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Abstract

Two strategies for supporting asynchronous interrupts are:
the use of the processor’s hardware interrupt system and the
use of polling. The advantages of polling include: portabil-
ity, simplicity, and low cost for handling interrupts. Unfor-
tunately, polling has an overhead for the explicit interrupt
checks inserted in the code. This paper describes balanced
polling, a method for placing the interrupt checks which
has a low overhead and also guarantees an upper bound on
interrupt latency. This method has been used by Gambit
(an optimizing native code compiler for Scheme) to support
a number of features including multiprocessing and stack
overflow detection. The overhead of balanced polling is less
than for call-return polling which places interrupt checks at
every procedure entry and exit. The overhead of call-return
polling is typically 70% larger (but sometimes over 400%
larger) than the overhead of balanced polling.

1 Introduction

In this paper, the term interrupt is defined as an exceptional
event for which some special processing is needed (e.g. a
heap overflow). The handling of an interrupt is done in
three phases. The interrupt is ratsed when the event occurs.
At some point after this the processor detects the interrupt
and then handles it by invoking the appropriate interrupt
handler. There are two types of interrupts. Synchronous
interrupts can only be raised at well defined locations in the
code (e.g. an arithmetic overflow or invalid pointer derefer-
ence). Asynchronous interrupts can be raised at any loca-
tion (e.g. a timer or user interrupt).

1.1 Detecting Interrupts

There are essentially two ways in which interrupts can be
detected. They can be detected automatically by the pro-
cessor’s hardware or by explicit checks inserted in the code.
These will be called implicit and explicit detection respec-
tively. On stock hardware, the following interrupts are of-
ten detected implicitly: arithmetic overflows, address align-
ment errors, address translation errors, and user and timer
interrupts. The following interrupts are usually detected

explicitly: stack and heap overflows, read and write barri-
ers (for incremental [3] and generational [10] garbage collec-
tion), and type errors and range errors. This classification
depends on the capabilities of the hardware and other im-
plementation constraints. In principle all interrupts could
be detected explicitly and it is mainly for performance rea-
sons (but sometimes for simplicity) that they are detected
implicitly. Stack overflows can for example be detected im-
plicitly by placing an invalid guard page at the stack’s limit.
This however may be expensive or overly burdensome to do
for a multitasking system which must maintain several small
stacks.

There are other reasons why explicit detection may be
preferable to implicit detection. Implicit detection is less
portable because the trapping mechanism varies from pro-
cessor to processor. Portability can be increased somewhat
by relying on standard libraries such as the UNIX signal.h
routines but this increases the cost of each interrupt and it
only gives access to the most common types of interrupts.

Another problem with implicit detection on stock hard-
ware 1s the high cost of handling an interrupt. Current
trap architectures enter kernel mode to process the inter-
rupt. This requires that the processor’s state (all of the
registers or some significant subset) be saved and later re-
stored. If the trap handler is in user space, two additional
transitions between user and kernel space are needed. Ex-
plicit detection has a much lower cost. The main reasons
are that control remains in user space, the call to the in-
terrupt handler can be open coded and/or specialized, and
a minimum number of registers have to be saved (since the
compiler knows which registers are live and possibly which
are clobbered by the handler). Unfortunately, the cost of
detecting the interrupt (Tgetect ) applies to all potential in-
terrupt points. Explicit detection will only be more efficient
than implicit detection if interrupts are sufficiently frequent
to make the following inequality true

Tdetect < p(Timplicit - Te:cplicit)

where p is the probability that an interrupt is detected, and
Timpticit and Teppyicir are respectively the times to handle
the interrupt in each approach. As a concrete example for
synchronous interrupts, assume that an arithmetic opera-
tion has to be checked for overflow and that a single “branch
on overflow instruction” can detect this (i.e. Tgepeer = 1).
Assuming Tipmpiicit — Texplicit 18 100 instructions”, explicit

1 Johnson [8] reports a cost of 106 instructions on the SPARC
to take an overflow trap on the TADDccTV instruction. This cost



detection will be preferable if p > .01, that is if there 1s an
overflow at least once out of every 100 times the arithmetic
operation is executed.

1.2 Asynchronous Interrupts

The handling of asynchronous interrupts is an issue in many
languages and systems but this paper looks at the issues in
the context of a Lisp system because Lisp stresses many
problems (e.g. garbage collection and small functions). The
methods described here are however applicable to other lan-
guages.

Because they can be raised at any point in the program,
asynchronous interrupts pose special problems.

1.2.1 Critical Sections

To support garbage collection, Lisp systems must maintain
a memory state that can be parsed by the garbage collec-
tor. However, the system’s state can temporarily become
inconsistent in the middle of some code sequences. Storing
a 64 bit pointer into = might for example translate into a
sequence of two 32 bit store instructions. Since immediately
after the first store  does not contain a valid pointer, the
system must insure that z is not accessed, either explicitly
or by the garbage collector, before the second store is per-
formed. Other cases where the system potentially enters
an inconsistent state include: updating system structures,
saving Lisp objects in locations not scanned by the garbage
collector, and saving non Lisp objects in locations scanned
by the garbage collector (e.g. when clearing or extracting a
pointer’s type tag, and “unboxing” numbers). Interrupts are
a problem because they can not be processed in an inconsis-
tent state if the interrupt handler might call the garbage col-
lector or otherwise access the part of the state which is incon-
sistent. This is a definite possibility if the interrupt handlers
are written in unrestricted Lisp or if the system supports
user interrupts (for entering a break loop) or preemption in-
terrupts (for multitasking). FEither the system is carefully
designed to never enter inconsistent states (which precludes
a number of compiler optimizations), or the code sequences
are protected within uninterruptible critical sections?.

When interrupts are detected implicitly, a simple imple-
mention of critical sections is to inhibit interrupts for the
duration of the critical section. This can be done by sur-
rounding it with a pair of instructions to disable and enable
the interrupts. Interrupts raised during a critical section will
get handled when the interrupts are reenabled at the end of
the critical section. This approach suffers from a high over-
head for the added disable/enable pairs but the overhead
can be reduced somewhat by using a single pair around a
grouping of critical sections.

Techniques that completely avoid the overhead of dis-
able/enable pairs do exist. Maclisp and Lucid Common Lisp
keep the location of all critical sections in a table. When
an interrupt is raised, the address of the interrupted in-
struction is looked up in the table. If the interrupt was
raised inside a critical section, the rest of the critical section
is first executed and then the interrupt handler is called.

does not account for the processing of the overflow, so Timplicit —
Te:vplicit will be roughly 100 instructions.

Some systems support user specified critical sections. However,
only critical sections that span a few instructions are considered here
since this functionality is sufficient to support user specified critical
sections.

Maclisp achieves this by single stepping the code to the
end of the critical section (by the use of the PDP-10’s XCT
instruction)g’. Lucid Common Lisp uses this strategy for the
internal subroutines called by compiled code [14]. T [9] has a
slightly different zero cost strategy that does not use tables.
When an interrupt is raised, the continuation is modified so
that soon after the critical section is finished the interrupt
handler is called. Another strategy [1], designed specifically
for the problem of allocation in a multitasking system, also
single steps the interrupted code but not on every interrupt.
Instead, it is the garbage collector which single steps each
task if its program counter indicates that it is in the middle
of an allocation.

When interrupts are detected explicitly, critical sections
are easy to implement. The compiler simply has to insure
that interrupt checks are only generated in “safe” places
(i.e. outside critical sections).

2  Polling

The biggest issue with explicit detection of asynchronous
interrupts is the placement of the interrupt checks. Placing
them after every instruction (outside critical sections) would
clearly be too expensive. A more efficient approach consists
of putting interrupt checks at specific places in the code so
that interrupts are checked, or polled, periodically.

A few systems use polling for asynchronous interrupts
(e.g. Gambit [5], MIT-Scheme [12], MultiScheme [11], Alle-
gro Common Lisp, and SML/N1J [2]). Gambit is a Scheme
system with multiprocessing extensions taken from Multil-
isp [7]. Asynchronous interrupts are used to distribute work
among the processors by dynamic partitioning. Idle pro-
cessors send “work request” interrupts to other processors
which must respond with a task to run or no task. Polling
was chosen because of the high frequency of work request
interrupts when programs use fine grain parallelism and be-
cause 1t is important to answer work requests quickly to
minimize the idleness of the processors.

In theory, the compiler could arbitrarily reduce the polling
overhead (Op,17) by decreasing the proportion of interrupt
checks executed with respect to the normal instructions exe-
cuted by the program. If all instructions take unit time then
Opott = Npot1 /Ninstr, where Npoy is the number of inter-
rupt checks executed and N, 1s the number of normal
instructions executed. This strategy lowers the frequency of
interrupt checking and consequently increases the average
latency of interrupts (i.e. the time between the raising of
the interrupt and the handling of the interrupt). Average
latency (L) and overhead are inversely related by

Npont + Ny 1
poll mnstr =14
Npoll Opoll

L=

Here latency is expressed in number of instructions. To
account for non-unit time instructions, latency can be ex-
pressed in units of time (or number of machine cycles). This
leads to the definitions

Tpoll
Tinstr

Opoll =

3 The actual mechanism used in MacLisp is even more general [13].
It allows annotations on the critical sections that specify whether
interrupts should: be ignored, be deferred to the end of the critical
section, restart the critical section, or invoke a special handler.



Tpoll + Tinstr

L =
Npoll

where T),,;; is the total time spent on interrupt checks and
Tinstr the time spent on normal instructions. If an interrupt

check takes k time units on average then L = k(1 + 5 1 " ).
po

To simplify the discussion, all instructions will be assumed
to take unit time.

3 The Problem of Procedure Calls

Although polling seems simple enough to implement, there
is a complication. Normally, programs are not composed
of a single stream of instructions. If this were the case the
compiler could simply count the instructions it emits and
insert an interrupt check after every so many instructions.
Branches and procedure calls can alter the flow of control in
unpredictable ways and so, it isn’t clear how the compiler
can achieve a constant number of instructions between in-
terrupt checks. A reasonable compromise is to ask of the
compiler to emit interrupt checks such that a given latency
(Lmaz ) is never exceeded.

3.1 Code Structure

Before exploring the problem further, it is convenient to
introduce a formalism to describe the structure of a proce-
dure’s code. The code of a procedure will be represented by
a graph of basic blocks of instructions. There are two spe-
cial types of basic blocks: entry points and return points.
A procedure has a single entry point and one return point
for each procedure call in subproblem position.

Branches are only allowed as the last instruction of a ba-
sic block. Four types of branches exist: local branches (pos-
sibly conditional) to other basic blocks of the same proce-
dure, tail calls to procedures (i.e. reductions), non-tail calls
to procedures (i.e. subproblems), and returns from proce-
dures. Local branches and non-tail calls are not allowed to
form cycles and thus they impose a DAG structure to the
code. Following Scheme’s convention, it is assumed that
loops are always expressed with tail calls.

Note that subproblem and reduction calls always jump
to entry points and that procedure returns always jump to
return points. These restrictions are important to remember
because they simplify the analysis of the control flow.

Figure 1 gives the graph for the procedure for-each
which contains all four types of branches. Returns and tail
calls have been represented with dotted lines because they
do not correspond to DAG edges. Solid lines are used for
subproblem calls to highlight the fact that, just like local
branches, it is known where control continues after the pro-
cedure returns (if it returns at all). The generality of the
DAG is only needed to express the sharing of code. For the
moment, it is sufficient to make the simplifying assumption
that the DAG has been converted into a tree by duplicat-
ing each shared branch. The handling of shared code is
described in Section 6.

A necessary condition for any polling strategy is that
an inline sequence of more than Lpqz instructions is never
generated without an intervening interrupt check. The com-
piler can exploit the code structure for this purpose. A lo-
cally connected section is any subset of the basic blocks that
is connected by local branches only (for example, the three
basic blocks at the top of Figure 1 or the bottom one). For
any instruction I in a locally connected section, it is easy

(define (for-each f 1)
(if (null? 1)
#f
(begin
(f (car 1))
(for-each £ (cdr 1)))))

for-each
I I
I I
! (null? 1)< - - - - !
| | |
1 / \ 1
I I
I I
| #f (car 1) |
I . | I
I . I
1 . f____|___ _ 1
! . 1 | 1
1 . L _|-__ 2 1
I I
I N I
! : (cdr 1) !
I . M I
| . |
Y

Figure 1: The for-eachprocedure and its corresponding
code graph.

to determine what instructions are on the path to I from
the section’s root. These instructions are exactly those that
are executed at runtime before 7. Thus, for any instruction
in a locally connected section, the compiler can tell how far
back the last interrupt check occured (assuming there is one
on the same path from that section’s root). The number
of instructions that seperate an instruction from the pre-
vious interrupt check is called the instruction’s delta. For
instructions that are not preceded by an interrupt check in
the same section, the definition of delta will vary according
to the polling strategy. When the delta reaches Lyazr, an
interrupt check is inserted by the compiler before the in-
struction. If this is in the middle of a critical section, the
compiler must move the interrupt check to the end (or be-
ginning) of the critical section.

3.2 Call-Return Polling

Polling strategies differ in how the transition between lo-
cally connected sections is handled. Call-return polling is a
simple strategy that consists of putting an interrupt check
as the very first instruction of each section’s root. Since the
root of a section is either the entry point of the procedure
or the return point of a subproblem call, this corresponds to
polling on procedure call and return.

At first glance, polling on return does not seem neces-
sary since a procedure is bound to get called at some point.
However, this would mean that there is no upper bound on
the interrupt latency because it is possible to build a con-
tinuation that does not call any procedure for an arbitrarily
long time. For example, the following procedure does not
call any procedure during the unwinding of the recursion.

(define (length-even? lst)
(if (and (pair? 1st) (length-even? (cdr 1lst)))
#f
#t))



(define (make-person name age gender)
(vector name age gender))

(define (person-name x) (vector-ref x 0))
(define (person-age x) (vector-ref x 1))
(define (person-gender x) (vector-ref x 2))

(define (sum vect 1 h) ; sum vector from 1 to h
(if (=1 h)
(vector-ref vect 1)
(let* ((mid (quotient (+ 1 h) 2))
(lo (sum vect 1 mid))
(hi (sum vect (+ mid 1) h)))
(+ 1o hi))))

Figure 2: T'wo instances of short lived procedures.

There are a few variations of call-return polling. The in-
terrupt check at the return point can be removed if checks
are put on all return branches. Similarly, the interrupt check
at the entry point can be replaced by checks on branches to
procedures (both tail calls and non-tail calls). The four pos-
sible variations give equivalent dynamic behavior (i.e. same
number of interrupt checks executed) but one may be prefer-
able to the others if it yields more compact code. This de-
pends on the particular code generation techniques used by
the compiler and the programs being compiled. Compact-
ness of code is not a big issue here so it won’t be considered
further.

4 Short Lived Procedures

Unfortunately, call-return polling has poor performance in
certain circumstances. The worst case occurs when proce-
dures are short lived, that is they return shortly after being
called. At least two interrupt checks are performed per pro-
cedure call in subproblem position (once on entry and once
on exit) and one if it is a reduction. This is a significant
overhead if the procedure contains few instructions. In lan-
guages that promote the use of large procedures this would
not be a serious problem, but in Lisp it is common to struc-
ture programs into several short procedures.

Two instances of this style, typified by the procedures in
Figure 2, are the implementation of data abstractions and
divide and conquer algorithms. In binary divide and conquer
algorithms, at least half of the recursive calls correspond to
the base case. If the algorithm is fine grained, such as the
procedure sum, the overhead of polling will be noticeable
because all the leaf calls are short lived.

The problem with call-return polling is that it doesn’t
take the structure of the program into account. If it is
known that a procedure P is always called when delta is
equal to n, then the compiler could infer that upon entry
to P, delta is n. This would introduce a “grace period” of
Limar — n instructions at P’s entry point during which in-
terrupt checks are not needed. A similar statement holds
for return points. Note that this yields a perfect placement
of interrupt checks if it is carried out at all procedure en-
try and return points. Interrupt checks would occur exactly
every Lmaz instructions.

A more realistic solution is needed to handle the case
where procedures and return points are called in different
contexts. A simple extension to the previous method is to
use m instead of n, where m is the maximum delta of all call
sites to P (and similarly for return points). This “maximal
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Figure 3: The maximal delta method.

delta” method is illustrated in Figure 3 where dark rectan-
gles are used to represent interrupt check instructions. This
is not an ideal solution for two reasons. First, it forces all
control paths through P to have an early interrupt check
(in P) if just one call site to P has a high delta. It would
be much better if each procedure call “paid it’s own way”,
meaning that interrupt checks should be put on the call sites
with high deltas. Not only would this improve P’s grace pe-
riod, it would put the interrupt check where it causes the
least overhead (because a high delta is a sign of a high num-
ber of normal instructions)4.

A second shortcoming of this solution is that the source
and destination of procedure calls has to be known at com-
pile time. This information is not generally available. One
could reasonably argue that with the use of programmer
annotations and/or control flow analysis the destination of
most procedure calls could be inferred by the compiler for
typical programs. However, the destination of returns is
harder to determine because it would require a full dataflow
analysis of the program and in general a procedure has a
number of possible points to return to. The existence of
higher order functions is another source of difficulty.

5 Balanced Polling

This section presents a general solution that does not rely
on any knowledge of the control flow of the program. The
method could be extended with appropriate rules, such as
maximal delta, to better handle the cases where control flow
information is available, but this is not considered here.

The idea is to define polling state invariants for procedure
entry and exit. The polling strategy expects these invariants
to be true at the entry and return points of all procedures
and consequently must arrange for them to be true at pro-
cedure calls and returns.

Specifically, the invariant at procedure entry is that in-
terrupts have been checked at most Lmaz — F instructions
ago. Here E is the grace period at entry points and is con-
stant for all procedures. In other words, delta is defined
to be Lmar — E at entry points. Delta now represents an
upper bound to the distance from the last interrupt check.
The invariant at procedure return is more complex. Either
delta is less than £ or, the path from the entry point to the
return instruction is at most F instructions. These invari-
ants are shown in Figure 4. Procedure P has two branches
that illustrate the two cases for procedure return. Note that
a procedure can be exited by a procedure return as well as

4 This assumes that all paths to P are equiprobable.
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Figure 4: Procedure return invariants in balanced
polling.

a reduction call. For now, reduction calls will be ignored to
simplify the discussion.

5.1 Subproblem Calls

These invariants have important implications. To begin
with, short lived procedures are handled well because there
is no need to check interrupts on any path that returns
shortly without a call to another procedure (i.e. with less
than F non-call instructions). This corresponds to the right-
most path in Figure 4.

Moreover it allows the delta at return points to be defined
as F plus the delta for the corresponding call point. This can
be confirmed by considering the two possible cases. Assume
procedure P; does a subproblem call to procedure P> which
eventually returns back to P; via a procedure return in Ps:

subproblem procedure

call return

Py P Py

Either the last interrupt check was in Pz, so by definition
delta at the return point (in Pi) is less than E. Alterna-
tively, P> was short lived and didn’t check interrupts, so
there are at most £ instructions that seperate the call site
(in 1) from the return point (in P;). As far as polling is
concerned, a procedure called in subproblem position can be
viewed as an interrupt check free sequence of F instructions.
The compilation rule here is that if delta at a call point ex-
ceeds Lmazr — F then an interrupt check is inserted at the
call.

This rule means that up to | Lmas /F]| subproblem pro-
cedure calls can be done in sequence without any interrupt

checking. To see why, consider the scenario where the first
call is immediately preceded by an interrupt check. At the
return point, delta is equal to £. If the instructions for argu-
ment setup and branch are ignored, delta at the 2t return
point 1s n X E. Only when this reaches Lyqz 1s an interrupt

check needed.

5.2 Reduction Calls

As described, the polling strategy does not handle reduction
procedure calls (tail calls) very gracefully. The case to con-
sider here is when a subproblem call is to a procedure which
exits via a series of tail calls, finally ending in a procedure
return:

subproblem reduction reduction procedure

call call call return

Py P Py -ov Pay P Py

An interrupt check must always be put at a reduction call
point to guard against the case where the called procedure
returns shortly without checking interrupts (as in P,_1 call-
ing Pn). Note that the return point in P; can have a delta
as low as £. Note also that P, can execute as many as F
interrupt check free instructions before returning to the re-
turn point in P;. Thus, it is not valid for P,_; to jump to
P, with a delta greater than 0 because this might violate
the polling invariant at the return point in P;.

The treatment of reductions can be improved by intro-
ducing a new parameter (R) and consequently adjusting the
polling invariants to support it. R is defined as the largest
admissible delta at a reduction call. Thus, an interrupt
check is put on any reduction call whose delta would other-
wise be greater than R. The same polling behavior as before
is obtained by setting R to 0. The polling constraints for
reduction calls can be relaxed by increasing the value of R.
R is at most Lymar — F because a reduction call might be
to a procedure that doesn’t check interrupts for as many as
FE instructions.

A new invariant for return points has to be formulated
to accomodate R. The delta at return points must now be
at least £+ R to account for the case explained previously.
That is, on return to P; there could be up to F instructions
in P, plus as much as R instructions at the tail of P,_1 since
the last interrupt check. When the compiler encounters a
subproblem procedure call it sets the delta at the return
points to £ plus the largest value between R and the delta
for the corresponding call point. Of course, if this value is
greater than Lyqr an interrupt check is first put at the call
site and the delta at the return point is set to £ + R. The
introduction of R also makes it possible to relax the invariant
for procedure returns. Since the delta for return points is
at least £+ R, a procedure return’s delta as high as £+ R
can be tolerated without requiring an interrupt check. With
these new invariants, there can be up to [(Lmaz — R)/E]|
subproblem procedure calls in sequence without interrupt
checks. This polling strategy will be called balanced polling.
A summary of the compilation rules for balanced polling is
given in Figure 5.

The two constants £ and R must be chosen carefully
to achieve good performance. Small values for £ and R
increase the number of interrupt checks for short lived pro-
cedures and tail recursive procedures respectively. On the
other hand, high values increase the number of interrupt
checks in code with many subproblem procedure calls (e.g. re-
cursive procedures). Choosing F = R = |Lmas /k]| is a



Location Action

Entry point A «— Lpmar — F

Non-branch  if (A > Lmar — 1) then sum
instruction add interrupt check T T T T T T TS T T T T T T T TTT '
A—20

A—A+1 (for next instruction)

Subproblem  if (A > Lmar — E) then
call add interrupt check
A—20
A — E 4+ max(R, A) (for return point)

(vector-ref| |(quotient
vect 1) (+1h) 2)

Reduction if (A > R) then
call add interrupt check

Procedure if (A > E 4+ R) and there are interrupts
return on path from entry point then
add interrupt check

Figure 5: Compilation rules for balanced polling.

reasonable compromise and a value of k = 6 gives good per-
formance in practice. This suggests that there are typically
less than 6 subproblem procedure calls per procedure in the
benchmark programs (see Section 8).

5.3 Minimal Polling v v

The choice of Lmar is also an issue. A high Lmar will
give a low polling overhead. However, it is important to = T _ _ _ _ _ _ _ _ ____________
realize that there is a limit to how low the polling overhead
can be made by increasing the value of L. This is due
to the conservative nature of the strategy. Whatever the
values of Lmas, F and R are, at least one interrupt check is
generated between the entry point and the first procedure
call. Delta is Lymar — £ on entry to a procedure, so clearly
the first call (reduction or subproblem) must be preceded by
an interrupt check. Similarly, there is at least one interrupt
check between any return point and the exit of the procedure
(return or reduction call) because delta at any return point
is at least £ + R. These two types of paths are the only
ones that are necessarily part of any unbounded length path.
Thus, it is sufficient to have one interrupt check on each
of these paths to guarantee that all possible control paths .
have a bounded number of instructions between interrupt v
checks. This minimal polling strategy is useful because its
overhead is a lower bound that can be used to evaluate other

(vector-ref
vect 1))

(-1i1)

| |
| |
| |
| |
| |
| |
| |
| |
: s (+ s . :
| |
| |
| |
| |
| |
| |
| |
| |

(define (tr-sum vect s i)

techniques. (if (< i 0)
An example of minimal polling for the procedure sum s
. . . . . . (tr-sum
and the tail recursive variant tr-sum is presented in Fig- vect
ure 6. For the call (sum v [ h) there are exactly 2 x (h—1) (+ s (vector-ref vect i))

interrupt checks executed or nearly one interrupt check per i1

procedure call (assuming h — I+ 1 is a power of two). By
comparison, checking interrupts at procedure entry and exit
would require two interrupt checks per procedure call. How-
ever, for the tail recursive procedure tr-sum both methods
are essentially equivalent with one interrupt check per iter-
ation.

It is interesting to note that balanced polling is more

Figure 6: Minimal polling for the recursive procedure
sum and a tail recursive variant.



general than minimal polling and call-return polling. These
can be emulated by judiciously choosing F, R and Lmas .
Minimal polling is obtained when 0 €« F = R € Lmas
(i.e. FE and R are arbitrarily large and Lmar 1s arbitrar-
ily larger). An interrupt check is put at the first call and
another one is put at the return or reduction call that fol-
lows the last return point. Call-return polling occurs when
0 = F € R = Lmaz. This places interrupt checks at all
entry points and return points.

6 Handling Join Points

It has been assumed that the code of procedures is in the
form of a tree. However, the compilation of conditionals
(i.e. and, or, if and cond) in subproblem position introduces
join points that give a DAG structure to the code. Certain
optimization techniques, such as common code elimination,
can also produce join points to express the sharing of iden-
tical code branches. Join points can be handled with the
maximal delta method. That is, the delta at the join point
is the maximum delta of all branches to the join point.

7 Polling in Gambit

Polling is a general mechanism that can serve many pur-
poses. Gambit is a Lisp system for shared memory multi-
processors. Gambit uses polling for

Stack overflow detection

Preemption interruption (for multitasking)
Inter-processor communication (for work distribution)
Inter-task communication (for killing tasks)

Barrier synchronization (e.g. for synchronizing all pro-
cessors for a garbage collection and to copy objects and
load code to the private memory of every processor)

A special technique is used to check all these cases with
a single test. The interrupt flag is really a pointer that is
normally set to point to the end of the area available for
the stack. Note that because stack overflows are detected
asynchronously, the stack extends a little further than this
limit. An interrupt check consists of comparing the flag
to the current stack pointer, and to jumping to an out of
line handler when the stack pointer exceeds the limit. A
processor can be interrupted by setting the flag to a value
that forces this situation (e.g. 0). The interrupt handler then
uses some other flags to discriminate between the possible
sources of interrupt. SML/NJ [2] uses a similar approach
based on the heap allocation pointer.

Although it can be done with a single test, the inter-
rupt check may still be relatively expensive. Because all
processors must have access to a processor’s interrupt flag,
it is located in shared memory (which can’t be cached eas-
ily). Increasing Lmas is not a viable solution because the
polling frequency can’t be lowered beyond a certain point.
To provide a finer level of control, interrupts can be checked
intermittently. Polling instructions generated by the com-
piler represent “virtual” interrupt check points and an ac-
tual check of the interrupt flag occurs once every n virtual
checks. This is easily implemented by a private counter that
is decremented at every virtual check. When it reaches zero
it is reset to » and the interrupt check is performed. The
average cost of an interrupt check will thus be the cost of

updating and checking the private counter plus l/nth the
cost of checking the interrupt flag.

An interesting optimization occurs here. Balanced polling
has a tendency to put the interrupt checks at branch points.
An interrupt check itself involves a branch instruction so in
many cases 1t is possible to combine the two branches into
a single one. Moreover, several machines have a combined
“decrement and branch” instruction that helps reduce the
cost even further. All these ideas are implemented in Gam-
bit. Below is an example showing the M68020 assembly code
generated by Gambit for the tail-recursive procedure last.
The boxed part is the interrupt check sequence (note that
n = 10 and that register a5 always contains a pointer to the
stack limit pointer).

(define (last lst)
(let ((rest (cdr 1st)))
(if (pair? rest)
(last rest)
(car 1st))))

Li: ; entry: dl=lst & aO=ret adr
movl di,al ; rest <- (cdr 1lst)
movl al@-,d2
btst d2,d7 ; (pair? rest)
bne L2
movl d2,d1 ; lst <- rest
dbra d5,L1 ; decrement and test counter

moveq #9,d5 ; reset counter
cmpl ab@,sp ; is sp beyond the limit?

bcc L1 ; no interrupt if sp>=limit

jsr handler ; call interrupt handler

bra L1 ; reduction call to last
L2:

movl di,al ; result <- (car 1lst)

movl al@,d1l

jmp  aO@ return

8 Results

To have a better idea of the polling overhead that can be
expected from these polling methods, it is important to mea-
sure the overhead on actual programs. Two situations are
especially interesting to evaluate: the overhead on typical
programs and on pathological programs that are meant to
exhibit the best and worst performance.

Several programs and polling methods were tested. The
programs were compiled by Gambit in four different ways:
with no interrupt checks, with minimal polling, with call-
return polling and balanced polling. For balanced polling,
Limar was set to values from 10 to 90 and £ and R were
set at | Lymas /6]. A value of n = 10 was used for polling
intermittently. The average runtime on ten runs was taken
for each situation. The overhead of minimal polling over
the program compiled with no interrupt checks is reported
in the first column of Table 1. The overhead for the other
polling methods is expressed relative to the overhead of min-
imal polling. Thus a relative overhead of 2 means that the
overhead is twice that of minimal polling.

The program tight, shown below, was designed to ex-
hibit worst-case behavior.

(define (tight n)
(Gf (> n O
(tight (- n 1))))



Minimal

polling rg&l}:n Balanced polling

O poli polling Rel. ov. when F' = R = |Lpar /6] and Ly is
Program | (%) |[Rel.ov.| 10 |20 ] 30 ][40 ] 50| 60]70]80]90
tight 83.9 1.0 25(10(10|1.0|10]10 (1.0 1.0]1.0
unfolded 6.1 091108654235 |3.7139|23]|23 |23
boyer 21.5 1.4 1.7111{1.0}1.0(1.1]1.0{0.9]09 0.9
browse 14.7 1.1 1.6|1.1{08]10(1.7|1.2|1.0]1.00.9
cpstak 10.9 1.2 191151210 (1.1 1.0]|1.0]1.0]1.1
dderiv 9.0 1.6 2111416121013 (1.3 |1.2]1.3
deriv 8.1 1.4 1.8114(181.1(09|1.0|1.0]1.1|1.2
destruct 21.3 1.1 20(10(10|10|10]10(1.0|1.0]1.0
div 14.1 1.0 1.3109{10}10(1.0|1.0{1.0]1.01.0
puzzle 14.5 0.9 21117(12|10|1.0]1.0(09|09]0.9
tak 8.7 4.6 3911418 |1.2|1.0]1.0(1.0|1.0] 1.0
takl 29.3 0.9 1.511.0{1.111.0({09]09(0.9]090.9
traverse 16.9 1.5 25113(09]09(09]109(09]09]0.9
triangle 3.9 3.7 6.0]60]32(3.8|24]2.1]23]1.0/|2.0
compiler 14.4 1.8 23113 (11|10|10}10(1.1|1.0]1.0
conform 10.5 2.5 281 1.7 (1311|1214 (1.3 |14]1.2
earley 6.4 1.5 23116 (1510|1121 (08|1.1]1.2
peval 9.7 1.7 2215|1011 }1.1(1.3])1.0|1.0]1.1
abisort 11.4 1.3 251171411410 1.1 (1.1 |1.0]1.0
allpairs 4.4 1.0 39126(20|120(2.0(05(1.8|1.0]1.0
fib 18.7 2.1 20(10(10|10|10]10(1.0|1.0]1.0
mm 4.7 1.1 30127(30|116(22(22(08|09]0.9
mst 10.5 1.6 22115121110 |12]10(08|1.1]1.0
gsort 12.3 1.3 191131013 (1.0|1.0|1.0]1.01.0
queens 15.2 14 301515151413 |13]1.2]1.3
rantree 11.4 2.5 2211209141113 (1.0|1.0]0.9
scan 6.6 241 351200808 |1.2]1.0|1.0]1.0|1.0
sum 11.8 1.8 2511410710509 ]1.0(08|09]0.8
tridiag 1.6 2.7 7914514342134 (13.7|139]3.0]3.6

Table 1: Overhead of polling methods on benchmark programs.




It is a tight loop that doesn’t do anything except update
a loop counter. There are only two instructions executed
on every iteration: an increment and a conditional branch.
Interrupt checks will clearly add a high overhead to this.
For most polling methods the overhead is about 80%. In
the case of balanced polling with Lyar = 10 the overhead
is roughly twice that because two interrupt checks get added
to every loop.

The program unfolded is the same loop as tight but
unfolded 80 times. Thus, it is a long inline sequence of
80 decrements followed by one conditional branch instruc-
tion. The polling methods do well on this program (about
6% for minimal and call-return polling) because procedure
calls are relatively infrequent and it is easy to handle the
inline sequence of instructions. As expected for balanced
polling, increasing lLmar decreased the overhead, down to
about 14%. Lmar would have to be greater than 90 to re-
duce the overhead to that of minimal polling (at Lmazr = 90
there are two interrupt checks per loop).

The other programs are split in three groups. The first
group contains programs from the Gabriel benchmark suite
[6]. The second group contains more realistic applications
that have not been designed with benchmarking in mind.
They are fairly sizeable with at least 500 lines of code (15,000
for compiler). The last group contains parallel programs
taken from [4]. These programs are written in Multilisp
but were compiled as sequential programs (i.e. with FUTURE

and TOUCH operations removed) to factor out the overhead
of supporting parallelism.

The results show that minimal polling outperforms call-
return polling in nearly all cases. Sometimes by as much as a
factor of four, but by a factor closer to 1.7 on average. The
largest differences occur for fine grain recursive programs
(e.g. tak and fib) and programs with a profusion of data

abstraction procedures (e.g. conform). The performance of
balanced polling is rather poor for small values of Las, two
to three times the overhead of minimal polling when Lymar =
10. However, balanced polling gives performance close to
minimal polling when Lar is high. With Ligae = 90 the
overhead ranges from 5% to 25%. The highest overheads
are for fine grain recursive programs. Overall, the average
overhead for balanced polling is about 15% for values of
Limasr higher than 50.
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