
matics, Purdue University. University microfilms, inc. AAnbor, Michigan. 1967

[E70] Earley, J.: An Efficient Context-Free Parsing Alglmit. InCommunications of the ACNMebruary
1970

[Emacs] TheEmacsext editor. Provided by Gnignu.org

[GM89] Gazdar, G., Mellish, CNatural Language Processing in PROLO&lIdison-Wesley. 1989

[H68] Hossley, R.:Finite-tree automata ands-automata.Technical report 102, Project MAC, Mas-
sachusetts Institute of Technology. Cambridge, Massattsud968

[HU79] Hopcroft, J.E., Ullman, J.D.Introduction to Automata Theory, Languages, and Computati
Addison-Wesley. 1979

[JM93] Jones, E.K., Miller, L.M.:The L« Parsing Algorithm.Technical report CS-TR-93-9. Victoria
University of Wellington. Department of Computer Scienbecember 1993

[LIN85] Lehtola, A., &ppinen, H., Nelimarkka, E.: Language-based Environmeni&tural Language
Parsing. InProceedings of th@"¢ Conference of the European Chapter of the Association for
Computational Linguistics98-106. 1985

[MN97] Mitkov, R., Nicolov, N.:Recent Advances in Natural Language Processkmgsterdam, Philadel-
phia: John Benjamins. 1997

[RE87] Spencer, HTheREGEXP packageA regular expression package written in C, fox1x, available
on the Internet

This article was processed by the author using 4figX_style file pljourl from Springer-Verlag.

