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Abstra
tWe propose a new demand-driven approa
h to eÆ
ientlydrive a powerful type analysis for a dynami
ally-typed fun
-tional language. The analyzer has the advantage of being
ontrollable by a bound on the time that it 
an put into theanalysis. When given enough time, it 
an provide results ofvery high quality. The analysis is based on a 
exible analysisframework that allows the abstra
t modeling of the 
ompu-tation to be modi�ed while the analysis is performed. Theapproa
h 
onsists in generating initial demands from reliablehints in the program and pro
essing these demands to pur-posefully guide the modi�
ations of the abstra
t model. Ourproposed approa
h has not been implemented fully, but wesket
h a prototype implementation of demand-driven anal-ysis whi
h is based on simple pattern-mat
hing.1 Introdu
tionProgram analyses are widely used in 
ompilation. Theyrange from 
ommon sub-expression dete
tion analysis [2℄ topointer analysis [10℄. There are analyses intended more forlow-level languages su
h as C and others more intended forhigh-level languages su
h as S
heme. The analyses have atenden
y to be
ome more essential and more 
omplex asthe languages they are intended for be
ome advan
ed. Tworeasons might help to explain that. First, a higher-level lan-guage o�ers more general servi
es to the programmer, whi
hoften in
ur a penalty in 
ode eÆ
ien
y if a 
ompilation isdone without a 
ertain e�ort in analysis and optimization.Se
ond, the properties that must be dis
overed in order todo a good 
ompilation are generally more 
omplex. Unfor-tunately, more 
omplex analyses usually imply more 
ostlyanalyses.When a 
ompiler implementer is fa
ed with the prob-lem of gathering a 
ertain kind of information, he often hasto 
hoose among a wide spe
trum of approa
hes, espe
iallywhen the problem is 
omplex. The tradeo� is normally be-tween the time (and/or spa
e) taken by the analysis and thea

ura
y of the information to gather. Most of the time, theimplementer 
hooses a 
ertain approa
h and glues it to his
ompiler. But on what basis should a parti
ular approa
hbe 
hosen?1.1 Choosing the \best" analysisThe 
hoi
e is usually done 
onsidering the average needs ofthe target users. Most of the time, the 
hosen approa
h has awell-de�ned behavior in terms of its a

ura
y, running time,

and required spa
e. Of 
ourse, the 
hoi
es made 
annotsatisfy every user in every situation: one user may �nd it tooslow; another, too ina

urate. This is the 
ase even if severaloptimizations levels are implemented in the 
ompiler. Let ussket
h the possibilities that are available to the implementer.Traditional analysesFast analyses are popular. There are many: 
ontrol-
owanalysis [14, 15℄, numeri
 range analysis [8℄, abstra
t refer-en
e 
ounting analysis [11℄, et
.They manipulate a well-de�ned abstra
tion (or model) ofthe program and its 
omputations. The size of the model isin dire
t relation with the size of the program and the timerequired to 
ompute the analyses is always in O(nk) for a krarely greater than 3. The amount of resour
es required iswell under 
ontrol. And they obtain results that are quitea

eptable most of the time and provided that the program
ontains typi
al 
ode.Unfortunately, the polynomial time bound often 
ausesserious limitations in the 
leverness of these analyses. Some-times, even very ordinary programming styles 
an misleadthe analyses and make them produ
e poor results. As an ex-ample, Jagannathan and Weeks mention in [12℄ that 
ontrol-
ow analyses that use 
all-strings to disambiguate abstra
tevaluation environments (su
h as the k-
fa) get 
onfused bythe use of the map fun
tion 
alled with di�erent argumenttypes. Su
h an example is showed in Figure 1. The 
ode isstraightforward and yet, the k-
fa or a similar analysis willfail to show that there is no type error, no matter whi
h kis used. This is be
ause, after k re
ursive 
alls of map toitself, the 
all-string is invariably the same. At that point,all the fun
tions and all the pairs that are passed to map aremerged together, whi
h makes the analysis believe that thewrong operator may be applied to the wrong list.In more general terms, we 
ould say that the limitationsof the k-
fa 
ome primarily from the fa
t that it uses unre-liable hints to distinguish the abstra
t evaluation environ-ments; namely, the 
all-strings. For example, in S
heme, thebody of a fun
tion has no means of 
omputing the synta
ti
position where the 
all to the fun
tion o

urred. Neitherdoes there exist tests to determine where a parti
ular pairwas 
reated. On the other hand, there exist type tests andprimitives to inspe
t the 
ontents of the obje
ts. In the bestof 
ases, 
all-strings and 
on
rete 
omputations are merely
orrelated, whereas types and values are dire
tly involved inthe 
omputations. For these reasons, we 
onsider 
all-stringsto be unreliable hints for an analysis.Many of the traditional analyses 
an be fooled by a pro-1



(define (map f l)(if (null? l)'()(
ons (f (
ar l))(map f (
dr l)))))(map (lambda (n) (- n)) '(1 2 3 ...))(map (lambda (p) (
ar p)) '((1) (2) ...))Figure 1: DiÆ
ult 
ode for the k-
fagramming style that is not 
onvoluted. This 
an be frustrat-ing for a user that has a program that he knows is 
orre
tbut that is beyond the limited power of the available an-alyzer. He may be willing to give the analyzer plenty ofresour
es in order to obtain better results but the analyzerwill not take advantage of this to improve the analysis.More a

urate analysesTo avoid the limitations of the traditional analyses, one 
aninstead 
hoose an analysis that uses \the Right Hints" in or-der to distinguish various abstra
t environments. The righthints 
an be the type of the obje
ts that are passed to thepro
edures, for example. This has a true 
orresponden
ewith the 
on
rete 
omputations that o

ur in the program:an expression in 
aller position should return a fun
tion, theargument to 
ar should be a pair, et
. We will expand onthis later.While we should expe
t better analysis results from su
han analysis, we should expe
t 
atastrophi
 time and spa
e
onsumption in 
ertain 
ases. To see why, it suÆ
es to 
on-sider an expression lo
ated inside a fun
tion of high arityor inside many nested �-expressions (say, n variables in thelexi
al environment) and an analysis that distinguishes theabstra
t evaluation environments based on the type of theobje
ts bound to the variables (say, k di�erent types). Thisanalysis immediately exhibits exponential behavior (kn dif-ferent abstra
t environments).If a user has to use a 
ompiler that features su
h a (poten-tially) 
ostly analysis instead of a traditional one, it wouldbe just as frustrating for the user as in the other 
ase. He 
anonly 
hoose between disabling the analysis, if it is possible,and waiting for days for a single 
ompilation.Stati
 modelIt is 
lear that it is diÆ
ult to �nd the \right" balan
e be-tween speed and a

ura
y when the time 
omes to 
hoose ananalysis model. Even when the \best" 
ompromise has sup-posedly been 
hosen, when a individual program is 
ompiled,it is tempting to believe that another 
ompromise wouldhave been \better". Having said that, we 
laim that thisambiguity 
omes from the fa
t that the model is stati
. Of
ourse, it depends on the program, but in a very simple man-ner and it remains the same during the whole 
ompilationof the program.Sin
e the analyzer is 
ommitted to an abstra
t model, itne
essarily exposes itself to be either too simplisti
 or tooheavy for parti
ular programs. It results either in too poora

ura
y or in good results that have been obtained witha vastly too great e�ort. It 
an even be both for the same

program when some of its interesting properties are veryeasy to dis
over while the others are more 
hallenging.Dynami
ally 
hanging modelWhat we believe to be more appropriate is to have an ab-stra
t model that 
an dynami
ally 
hange. That is, it shouldadapt to the level of diÆ
ulty of analysis of the parti
ularprogram to analyze.Here is a sket
h of an analysis using a dynami
ally 
hang-ing model. At the start, the strategy is to 
hoose an initialmodel that is 
oarse. Sin
e 
oarse analyses do quite well inthe typi
al 
ase, a signi�
ant part of the interesting proper-ties may already be found by this �rst analysis. Then, themodel ought to be re�ned, in order to be better equippedto atta
k the remaining, more diÆ
ult properties. It mayresult in having some more properties to be found. Thenthe model is re�ned again. And so on. . .Of 
ourse, this raises many questions: How do we identifythe so-
alled \interesting" properties? What should a re�ne-ment of the model be? How 
an we automati
ally updatean abstra
t model? And more importantly, what should a\better equipped model" be? Before we start to bring an-swers to these questions, we must des
ribe our goal in moredetail.1.2 The obje
tiveWe intend to develop an adaptable-power type analysis for apurely fun
tional, appli
ative, and dynami
ally typed mini-language. We assume that the entire program is available.The analysis must have the potential to be very pre
ise.However, the user should have the 
ontrol over the amountof e�ort that is put into the analysis of his program. Thisway, during development, he 
an request a fast and 
oarseanalysis, and, at the �nal 
ompilation, invest an appropriateamount of time to obtain a high-quality analysis.1The analyzer has to be able to deal with a bound on theamount of work it 
an do. When given little time, it mustterminate qui
kly, delivering results that are potentially ofpoor quality. When given a lot more time, it must eitherterminate prematurely if 
ompletely satisfying results areobtained or, in the usual 
ase, 
ontinue to improve the qual-ity of the results until the time is up. We do not want to relyon programmer annotations. These may be erroneous and,
onsequently, 
annot be trusted. To trust any annotationwould 
ontradi
t the prin
iple of safety that 
omes with ahigh-level language.2 Only a safe analysis should provideresults that are to be used for optimization purpose.The abstra
t model used by the analyzer must be 
ex-ible. The 
ru
ial part of our obje
tive is to �nd an \intel-ligent" driver that is able to 
oordinate the re-analysis andmodel-update 
y
le to try to obtain the best results withinthe time bound that is given. The driver must re�ne themodel when it seems pro�table, but refrain to do so when itseems useless. Note that, as intelligent as the driver mightbe, we do not want to do true AI, not even an expert system.We want a driver that pro
eeds in a more systemati
 way.1What we 
onsider as a fast and 
oarse analysis is something sim-ilar to the 0-
fa. A higher-quality analysis would ne
essarily be more
ostly. For very long programs, the 
ost may be prohibitive, even fora fast analysis, 
onsidering that 0-
fa has 
ubi
 
omplexity in worst
ase.2Moreover, if the program 
ontains an expression su
h as (
ar x),it already means that the programmer believes that x 
an only bebound to pairs.2



Exp := el e 2 Exp0; l 2 LabExp0 := #fx x 2 Var(e1 e2) e1; e2 2 Exp(�x. e1) x 2 Var; e1 2 Exp(if e1 e2 e3) e1; e2; e3 2 Exp(
ons e1 e2) e1; e2 2 Exp(
ar e1) e1 2 Exp(
dr e1) e1 2 Exp(pair? e1) e1 2 ExpLab := LabelsVar := VariablesFigure 2: Language syntaxIn order to a
hieve our goal, we use a 
exible analy-sis framework that is presented in Se
tion 2 along with themini-language. This framework 
an support very powerfulanalyses and, so, 
an help to prove interesting but diÆ
ultproperties of the program. Se
tion 3 presents an intuitiveintrodu
tion to the demand-driven analysis. It is the de-mands that en
ompass the required \intelligent" driver forthe analyzer. The idea is quite simple: interesting proper-ties 
an be found with the help of hints present in the pro-gram; these properties are likely to be true and if they are,then may happen to be provable, mathemati
ally speaking;it follows that they might be provable inside our frameworkand maybe in reasonable time. Se
tion 4 sket
hes a basi
demand-driven analysis implementation. It is based on pat-terns. Finally, Se
tion 5 
on
ludes with a brief mention ofthe resear
h that is the 
losest to our own and with the nextlogi
al steps in our resear
h.2 Notation and de�nitions2.1 A small languageThe language we use in this paper is presented in Figure 2.It is a small subset of S
heme with a few modi�
ations. It ispurely fun
tional, appli
ative, dynami
ally typed, and eval-uation pro
eeds from left to right. The only types availableare the booleans, with #f as the sole element, the pairs andthe pro
edures having one parameter. The modi�
ationsare: all the pair-related primitives are synta
ti
 forms and,when the pair? expression must evaluate to a true value, itsevaluates to the same pair as its argument. All these details
an be found in the semanti
s of the language in Figure 3.3Despite the fa
t that the language is small, it is 
omplexenough to allow the 
onstru
tion of programs that are asdiÆ
ult to analyze as one 
an desire. A simple �-
al
ulusprovides only one \type": the fun
tions. In the present
ase, the variety of types 
ombined to the fa
t that 
ertainexpressions require obje
ts of a spe
i�
 type 
reates the ne
-essary 
ompli
ations. The 
all expression and the 
ar and
dr expressions require the �rst sub-expression to be of aparti
ular type (a simple implementation would perform adynami
 type test to guarantee safety).Throughout the paper, we assume that a program in thislanguage has no free variables, is �-
onverted4, and prop-erly labeled5. To keep things simple, we 
onsider that the3The \ _[" sign denotes the disjoint union. That is, A = B _[ C ifand only if A = B [ C and B \ C = ;.4All variables in the program have a distin
t name.5Ea
h expression in the program has a distin
t label.

Val" := Err _[ ValErr := ErrorsVal := ValB _[ ValC _[ ValPValB := f#fg BooleansValC := Val! Val" ClosuresValP := Val�Val PairsEnv := Var! ValE : Exp! Env! Val" Evaluation fun
tionE [[#f℄℄ � = #fE [[x℄℄ � = � xE [[(e1 e2)℄℄ � = C (E [[e1℄℄ �)(�v1: C (E [[e2℄℄ �) (A v1))E [[(�x. e1)℄℄ � = �v: E [[e1℄℄ �[x 7! v℄E [[(if e1 e2 e3)℄℄ � = C (E [[e1℄℄ �)(�v: v 6= #f ? E [[e2℄℄ � : E [[e3℄℄ �)E [[(
ons e1 e2)℄℄ � = C (E [[e1℄℄ �)(�v1: C (E [[e2℄℄ �) (�v2: (v1; v2)))E [[(
ar e1)℄℄ � = C (E [[e1℄℄ �)(�v: v = (v1; v2) ? v1 : error)E [[(
dr e1)℄℄ � = C (E [[e1℄℄ �)(�v: v = (v1; v2) ? v2 : error)E [[(pair? e1)℄℄ � = C (E [[e1℄℄ �)(�v: v 2 ValP ? v : #f)A : Val! Val! Val" Apply fun
tionA f v = f 2 ValC ? f v : errorC : Val" ! (Val! Val")! Val" Che
k fun
tionC v k = v 2 Err ? v : k vFigure 3: Language semanti
spurpose of our type analysis is to 
olle
t information thatallows the 
ompiler to remove as many dynami
 type testsas possible.2.2 A generi
 analysis frameworkIn the introdu
tion, we insisted on the fa
t that an ana-lyzer should have the ability to modify the abstra
t modelthat it uses to analyze the program. This requires the in-trodu
tion of a generi
 analysis framework. The frameworkby itself is not a 
omplete analysis pro
edure; it requiresmany parameters to be
ome an instan
iation of an analysis.The parameters may be assimilated to the model itself. Theframework imposes very few 
onstraints on the model.Instantiation parametersFigure 4 presents the parameters and a brief des
riptionof ea
h. First, the framework expe
ts sets of abstra
t val-ues. These are given by three �nite non-empty disjoint sets.Se
ond, another �nite set provides the 
ontours. Note thatno other 
onstraint exists on what these sets might be. Fi-nally, the framework expe
ts abstra
t 
omputation fun
tions.These mimi
 the 
on
rete 
omputations done by the pro-gram. There is one for the 
reation of 
losures, one for the
reation of pairs and one to sele
t 
ontours asso
iated withthe abstra
t evaluation environments.Fun
tion 

 re
eives the label l of an expression and the
urrent 
ontour k and returns an abstra
t 
losure. Fun
tionp
 re
eives the label l where a pair 
ontaining v1 and v2 is
reated in 
ontour k, and returns an abstra
t pair. Fun
tion
all re
eives a label l where a fun
tion f is applied to value3



ValB 6= ; Abstra
t booleansValC 6= ; Abstra
t 
losuresValP 6= ; Abstra
t pairsCont 6= ; Contoursk0 2 Cont Main 
ontour

 : Lab� Cont ! ValC Abstra
t 
losure 
reationp
 : Lab�Val �Val � Cont ! ValPAbstra
t pair 
reation
all : Lab�ValC � Val � Cont ! ContContour sele
tionwhere Val := ValB _[ ValC _[ ValPFigure 4: Instantiation parameters of the analysis frame-workv in 
ontour k; it returns the 
ontour in whi
h the bodyof 
 has to be evaluated. These fun
tions must be de�nedon all their domain and, of 
ourse, respe
t their type. Ontop of that, one of the 
ontours must be identi�ed as themain 
ontour, that is, it is the 
ontour in whi
h the top-level expression el0 of the program is evaluated.The 
ase of the abstra
t booleans deserves a short ex-planation. It is obvious that the framework does not allowas mu
h parameterization for the booleans as for the othertypes. There 
an be more than one abstra
t boolean, of
ourse, but no boolean 
reation fun
tion is expe
ted by theframework. There 
ould be, sin
e the #f and pair? expres-sions 
an evaluate to a boolean. However, sin
e there isonly one 
on
rete boolean, we did not feel the need to pro-vide the tools to manipulate distin
t abstra
t booleans. Infa
t, we do not know if it would be useful at all. However,support for distin
t boolean manipulation 
ould be addedin the framework with little e�ort.Note that, although the abstra
t evaluation fun
tionsmust be de�ned on all their domain, not all input 
ombina-tions make sense. For example, the result of the 

 fun
tiondoes not make sense when the label that it is passed is notthe label of a �-expression. However, the analysis will neveruse this result either, so 

 
an return any element of ValCwithout 
onsequen
es. This approa
h is simpler than hav-ing the set of labels partitioned into �-expression labels, 
alllabels, et
.Analysis variablesOn
e the parameters are passed to the analysis framework,a 
omplete analyzer is instan
iated. Here we present thematri
es of abstra
t variables that are used by this analyzer.Figure 5 brie
y enumerates them.The � matrix 
ontains the abstra
t values to whi
h ea
hexpression evaluates in ea
h 
ontour. A parti
ular entry �l;kmay be empty. It o

urs if the expression el does not getevaluated in the abstra
t environment represented by the
ontour k. The � matrix 
ontains the values bound to ea
hvariable in ea
h 
ontour. When the body of the expression(�lx. el0) is evaluated in a 
ontour k, a referen
e to thevariable x refers to the entry �x;k. An entry �x;k may beempty, too, for similar reasons as with �l;k. An entry 

;kof the matrix 
 
ontains the values that are returned by the
losure 
 when its body has been evaluated in the 
ontourk. On
e again, it may be empty. An entry Æl;k is basi
allya 
ag. It indi
ates whether or not el gets evaluated in the
ontour k. Its 
ontents is not important; only the fa
t thatit is empty or not. Non-emptyness of Æl;k implies evaluation.

Value of el in k:�l;k � Val l 2 Lab, k 2 ContContents of x in k:�x;k � Val x 2 Var, k 2 ContReturn value of 
 with its body in k:

;k � Val 
 2 ValC, k 2 ContFlag indi
ating evaluation of el in k:Æl;k � Val l 2 Lab, k 2 ContCreation 
ir
umstan
es of 
:�
 � 

�1(
) 
 2 ValCCreation 
ir
umstan
es of p:�p � p
�1(p) p 2 ValPCir
umstan
es leading to k:�k � 
all�1(k) k 2 ContFigure 5: Matri
es 
ontaining the results of an analysisThe meaning of the remaining three matri
es is less ob-vious. They provide a kind of log of the origins of theabstra
t values. As an example, let us 
onsider an ab-stra
t pair p 2 ValP . p 
ould be 
reated by any tuple inp
�1(p) = f(l; v1; v2; k) j p
(l; v1; v2; k) = pg. However, thelog entry �p 
onserves only the tuples that the analyzer hase�e
tively en
ountered during the (maybe numerous) 
re-ations of p. These logs allow the analyzer to avoid being too
onservative.The analysis is sound, in the sense that the analyzera
ts 
onservatively with the abstra
t values. That is, every
on
rete evaluation environment in whi
h an expression eltruly evaluates is modeled by abstra
t values in a 
ertainabstra
t 
ontour. Every 
on
rete value that exists in the
on
rete evaluation is represented by an abstra
t value inthe analysis results. The 
on
rete value that is returned bya 
ertain 
losure at a 
ertain step in the 
on
rete evaluationhas an abstra
t 
ounter-part that is returned by an abstra
t
losure in a 
ertain abstra
t step (the 
ontour). And so on.The soundness property 
an be formally proven, but we donot do so in this paper.Evaluation and safety 
onstraintsGiven a program and the instantiation parameters, our fra-mework performs the analysis of the program using the eval-uation 
onstraints presented in Figure 6. Basi
ally, a setof 
onstraints on the analysis variables is generated for theprogram. Any solution to this set of 
onstraints provides avalid analysis result. Naturally, we are always interested inthe least solution to the system of 
onstraints. A solution al-ways exists be
ause, despite the variety of the generated 
on-straints, they 
an all be de
omposed into basi
 
onstraintsof the form: v1 2 �i1;1;:::;i1;n1 ^ : : : ^ vm 2 �im;1;:::;im;nm )v 2 �j1;:::jk . So the saturation of all analysis variables givesa trivial valid solution.The evaluation 
onstraints are quite standard and do notdeserve mu
h more explanation. Ex
ept maybe the mainte-nan
e of the log matri
es. For example, ea
h time a pair pis 
reated at a 
ons expression, the tuple (l; v1; v2; k) repre-senting the label of the expression, both values to pa
k inthe pair, and the 
urrent 
ontour is logged in the variable �p.The logged tuples are later used by various 
omputations todis
over the origins of the abstra
t values. For example, the
ar expression uses the log �p (and not p
�1(p)) to enu-merate to values that may be found in the 
ar �eld of the4



Evaluation 
onstraints for program el0 are:[k2Cont E [[el0 ℄℄ k [ fÆl0;k0 � ValBg , whereE [[#fl℄℄ k =fÆl;k 6= ; ) �l;k � ValBgE [[xl℄℄ k =fÆl;k 6= ; ) �l;k � ref(x; l; k)gE [[(lel1 el2)℄℄ k =fÆl1;k � Æl;k; Æl2;k � Æl;kg [ E [[el1 ℄℄ k [ E [[el2 ℄℄ k [(�x;k0 3 v;�l;k � 

;k0 ;�k0 3 (l; 
; v; k) 
 2 �l1;k \ ValC; v 2 �l2;k;k0 = 
all(l; 
; v; k);(l0; k00) 2 �
; el0 = (�l0x. el00))E [[(�lx. el1)℄℄ k =�Æl;k 6= ; ) �l;k 3 

(l; k) ^ �

(l;k) 3 (l; k)	 [fÆl1;k � �x;kg [ E [[el1 ℄℄ k [f

;k � �l1;k j 
 2 ValC; (l; k0) 2 �
gE [[(ifl el1 el2 el3)℄℄ k =fÆl1;k � Æl;kg [ E [[el1 ℄℄ k [fÆl2;k � �l1;k \ (ValC [ ValP)g [fÆl3;k � �l1;k \ ValBg [ E [[el2 ℄℄ k [E [[el3 ℄℄ k [ f�l;k � �l2;k [ �l3;kgE [[(
onsl el1 el2)℄℄ k =fÆl1;k � Æl;k; Æl2;k � Æl;kg [ E [[el1 ℄℄ k [ E [[el2 ℄℄ k [��l;k 3 p;�p 3 (l; v1; v2; k) v1 2 �l1;k; v2 2 �l2;k;p = p
(l; v1; v2; k) �E [[(
arl el1)℄℄ k =fÆl1;k � Æl;kg [ E [[el1 ℄℄ k [��l;k 3 v1 p 2 �l1;k \ ValP ; (l; v1; v2; k0) 2 �p 	E [[(
drl el1)℄℄ k =fÆl1;k � Æl;kg [ E [[el1 ℄℄ k [��l;k 3 v2 p 2 �l1;k \ ValP ; (l; v1; v2; k0) 2 �p 	E [[(pair?l el1)℄℄ k =fÆl1;k � Æl;kg [ E [[el1 ℄℄ k [ f�l;k � �l1;k \ ValPg [f�l1;k \ (ValB [ ValC) 6= ; ) �l;k � ValBgref(x; l; k) = 8>>>><>>>>: ref(x; l0; k); if el0 6= (�l0y. el)�x;k; if el0 = (�l0x. el)[k0ref(x; l0; k0); if el0 = (�l0y. el),(l00; 
; v; k00) 2 �k;(l0; k0) 2 �
where l0 = parent(l)Figure 6: Evaluation 
onstraints

Safety 
onstraints for program el0 are:[k2ContS [[el0 ℄℄ k, whereS [[#fl℄℄ k = ;S [[xl℄℄ k = ;S [[(lel1 el2)℄℄ k = f�l1;k � ValCg [ S [[el1 ℄℄ k [ S [[el2 ℄℄ kS [[(�lx. el1)℄℄ k = S [[el1 ℄℄ kS [[(ifl el1 el2 el3)℄℄ k = S [[el1 ℄℄ k [ S [[el2 ℄℄ k [ S [[el3 ℄℄ kS [[(
onsl el1 el2)℄℄ k = S [[el1 ℄℄ k [ S [[el2 ℄℄ kS [[(
arl el1)℄℄ k = f�l1;k � ValPg [ S [[el1 ℄℄ kS [[(
drl el1)℄℄ k = f�l1;k � ValPg [ S [[el1 ℄℄ kS [[(pair?l el1)℄℄ k = S [[el1 ℄℄ kFigure 7: Safety 
onstraintspair p. Finally, note that the extra 
onstraint Æl0;k0 � ValBis added to ensure that the evaluation of the program getsstarted.The reader may have noted that the evaluation 
on-straints do not take errors into a

ount and manipulate onlythe values that are legal. This is be
ause we separate theevaluation 
onstraints from the safety 
onstraints. Figure 7presents the safety 
onstraints that are generated for a pro-gram el0 . These 
onstraints are straightforward. The rea-son we keep these separated is that on
e we add the safety
onstraints to the set of evaluation 
onstraints, there maybe no solution to the system. If there is a solution to thejoined sets of 
onstraints, that means that the model (theparameters) provides a proof that the program is type-safe.The usual way to analyze a program is to solve thesystem of evaluation 
onstraints, whi
h leaves the analy-sis results in the analysis variables, then 
onfront the re-sults to the safety 
onstraints, and see whi
h 
onstraintsare violated. The latter indi
ate where dynami
 type testsare required. For example, the violation of the 
onstraint�l0;k 6� ValC for a 
ertain sub-expression el0 (whose parentis a 
all expression el) and 
ontour k, indi
ates that theremust be a dynami
 test at el to ensure that the result of el0is indeed a 
losure6.Power and generi
ity of the frameworkThe parameterization of the framework allows it to be a verypowerful analysis tool. Here are some of its 
hara
teristi
s.We do not give proofs here, though.� The parameters representing a model, as little 
on-strained as they might be, are still �nitely representa-ble. One might ask whether it is possible to automat-i
ally de
ide whether there exists a model that allowsthe analyzer to demonstrate that a program is type-safe. Unfortunately, this problem is unde
idable; it ispossible to redu
e the termination problem to this one.� For every program that terminates normally, there ex-ists a model that demonstrates that it is type-safe. A6This explanation assumes that there is only one 
all expression elgenerated by the 
ompiler in the exe
utable 
ode. This assumptionmay be too simplisti
. A good optimizing 
ompiler may generatemore than one 
all expression instan
e of el, ea
h 
orresponding toa 
ontour (or to many). In this 
ase, the instan
es asso
iated to
ontours where no violation o

urs do not require a dynami
 typetest. However, the topi
 of produ
ing good exe
utable 
ode fromanalysis results is beyond the s
ope of this paper.5



trivial model that does so 
onsists in mimi
king the
on
rete evaluation of the program. It introdu
es oneabstra
t value for ea
h 
on
rete value. However, it isgenerally impossible to know that the program termi-nates normally, in the �rst pla
e.� For every program that terminates with an error, allmodels lead to a violation 
onstraint. This is due tothe soundness of the analysis. Unfortunately, an un-su

essful model attempt generally does not bring anyinformation as to whether the program must ne
essar-ily terminate with an error.� Among the programs that loop, some have a modelproving they are type-safe, some do not. Note thatthey are type-safe. We believe that an important limi-tation to the power of the framework 
on
erns program
onstru
ts where the safety depends on some mathe-mati
al invariant. Generally, this 
annot be des
ribedby our kind of models.The liberty in the 
hoi
e of the framework parametersallows this one to simulate many traditional analyses. Forexample, 
all-string 
ontours as in [15℄ 
an be easily imitatedby a proper de�nition of 
all. Basi
 set-based analysis [9℄,being equivalent to the 0-
fa 
an be imitated, too.The 
ontours presented in [13℄ are based on polymorphi
splitting. Values 
reated in let-bindings 
an be spe
ializeda

ording to whi
h variable referen
e a

esses the values.Simply stated, an abstra
t value bound to a variable in alet-binding mutates di�erently depending on where the ref-eren
e to the variable is lo
ated. Our framework does notallow su
h a thing. However, a trivial sour
e-to-sour
e trans-formation of the program and appropriate model sele
tionmake it possible to obtain a similar analysis.3 Demand-driven analysisHere is an informal introdu
tion to demand-driven analysis.First, we illustrate the approa
h with an example. Then,an overview of what a 
omplete demand-driven approa
hshould in
lude is presented. Next, the diÆ
ulty of dealingwith the 
all and 
onditional expressions is exposed. Finally,many 
hallenges to make a demand-driven approa
h workare mentioned.3.1 An exampleTo illustrate what demands might be, where they 
ome from,and how they 
an be pro
essed, we use a small example.Suppose that this �-expression appears somewhere in a pro-gram: (�1x. (if2 x3 (
ar4 (pair?5 x6)) #f7))Suppose also that a preliminary analysis has been done andthat, a

ording to its results, the �-expression eventuallygets evaluated, resulting in a 
losure, and that the 
losureis 
alled many times with di�erent pairs and with #f.Note that a na��ve 
ompilation of �-expression e1 wouldimmediately produ
e good 
ode ex
ept for the (only) dy-nami
 test 
oming from the 
ar expression. It would bebetter if we 
ould remove that test. Let us see how this
an be done. We need to prove that e5 returns nothing elsethan pairs. Now, as far as the preliminary analysis of theprogram 
an tell, e5 
an evaluate to pairs and #f (rememberthat, when e evaluates to a pair or to a non-pair, (pair?

e) evaluates to that pair or to #f, respe
tively). So, for themoment, the dynami
 test must stay there. In order to tryto 
hange this, we will emit and pro
ess demands. These,in turn, may lead to an update of the model su
h that itwill 
reate an instan
e of an analysis that 
an provide thedesired proof.Obviously, we need a �rst demand. Why not go forthe simplest solution? That is, make the following request:\show that e5 always evaluates to pairs". Or more pre
isely:\show that e5 
annot evaluate to anything else than pairs".To show that it does not get evaluated at all would not bebad, too. Let us 
all this demand D1.Now, we have to pro
ess D1 in some way. Note that D1
on
erns e5, whi
h is a not a simple expression. The valueof e5 strongly depends on the value of its sub-expressione6. If we 
ould rewrite D1 into another demand related tothe simpler e6, we would have made some progress. Thisnew demand D2 
ould be: \show that e6 
annot evaluateto anything else than pairs". Clearly, D2, if it is positivelyanswered, would have the same desirable 
onsequen
es asD1.What 
an we do to respond to D2? Note that the prelim-inary analysis says that x may be bound to #f (and supposethat it is truly the 
ase). A reasonable approa
h is to pro
essD2 in two steps: �rst, we should separate the 
ase where xis bound to a pair from the 
ase where it is not; then, if xstill evaluates to #f in the se
ond 
ase, we should request ademonstration that that evaluation 
annot happen. Whatit means is that we emit a new demand D3 and then, ifne
essary, another new demand D4.Let us �rst take 
are of D3. In more pre
ise terms, D3is: \split the 
urrent 
ontour in order to separate the 
aseswhere x is bound to a pair from the 
ases where x is bound to#f". That is perfe
tly possible, as we explain shortly. So letus 
onsider that the previous 
ontour k has been e�e
tivelysplit into k0 (pair 
ase) and k00 (#f 
ase). There is 
ertainlyno more problems with the evaluation in 
ontour k0 sin
e xmust be bound to a pair, so e5 must return a pair, and so e4
annot go wrong. But what about evaluation in 
ontour k00?Sin
e x must be bound to #f in k00, the test in e2 is alwaysfalse, the then-bran
h is never exe
uted and, 
onsequentlythe 
ar a

ess is never made. Con
lusion: in every 
ase,there is no need to perform a dynami
 type test in e4. Theinitial demand has been positively answered. That is, wehave emitted demands, pro
essed them, and they have leadto an update of the model that was suÆ
ient to demonstratethat the dynami
 test is unne
essary.Before we 
on
lude this example, we need to explain whywe said that it was easy to separate the 
ases where x isbound to a pair from the 
ases where x is bound to some-thing else. This is be
ause of our abstra
t model. The 
allparameter sele
ts the 
ontour in whi
h the body of a 
lo-sure evaluates. Let us refer to the 
losure generated by e1as 
 and to the 
ontour in whi
h the body evaluates as kin the old model. To keep things simple, we suppose thatthey are unique. That means that 
all(l; 
; v; k�) = k forany label l, argument v, and 
ontour k�. In other words,when 
 is 
alled, its body is always evaluated in the 
ontourk. Changing the model to make the required split simplymeans de�ning a new modeling fun
tion 
all0 su
h that:8l 2 Lab; v 2 Val; k� 2 Cont;
all0(l; 
; v; k�) = � k0; if v 2 ValPk00; otherwise6



3.2 OverviewAs we mention in the introdu
tion, our demand-driven anal-ysis should be able to produ
e some results in a short time, ifne
essary, and be able to improve them 
ontinuously if it isallowed to 
ontinue longer. In order to behave this way, thedemand-driven analyzer pro
eeds in two phases: the prelim-inary analysis, the demand-driven phase; as sket
hed in theintrodu
tion. The preliminary analysis is similar to a tra-ditional analysis; its purpose is to 
olle
t initial informationusing a stati
 model. Typi
ally, this information is goodenough to allow the removal of many dynami
 type test butnot all of them. During the demand-driven phase, demandsare generated and pro
essed in order to perform the model-update/re-analysis phase. This phase 
ontinues until all thedemands have been positively answered or, usually, until thebound on the analysis time is rea
hed.The 
hoi
e of the model in the preliminary analysis iswhat we dis
uss �rst. Next, we present a list of demandsthat seem vital to guide the demand-driven analysis. Fi-nally, we present typi
al pro
essing of many kinds of de-mands.Initial model and initial demandsThe 
hoi
e of the initial model must be the result of a 
om-promise between the time spent during the preliminary anal-ysis and the quality of the preliminary analysis results. Amodel that is too 
omplex will make the preliminary analysis
ostly, making even the fastest 
ompilation with analysis toolong. A model that is too 
oarse may render the preliminaryanalysis \blind", its results sometimes being overestimatedto the point of being useless, thus leaving the whole task ofreal analysis to the demand-driven part, whi
h is ne
essarilyless eÆ
ient.We believe that having an initial model with one ab-stra
t pair, one abstra
t 
losure per �-expression, and one
ontour (or one 
ontour per 
losure body) would be of areasonable 
ost and provide preliminary analysis results ofrelatively good quality. Su
h a model instantiates a mono-variant analysis that is 
omparable to the 0-
fa. Sin
e, inthe typi
al 
ase, analyses like 0-
fa perform relatively well,mu
h fewer demands are generated in the demand-drivenpart.Choosing a 
oarser model having only a single abstra
t
losure to represent all 
on
rete 
losures would lead to ex-
essively poor results. Ex
ept in the most trivial of 
ases,the abstra
t 
losure would be found to return everything,leaving all the analysis work to the demand-driven part.The only advantage of this 
hoi
e would be a preliminaryanalysis with linear 
omplexity.Choosing a �ner model would in
rease signi�
antly thepreliminary analysis time without any guarantee as to whe-ther the a priori re�nements would bring any help for thedynami
 tests that would still remain after a 0-
fa-style anal-ysis.On
e the preliminary analysis is done, formulating theinitial demands is trivial. Expressed in terms of analysisvariables, it takes the form of a list of \show �l;k � ValC"and \show �l0;k0 � ValP" demands.Typi
al demandsThe most natural demand type is like the initial demands.We shall 
all these bound-demands. Sin
e they 
an so easilybe reformulated in terms of other, more fundamental de-

mands, bound-demands only involve an � matrix entry anda simple bound set.One of these fundamental demand types is the split-demand. We mentioned that kind of demand in the examplein Se
tion 3.1. It says: \split something a

ording to some-thing". The thing to split may be an abstra
tion in themodel or an analysis variable. As an example of the �rst
ase, the demand 
ould be \split P a

ording to the labelwhere it is 
reated", where P is the unique abstra
t pair.That would trigger a straightforward update of the fun
tionp
. As an example for the se
ond 
ase, the demand 
ould be\split 

;k a

ording to the membership to the set of pairs".That means that the return values of 
losure 
 when its bodyis evaluated in 
ontour k have to be split into pairs and non-pairs. The 
onsequen
es in 
ase of a su

essful response arethat the abstra
t 
losure 
, the 
ontour k, and anything elseif ne
essary will have to be split in su
h a way that for all 
0spe
ializing 
 and for all k0 spe
ializing k, 

0;k0 will 
ontaineither only pairs or no pair at all.Split-demands dire
tly on the model or on �, �, or 
entries are reasonable demands. However, we believe thatsplit-demands on Æ entries should not exist sin
e they makeno sense. The only interesting 
on
ern with Æ entries iswhether they are empty or not. As for the \log" variables, itmay make sense to want to split them, but maybe not to try.This is be
ause they plainly des
ribe how the abstra
tionfun
tions have been used during the analysis. They have avery indire
t (and passive) e�e
t on the abstra
t evaluationof the program. In order to have an e�e
t on these entries,a demand would 
ertainly have to be reformulated in termsof demands 
on
erning entities on whi
h it is 
lear that we
an have an e�e
t.A third type of demand 
onsists in requesting a demon-stration that some expression 
annot get evaluated in some
ontour. We shall 
all these never-demands and obviouslythey 
an be formulated formally by \show Æl;k = ;". Su
hdemands typi
ally arise when a 
ertain evaluation ne
essar-ily leads to an error. To make a variation on the example ofSe
tion 3.1, if the sub-expression e5 of the expression (
ar4e5) in the non-pair 
ontour k00 would have still returnedsome values, it would have been ne
essary to emit a never-demand on Æ5;k00 . Obviously, a split is not ne
essary sin
ethere are no good 
ases (pairs) to separate from the bad
ases (non-pairs).We tou
h a 
ru
ial issue, here: good 
ases and bad 
ases.When there are only good 
ases, everything is �ne, nothinghas to be done. When there are only bad 
ases, we haveto emit a never-demand but at least everything is 
lear.When there are good and bad 
ases together, normally split-demands have to emitted before emitting never-demands.Otherwise, if we are asking a demonstration that su
h anevaluation 
annot o

ur, we may ask the impossible sin
ethe good 
ases may re
e
t a
tual 
on
rete evaluations inthe program. This prin
iple must be kept in mind when wepropose pro
essing te
hniques for the demands.A fourth type of demand that seems vital is the no-
all-demand. A no-
all-demand basi
ally means: \show that
losure 
 
annot be 
alled on argument v in 
all site l whenthe 
ontour is k". It typi
ally may be emitted due to thepro
essing of a never-demand. To 
ontinue with our varia-tion on the example, a never-demand on Æ5;k00 may eventu-ally require that we show that the 
losure 
 is never 
alledwith a non-pair argument. This translates into one or moreno-
all-demands.Although an implementation of demand-driven analysismay formulate other types of demands, the ones that we just7



presented here form a 
ore that must be present in one wayor another in order to be able to perform demand-driventype analysis on a language su
h as ours.Pro
essing the demandsDemands originally express the need to demonstrate a \de-sirable" property. A demonstration takes the form of amodel instantiating a parti
ular analysis that brings theproof that the property is indeed true. If we want to gofrom the original demands to the appropriate model, thesedemands have to be pro
essed in some way. Note that wehave already impli
itly des
ribed many 
ases of demand pro-
essing.In general, pro
essing a demand leads to immediate su
-
ess, to immediate failure, or to emission of new, modi�eddemands. Immediate su

ess o

urs when, for example, thedemand is \split �l;k a

ording to its type" and the expres-sion el is #fl. In this 
ase, the model trivially 
onforms tothe demand: k itself is the only 
ontour that is ne
essaryin order to have that no two obje
ts of di�erent type resultfrom the evaluation of el in the same 
ontour k0, for any k0spe
ializing k.Immediate failure, in our parti
ular 
ase, is most un
om-mon. One spe
i�
 demand, however, 
an lead to immediatefailure: \show Æl0;k0 = ;". That is, trying to show that thewhole program does not get evaluated.Most of the time, as was illustrated in the example ofSe
tion 3.1, pro
essing a demand leads to the 
reation ofnew demands.Even though parti
ular demand-driven analyses may dif-fer in the way their set of demands are pro
essed, here wepresent pro
essing s
hemas that, almost 
ertainly, have tobe similar in all 
ases.� Original bound-demands, \show �l;k � hseti", expressproperties that, if they are not trivially satis�ed nortrivially 
ontradi
ted, may �rst be re-expressed as asplit-demand and, upon su

ess of this �rst sub-de-mand, a never-demand ought to be emitted for ea
hki spe
ializing k su
h that �l;ki 6� hseti. Note that thesplit is intended to \separate the good 
ases from thebad ones". If the bound-demand property is triviallyrespe
ted, immediate su

ess o

urs. If it is trivially
ontradi
ted, a single new demand is emitted: \showÆl;k = ;".� Split-demands on � entries result in an update of themodel and in immediate su

ess. Sin
e only the 

and 
all fun
tions determine whi
h 
ontour is sele
teddepending, in parti
ular, on the arguments to the 
lo-sures, a model update is the only way to respond tosu
h demands. Of 
ourse, any split-demand dire
tly
on
erning the model 
auses an update of the modeland an immediate su

ess.� A split-demand on a 

;k analysis variable 
an triviallybe reformulated in terms of a new split-demand on the�l;k variable 
orresponding the result of the body el ofthe 
losure 
.� A split-demand on an �l;k variable where el is #fl, xl,(
onsl el0 el00), (
arl el0), (
drl el0), or (pair?l el0)
an normally be pro
essed in a straightforward fash-ion. It be
omes, in the �rst 
ase, an immediate su

ess,sin
e it is 
lear that the sole #f value always falls into asingle \split 
ategory" a

ording to the split 
riterion.In the se
ond 
ase, it 
an trivially be reformulated as a

split-demand on �x;k. In the third 
ase, depending onthe split 
riterion, the split may already be done (witha split-on-type 
riterion, for example) or it may eas-ily be reformulated in terms of split-demands on thesub-expressions. The remaining 
ases are similar plus,maybe, a dire
t split-demand on the model to spe
ial-ize abstra
t pairs. To make a simplisti
 observation,we would say that split-demands on � entries have atenden
y to propagate from an expression towards itssub-expressions.� A never-demand on a Æl;k variable is pro
essed a
-
ounting for the parent expression el0 of el. Most of thetime, the demand is reformulated into a never-demandon Æl0;k. However, if el is the 
onsequent bran
h orthe alternate bran
h of an if expression, the demandmust be reformulated into a bound-demand onto thetest sub-expression. The bound is the set of true val-ues (ValC [ ValP) or false values (ValB), respe
tively.Finally, if el0 is a �-expression, the evaluation is theresult of a 
all, and it is generally not a simple matterto pro
ess su
h a demand. On
e again, to be simplis-ti
, we 
ould say that never-demands have a tenden
yto propagate from an expression towards its parent ex-pression.3.3 DiÆ
ult 
asesIn the pre
eding paragraphs, we presented some more orless pre
ise des
riptions of what the pro
essing of variousdemands should be. However, we avoided 
ertain demandsdeliberately be
ause they are 
learly diÆ
ult to pro
ess. Theexisten
e of diÆ
ult 
ases has to be expe
ted sin
e stati
allyproving interesting properties about a program is un
om-putable in general, and this un
omputability is not going todisappear simply be
ause we are trying to make the analyzersmarter by using a demand-driven approa
h. The diÆ
ul-ties 
ome mainly from the 
onditional expression and, to agreater extent, from the 
all expression. We illustrate thepotential problems with two examples.Let us suppose that we have the following expression:(ifl el1 el2 el3). We must pro
ess a split-demand on �l;ka

ording to the type of the result. Let us suppose, also,that the analysis results under the 
urrent model indi
atethat el2 may evaluate to obje
ts of all types, that el3 mayevaluate only to pairs, and that el1 may evaluate to bothtrue and false values. How 
an we pro
ess this demand?Note that el evaluates to a set of values that is the unionof the results of both its bran
hes. Sin
e el3 already hasa pair-only result, we 
ould emit a bound-demand on el2to request a demonstration that in fa
t it evaluates onlyto pairs. Alternatively, we 
ould emit a bound-demand onel1 to request a demonstration that it evaluates only to #f.Whi
h strategy is the best?Obviously, the example shows that the diÆ
ulty 
omesfrom the fa
t that there are more than one possible dire
-tion to 
ontinue pro
essing. Moreover, note that neither ofthe two proposed demands is adequate be
ause they mayinvolve properties that 
atly 
ontradi
t what the 
on
rete
omputations are. In su
h 
ases, there would be no hope ofever responding su

essfully to the demands.The pro
essing of demands 
on
erning 
alls is even morediÆ
ult. Let us 
onsider the following expression: (lel1 el2).Suppose that the demand is the same as in the if example.Also, suppose that the 
urrent analysis results tell us that:el1 evaluates to two 
losures 
1 and 
2, el2 evaluates to ob-je
ts of more than one type, the 
losure 
1 returns obje
ts8



of only one type, and 
2 returns obje
ts of di�erent types.How should we pro
eed?The \poly-type" results of el may be explained by thefa
t that: 
2 returns obje
ts of the same type as those thatit re
eives, so we should split the value of el2 ; the 
on
rete
losure 
orresponding to 
2 returns \mono-type" results, butits poor modeling suggests the 
ontrary, so we should splitits return value; or no 
on
rete 
losure 
orresponding to 
2is ever present at el1 during the 
on
rete evaluation, so weshould split the value of el1 , and demand that the 
ase whereel1 evaluates to 
2 be proved impossible.Clearly, pro
essing in su
h a 
ase is far from obvious sin
ethe appropriate demands may 
on
ern el1 , el2 , the 
losuresthat are invoked, or a 
ombination of the three.3.4 ChallengesOn top of the natural diÆ
ulty that 
omes with the pro-
essing of the demands, there are several others that makethings more 
omplex.As we mentioned above, the pro
essing of a demand andits sub-demands may last forever. This may happen in par-ti
ular be
ause the property that must be demonstratedis not based on legitimate reasons (su
h as in the 
ondi-tional expression example) or simply be
ause it is beyondthe power of the framework to support the ne
essary proof.Clearly, there must be a me
hanism that ensures that theanalyzer does not get stu
k in su
h pro
essing.Sin
e the attempt to prove a property may last foreverand there are generally more than one property to prove, theoriginal demands 
annot be pro
essed one after the other.The amount of time available to the analysis may be ex-hausted by one of the �rst demands, possibly leaving unan-swered many \easy" demands that would have been su
-
essfully pro
essed in little time. So the pro
essing of thedemands must be made using some kind of 
on
urren
y.Note that using a bound on the time available to the an-alyzer is 
learly a ne
essity but it is also one of its feature.Although unusual in the �eld of program analysis, this 
on-
ept is fairly natural when we think about it. In a way, it
orresponds more to the human notion of work than to thealgorithmi
 
omplexity notion of work. While the ideal pa-rameter to an analyzer would be the quality of the results, abound on the available time is probably the 
losest realisti
equivalent.The pro
essing of an original demand naturally leads to atree of sub-demands. Of 
ourse, these sub-demands 
annotall be pro
essed at the same time. Some have to be put intoa waiting queue until it is their turn. However, during thetime that a demand is in the queue, the model may havebeen re�ned due to the pro
essing of other demands. Insu
h a 
ase, an \old" demand may refer to abstra
tions thathave been broken down into more spe
ialized abstra
tions.Consequently, there must be a me
hanism to keep demandsup to date.Finally, an important question relates to the 
on
ur-rent demand pro
essing: should the various pro
essing treesshare the abstra
t model? Remark that they do not haveto. Ea
h original demand 
an be responded independently.This is be
ause that what matters is whi
h of the originaldemands are su

essfully answered. Two distin
t dynami
tests may both be omitted from a program, even if ea
h hasbeen showed redundant using a distin
t model.The advantage of sharing the model is that a su

essfuldemonstration of property A may have un
overed many in-variants of the program that would make the demonstration

of property B easier. The in
onvenien
e is that if all up-dates o

ur in the same model then almost every demandthat goes in the waiting list has to be spe
ialized to followthe numerous �ner abstra
tions introdu
ed by the updates,resulting in a proliferation of demands.A 
ompromise that may be interesting 
onsists in shar-ing ea
h model with the one used to su

essfully answer ademand. What is interesting with su
h a model is that it
an be redu
ed prior to the sharing with the other mod-els. The idea is the following: during the pro
essing of atree of demands, all kinds of updates are performed on themodel; eventually, one last update 
auses the model to pro-vide a proof for the original demand; however, only some ofthe re�nements to the model are really ne
essary to providethe proof; undoing the unne
essary re�nements produ
es amodel that is as small as possible.4 A basi
 analysisWe present a prototype of a demand-driven analysis that isbased on patterns. We brie
y des
ribe this pattern-basedmodeling and some of the 
hoi
es that we have made 
on-
erning the various problems that must be addressed.4.1 Abstra
t modelThe modeling of the abstra
tions is made using patternmat
hing. A pattern list must be exhaustive and, asso
i-ated with ea
h pattern, there is a parti
ular abstra
tion in-stead of 
ode to exe
ute. For example, a very simple patternmat
her des
ribing the abstra
t pairs might look like:( #f; Val) ) P1( �8; Val) ) P2( (Val;Val); Val) ) P3Obviously, it represents three abstra
t pairs, ea
h being spe-
ialized with the type of the obje
t that it 
ontains in the
ar �eld.One important 
hara
teristi
 of our pattern mat
hing isthat it does not require that a modeling of pairs, for example,has to be the Cartesian produ
t of all the spe
ializationsfound in the 
ar with those found in the 
dr. This is 
ru
ialfor the patterns representing 
ontours sin
e these are kindsof \lists" that 
an be as long as the lexi
al environment inthe program.4.2 DemandsFigure 8 presents the syntax of the demands and that of thepatterns they in
lude. The set of demands 
orresponds ba-si
ally to what we des
ribe in Se
tion 3 ex
ept for split-
all ,whi
h is an auxiliary demand used in the pro
essing of split-demands on 
all expressions, and monitor-
all , whi
h is an-other auxiliary demand that tries to prove that 
alls of 
er-tain 
losures on 
ertain arguments 
annot o

ur in 
ertain
ontours.The syntax of the patterns is des
ribed by hpati, whi
hrepresents the splitting patterns, by hsPati, whi
h are thestati
 patterns, by h
tPati, whi
h are splitting 
ontour pat-terns, and by hsCtPati, whi
h are stati
 
ontour patterns. Asplitting pattern 
ontains one and only one splitting point,indi
ated by ?. When abstra
tions are split a

ording toa pattern, only those that mat
h the pattern are modi�ed,and the modi�
ation 
onsists in adding an \extra-level" ofinspe
tion at the splitting point. Stati
 patterns are usedto help des
ribing the abstra
tions that are to be modi�ed.9



hdemandi := show �l;k � hboundisplit �l;k hpatisplit �x;k l hpatisplit 

;k hpatisplit ValP hpatishow Æl;k = ;split-
all l hsCtPati hpatimonitor-
all l hsCtPatihboundi := ValB j ValC j ValP j ValTrueshpati := ? j �? j �l h
tPati(hpati; hsPati) j (hsPati; hpati)hsPati := Val j #f j �8 j �l hsCtPati(hsPati; hsPati)h
tPati := (hsPati� hpati hsPati�)hsCtPati := (hsPati�)Figure 8: Demand syntaxThe 
ontours used at an expression el are an abstra
t modelof the lexi
al environment. So 
ontour patterns are lists ofpatterns that are as long as the lexi
al environment is at thepoints of the program where they are used.4.3 Ba
k to the exampleIf we return to the example of Se
tion 3.1, a pattern-baseddemand-driven analysis pro
eeds like this. The original de-mand is: show �5;k � ValPwhere k represents (Val : : : Val). That demand is �rstreformulated into a split-demand a

ording to the type:split �5;k ?Pro
essing this demand is trivial and it produ
es anothersplit-demand. It 
on
erns the sub-expression:split �6;k ?This one be
omes a split-demand on the variable:split �x;k 6 ?The label 6 is present in order to unambiguously indi
atewhi
h program point requires an update. This is be
ause kmay be used in more than one fun
tion body. This demand�nally 
auses an update in the model of the 
all fun
tionin su
h a way that a 
all to the 
losure 
an result in the
ontour ( #f Val : : : Val);( �8 Val : : : Val); or( (Val;Val) Val : : : Val):The rest of the explanations are similar.4.4 The diÆ
ult 
asesIn Se
tion 3, we showed that the diÆ
ult 
ases are the 
on-ditional expressions and the 
all expressions. Also, we listmany other diÆ
ulties. We present some 
hoi
es that wemade in our pattern-based analysis.A split-demand on the evaluation results of a 
onditionalexpression are dealt with in this way: split-demands with the

same pattern are sent to both bran
hes and another split-demand with the ? pattern is sent to the test. With lu
k,all three sub-demands su

eed, and the split-demand on the
onditional is a su

ess sin
e ea
h new 
ontour ne
essarilyleads to mono-type evaluation results of the 
onditional.A split-demand on a 
all expression pro
eeds by: split-ting the return value of ea
h 
losure (that may be involvedthere) a

ording to the same pattern; this pro
essing in-dire
tly 
reates an \asso
iation" between the output andthe input of the 
losures; a split-
all auxiliary demand then
omputes an \easiest" way to distinguish 
all situations thatlead to di�erent split 
ategories; it �nally emits a sequen
eof demands on the sub-expressions of the 
all expressionsthat, if su

essfully answered, would 
omplete the split ofthe 
all expression.These pro
essing strategies are generally too aggressivein their generated sub-demands and a major diÆ
ulty isto deal with those that do not su

eed. We have in
ludeda time-out feature to the pro
essing of sub-demands thatallows their parent to turn to a \ba
kup plan" when thetime-out is rea
hed. The ba
kup plans often resort to sub-demands that are often less legitimate than the ones thathave expired and, so, maybe even more sus
eptible to beimpossible to a
knowledge or at least more diÆ
ult. But, asthe name of these plans says, this is the last re
ourse.4.5 Pros and 
onsThe pattern-based demand-driven analysis has the advan-tage of being of manageable 
omplexity. That is why wehave 
hosen it as a �rst attempt of demand-driven analysis.However, it has some weaknesses that may 
onsiderably re-du
e the power of the whole analysis. Its weaknesses 
omedire
tly from its 
on
ept: patterns. Patterns 
an only dis-tinguish obje
t stru
tures on the surfa
e or not very deep.They are fundamentally in
apable of distinguishing stru
-tures that start to di�er at deep levels, su
h as, for example,lists of booleans ending with a boolean and lists of booleansending with a fun
tion:(#f; (#f; : : : (#f;#f) : : :))(#f; (#f; : : : (#f; �8) : : :))However, we 
annot say that the pattern-based is justgood enough to \show in greater detail that we still knownothing". If the program manipulates data stru
tures that
an be distinguished by looking only a few levels deep, thenour analysis has the 
apability to �nd the 
hara
teristi
sof these data stru
tures. Figure 9 shows su
h an example.Suppose that the program manipulates only lists of booleansand lists of fun
tions. Then a simple split of the abstra
tpairs may lead to a perfe
t des
ription of the lists. This isdue to the log analysis variables, whi
h re
ord the 
ir
um-stan
es that prevail when abstra
t obje
ts are 
reated. The�gure shows two models, the 
oarse and the �ner, and theinformation that is 
onsigned in the logs.5 Con
lusion5.1 Related workAs far as we know, there is no work with the same goal.The most 
losely related resear
h is the work of Duester-wald et al. [7℄, Agrawal [1℄, and Heintze and Tardieu [10℄.In [7℄, a framework to obtain a demand-driven analysis froma 
ertain 
lass of inter-pro
edural data-
ow problems is de-s
ribed. However, as the authors of [10℄ mention, this 
lass10



Model Observed results(Val;Val)P analysis) � #ff 2 ValC ; #fP �P+ split ValP (?;Val)( #f ; Val )P1( �? ; Val )P2( (Val;Val) ; Val )P3 analysis) � #f ; #fP1 �P1� f 2 ValC ; #fP2 �P2( ; ; ; )P3Figure 9: A simple split may un
over more 
omplex stru
-turesis restri
ted and does not even in
lude the problem thatthey address: a 
ow-insensitive, 
ontext-insensitive pointeranalysis; whi
h is still elementary. In [1℄, a demand-drivendata-
ow analysis that does not require prior 
all graph in-formation to be present is des
ribed.What these proposals have in 
ommon with ours is thefa
t that demands are generated for some reasons and thenpropagated. That is all. Their goal is simply to take awell-known, traditional analysis and adapt it so that only asubset of the 
omputations need to be performed in order toprovide answers to 
ertain requests. Only a few, when notonly one, very simple demand types exist.5.2 Future workInvestigation in this resear
h should 
onsider alternatives topatterns for abstra
t modeling and formulating demands.First, we should 
onsider distinguishing pairs by their 
re-ation expression and 
ontour rather than by their dire
t 
on-tents. We believe that this modeling may be more powerfulthan the pattern-based modeling. However, it is not 
learhow to express demands in this representation. Se
ond, arepresentation using regular trees (see [4, 3, 5, 6℄) system-ati
ally may prove to be very powerful. This representation
ould be used to express demands, too. It may be far fromeÆ
ient, though. Third, we should explore an approa
h tosystemati
ally 
ompute demands that is reminis
ent of logi
programming. The idea is to give a demand-driven analy-sis interpretation to the expressions. This interpretation isa fun
tion transforming demands (in the sense of bound-demands) to environment demands. The advantage of thisapproa
h seems to be the fa
t that it is systemati
 but itis not 
lear if it 
an be more powerful than pattern-basedanalysis.The biggest problem with our approa
h is the pro
ess-ing of demands related to 
onditional and 
all expressions.Additional informations about fa
ts that are known with
ertainty, might help to better de
ide what sub-demands toemit. For example, it 
ould indi
ate that 
ertain demandshave to fail be
ause a 
ounter-example has been found. The
ertain fa
ts would have to be dis
overed by an auxiliaryanalysis. The latter would 
on
entrate on trying to provefa
ts that would help the most the demand-driven analyzer.In a more 
omplex appli
ation than our type analysis fora mini-language, original demands 
ould 
ome from a widervariety of hints. In 
onsequen
e, it may be ne
essary to as-sign a reliability degree to the demands. For example, if weextend our problem to in
lude dete
tion of inlining oppor-tunities, then it would be \desirable" to prove that a 
ertain
all expression 
an only invoke one parti
ular 
losure. Sin
e

su
h a demand originates from a desire on our part and isnot ba
ked by any more solid eviden
e, then it should re
eivea lower reliability degree.Another dire
tion 
onsists in extending the s
ope of theanalysis to be able to deal with a language 
loser to S
heme,that is, in
luding more algebrai
 types, higher- and variable-arity fun
tions, 
ontinuations, I/O, and side-e�e
ts. Ex
eptfor 
ontinuations, we do not expe
t any serious problems.Dealing with 
ontinuations probably requires that we intro-du
e a new type of abstra
t obje
ts sin
e ordinary fun
tions
annot mimi
 their behavior. Otherwise, a 
onversion toCPS may be required. Separate 
ompilation of programsis not a standard part of S
heme, but it is 
ommon pra
-ti
e. Unfortunately, we do not see how our demand-drivenapproa
h 
ould be adapted to deal with it. Not only doesour analysis has to propagate abstra
t obje
ts everywhere inthe program, it also has to propagate demands everywhere(from 
allee to 
aller, for example, whi
h may 
ome fromdi�erent modules).Finally, other analyses than type analysis should be 
on-sidered in order to verify how well our demand-driven ap-proa
h applies outside of type analysis. One su
h analysisis range analysis for numeri
al values. A part of the goal ofthis analysis 
onsists in removing bound 
he
ks in indexabledata stru
ture a

esses and removing veri�
ations before di-visions and other unsafe numeri
al operations. Sin
e theseoperations relate to safety issues, they 
an be seen as goodhints from whi
h we 
an generate initial demands.5.3 ContributionsIn this paper, we presented a proposal of how to perform ahigh-quality type analysis while trying to have a moderatetime and spa
e 
omplexity. It is based on a demand-drivenanalysis that uses a very powerful analysis framework. The
exibility of the framework 
omes from the fa
t that theabstra
t model of the obje
ts 
an be 
hanged dynami
ally.With appropriate models, the framework 
an emulate thebehavior of many traditional type analyses. Although theway to generate initial demands from hints present in theprogram is similar to what is done in other resear
h, thepurpose of the demands is radi
ally di�erent. Their gen-eration and pro
essing guides the su

essive updates of theanalysis model that is used in the 
exible framework, mak-ing su

essive analysis instan
es that are better equippedto analyze the program at hand. We also give a sket
h ofour implementation of a pattern-mat
hing demand-drivenanalysis.Referen
es[1℄ G. Agrawal. Simultaneous demand-driven data-
owand 
all graph analysis. In Pro
eedings of InternationalConferen
e on Software Maintainan
e, pages 453{462,sep 1999.[2℄ A. V. Aho, R. Sethi, and J. D. Ullman. Compil-ers: Prin
iples, Te
hniques and Tools. Addison-Wesley,1986.[3℄ A. Aiken and B. Murphy. Implementing regular treeexpressions. In Fun
tional Programming and ComputerAr
hite
ture, pages 427{447, aug 1991.[4℄ A. Aiken and B. Murphy. Stati
 type inferen
e in adynami
ally typed language. In ACM, editor, POPL11



'91. Pro
eedings of the eighteenth annual ACM sympo-sium on Prin
iples of programming languages, January21{23, 1991, Orlando, FL, pages 279{290, 1991.[5℄ A. Aiken and E. L. Wimmers. Type in
lusion 
on-straints and type inferen
e. In Pro
eedings of theConferen
e on Fun
tional Programming Languages andComputer Ar
hite
ture, pages 31{41, jun 1993.[6℄ B. Cour
elle. Fundamental properties of in�nite trees.Theoreti
al Computer S
ien
e, 25(2):95{169, mar 1983.[7℄ E. Duesterwald, R. Gupta, and M. L. So�a. Demand-driven 
omputation of interpro
edural data 
ow. InSymposium of Prin
iples of Programming Languages,pages 37{48, jan 1995.[8℄ R. Gupta. Optimizing array bound 
he
ks using 
owanalysis. ACM Letters on Programming Languages andSystems, 2:135{150, 1993.[9℄ N. Heintze. Set based analysis of ML programs(extended abstra
t). Te
hni
al Report CS-93-193,Carnegie Mellon University, S
hool of Computer S
i-en
e, jul 1993.[10℄ N. Heintze and O. Tardieu. Demand-driven pointeranalysis. In Pro
eedings of SIGPLAN 2001 Conferen
eon Programming Languages Design and Implementa-tion, ACM SIGPLAN Noti
es. ACM Press, jun 2001.[11℄ P. Hudak. A semanti
 model of referen
e 
ounting andits abstra
tion (detailed summary). In Pro
eedings ofthe 1986 ACM Conferen
e on Lisp and Fun
tional Pro-gramming, pages 351{363, 1986.[12℄ S. Jagannathan and S. Weeks. A uni�ed treatment of
ow analysis in higher-order languages. In 22nd ACMSymposium on Prin
iples of Programming Languages,pages 392{401, jan 1995.[13℄ S. Jagannathan and A. Wright. E�e
tive 
ow analysisfor avoiding run-time 
he
ks. Le
ture Notes in Com-puter S
ien
e, 854:207{224, 1995.[14℄ O. Shivers. Control 
ow analysis in S
heme. In Pro
eed-ings of the SIGPLAN '88 Conferen
e on ProgrammingLanguage Design and Implementation, pages 164{174,jun 1988.[15℄ O. Shivers. The semanti
s of S
heme 
ontrol-
ow analy-sis. In Pro
eedings of the Symposium on Partial Evalua-tion and Semanti
s-based Program Manipulation, pages190{198, jun 1991.

12


