
Polling E�ciently on Stock HardwareMarc FeeleyD�epartement d'Informatique et Recherche Op�erationnelleUniversit�e de Montr�ealC.P. 6128, succ. \A", Montr�eal, Canada H3C 3J7feeley@iro.umontreal.caAbstractTwo strategies for supporting asynchronous interrupts are:the use of the processor's hardware interrupt system and theuse of polling. The advantages of polling include: portabil-ity, simplicity, and low cost for handling interrupts. Unfor-tunately, polling has an overhead for the explicit interruptchecks inserted in the code. This paper describes balancedpolling , a method for placing the interrupt checks whichhas a low overhead and also guarantees an upper bound oninterrupt latency. This method has been used by Gambit(an optimizing native code compiler for Scheme) to supporta number of features including multiprocessing and stackoverow detection. The overhead of balanced polling is lessthan for call-return polling which places interrupt checks atevery procedure entry and exit. The overhead of call-returnpolling is typically 70% larger (but sometimes over 400%larger) than the overhead of balanced polling.1 IntroductionIn this paper, the term interrupt is de�ned as an exceptionalevent for which some special processing is needed (e.g. aheap overow). The handling of an interrupt is done inthree phases. The interrupt is raised when the event occurs.At some point after this the processor detects the interruptand then handles it by invoking the appropriate interrupthandler. There are two types of interrupts. Synchronousinterrupts can only be raised at well de�ned locations in thecode (e.g. an arithmetic overow or invalid pointer derefer-ence). Asynchronous interrupts can be raised at any loca-tion (e.g. a timer or user interrupt).1.1 Detecting InterruptsThere are essentially two ways in which interrupts can bedetected. They can be detected automatically by the pro-cessor's hardware or by explicit checks inserted in the code.These will be called implicit and explicit detection respec-tively. On stock hardware, the following interrupts are of-ten detected implicitly: arithmetic overows, address align-ment errors, address translation errors, and user and timerinterrupts. The following interrupts are usually detected

explicitly: stack and heap overows, read and write barri-ers (for incremental [3] and generational [10] garbage collec-tion), and type errors and range errors. This classi�cationdepends on the capabilities of the hardware and other im-plementation constraints. In principle all interrupts couldbe detected explicitly and it is mainly for performance rea-sons (but sometimes for simplicity) that they are detectedimplicitly. Stack overows can for example be detected im-plicitly by placing an invalid guard page at the stack's limit.This however may be expensive or overly burdensome to dofor a multitasking system which must maintain several smallstacks.There are other reasons why explicit detection may bepreferable to implicit detection. Implicit detection is lessportable because the trapping mechanism varies from pro-cessor to processor. Portability can be increased somewhatby relying on standard libraries such as the UNIX signal.hroutines but this increases the cost of each interrupt and itonly gives access to the most common types of interrupts.Another problem with implicit detection on stock hard-ware is the high cost of handling an interrupt. Currenttrap architectures enter kernel mode to process the inter-rupt. This requires that the processor's state (all of theregisters or some signi�cant subset) be saved and later re-stored. If the trap handler is in user space, two additionaltransitions between user and kernel space are needed. Ex-plicit detection has a much lower cost. The main reasonsare that control remains in user space, the call to the in-terrupt handler can be open coded and/or specialized, anda minimum number of registers have to be saved (since thecompiler knows which registers are live and possibly whichare clobbered by the handler). Unfortunately, the cost ofdetecting the interrupt (Tdetect) applies to all potential in-terrupt points. Explicit detection will only be more e�cientthan implicit detection if interrupts are su�ciently frequentto make the following inequality trueTdetect < p(Timplicit � Texplicit)where p is the probability that an interrupt is detected, andTimplicit and Texplicit are respectively the times to handlethe interrupt in each approach. As a concrete example forsynchronous interrupts, assume that an arithmetic opera-tion has to be checked for overow and that a single \branchon overow instruction" can detect this (i.e. Tdetect = 1).Assuming Timplicit � Texplicit is 100 instructions1 , explicit1 Johnson [8] reports a cost of 106 instructions on the SPARCto take an overow trap on the TADDccTV instruction. This cost

detection will be preferable if p > :01, that is if there is anoverow at least once out of every 100 times the arithmeticoperation is executed.1.2 Asynchronous InterruptsThe handling of asynchronous interrupts is an issue in manylanguages and systems but this paper looks at the issues inthe context of a Lisp system because Lisp stresses manyproblems (e.g. garbage collection and small functions). Themethods described here are however applicable to other lan-guages.Because they can be raised at any point in the program,asynchronous interrupts pose special problems.1.2.1 Critical SectionsTo support garbage collection, Lisp systems must maintaina memory state that can be parsed by the garbage collec-tor. However, the system's state can temporarily becomeinconsistent in the middle of some code sequences. Storinga 64 bit pointer into x might for example translate into asequence of two 32 bit store instructions. Since immediatelyafter the �rst store x does not contain a valid pointer, thesystem must insure that x is not accessed, either explicitlyor by the garbage collector, before the second store is per-formed. Other cases where the system potentially entersan inconsistent state include: updating system structures,saving Lisp objects in locations not scanned by the garbagecollector, and saving non Lisp objects in locations scannedby the garbage collector (e.g. when clearing or extracting apointer's type tag, and \unboxing" numbers). Interrupts area problem because they can not be processed in an inconsis-tent state if the interrupt handler might call the garbage col-lector or otherwise access the part of the state which is incon-sistent. This is a de�nite possibility if the interrupt handlersare written in unrestricted Lisp or if the system supportsuser interrupts (for entering a break loop) or preemption in-terrupts (for multitasking). Either the system is carefullydesigned to never enter inconsistent states (which precludesa number of compiler optimizations), or the code sequencesare protected within uninterruptible critical sections2 .When interrupts are detected implicitly, a simple imple-mention of critical sections is to inhibit interrupts for theduration of the critical section. This can be done by sur-rounding it with a pair of instructions to disable and enablethe interrupts. Interrupts raised during a critical section willget handled when the interrupts are reenabled at the end ofthe critical section. This approach su�ers from a high over-head for the added disable/enable pairs but the overheadcan be reduced somewhat by using a single pair around agrouping of critical sections.Techniques that completely avoid the overhead of dis-able/enable pairs do exist. Maclisp and Lucid Common Lispkeep the location of all critical sections in a table. Whenan interrupt is raised, the address of the interrupted in-struction is looked up in the table. If the interrupt wasraised inside a critical section, the rest of the critical sectionis �rst executed and then the interrupt handler is called.does not account for the processing of the overow, so Timplicit �Texplicit will be roughly 100 instructions.2 Some systems support user speci�ed critical sections. However,only critical sections that span a few instructions are considered heresince this functionality is su�cient to support user speci�ed criticalsections.

Maclisp achieves this by single stepping the code to theend of the critical section (by the use of the PDP-10's XCTinstruction)3 . Lucid Common Lisp uses this strategy for theinternal subroutines called by compiled code [14]. T [9] has aslightly di�erent zero cost strategy that does not use tables.When an interrupt is raised, the continuation is modi�ed sothat soon after the critical section is �nished the interrupthandler is called. Another strategy [1], designed speci�callyfor the problem of allocation in a multitasking system, alsosingle steps the interrupted code but not on every interrupt.Instead, it is the garbage collector which single steps eachtask if its program counter indicates that it is in the middleof an allocation.When interrupts are detected explicitly, critical sectionsare easy to implement. The compiler simply has to insurethat interrupt checks are only generated in \safe" places(i.e. outside critical sections).2 PollingThe biggest issue with explicit detection of asynchronousinterrupts is the placement of the interrupt checks. Placingthem after every instruction (outside critical sections) wouldclearly be too expensive. A more e�cient approach consistsof putting interrupt checks at speci�c places in the code sothat interrupts are checked, or polled , periodically.A few systems use polling for asynchronous interrupts(e.g. Gambit [5], MIT-Scheme [12], MultiScheme [11], Alle-gro Common Lisp, and SML/NJ [2]). Gambit is a Schemesystem with multiprocessing extensions taken from Multil-isp [7]. Asynchronous interrupts are used to distribute workamong the processors by dynamic partitioning. Idle pro-cessors send \work request" interrupts to other processorswhich must respond with a task to run or no task. Pollingwas chosen because of the high frequency of work requestinterrupts when programs use �ne grain parallelism and be-cause it is important to answer work requests quickly tominimize the idleness of the processors.In theory, the compiler could arbitrarily reduce the pollingoverhead (Opoll) by decreasing the proportion of interruptchecks executed with respect to the normal instructions exe-cuted by the program. If all instructions take unit time thenOpoll = Npoll =Ninstr , where Npoll is the number of inter-rupt checks executed and Ninstr is the number of normalinstructions executed. This strategy lowers the frequency ofinterrupt checking and consequently increases the averagelatency of interrupts (i.e. the time between the raising ofthe interrupt and the handling of the interrupt). Averagelatency (L) and overhead are inversely related byL = Npoll +NinstrNpoll = 1 + 1OpollHere latency is expressed in number of instructions. Toaccount for non-unit time instructions, latency can be ex-pressed in units of time (or number of machine cycles). Thisleads to the de�nitionsOpoll = TpollTinstr3 The actual mechanism used in MacLisp is even more general [13].It allows annotations on the critical sections that specify whetherinterrupts should: be ignored, be deferred to the end of the criticalsection, restart the critical section, or invoke a special handler.

L = Tpoll + TinstrNpollwhere Tpoll is the total time spent on interrupt checks andTinstr the time spent on normal instructions. If an interruptcheck takes k time units on average then L = k(1 + 1Opoll).To simplify the discussion, all instructions will be assumedto take unit time.3 The Problem of Procedure CallsAlthough polling seems simple enough to implement, thereis a complication. Normally, programs are not composedof a single stream of instructions. If this were the case thecompiler could simply count the instructions it emits andinsert an interrupt check after every so many instructions.Branches and procedure calls can alter the ow of control inunpredictable ways and so, it isn't clear how the compilercan achieve a constant number of instructions between in-terrupt checks. A reasonable compromise is to ask of thecompiler to emit interrupt checks such that a given latency(Lmax) is never exceeded.3.1 Code StructureBefore exploring the problem further, it is convenient tointroduce a formalism to describe the structure of a proce-dure's code. The code of a procedure will be represented bya graph of basic blocks of instructions. There are two spe-cial types of basic blocks: entry points and return points .A procedure has a single entry point and one return pointfor each procedure call in subproblem position.Branches are only allowed as the last instruction of a ba-sic block. Four types of branches exist: local branches (pos-sibly conditional) to other basic blocks of the same proce-dure, tail calls to procedures (i.e. reductions), non-tail callsto procedures (i.e. subproblems), and returns from proce-dures. Local branches and non-tail calls are not allowed toform cycles and thus they impose a DAG structure to thecode. Following Scheme's convention, it is assumed thatloops are always expressed with tail calls.Note that subproblem and reduction calls always jumpto entry points and that procedure returns always jump toreturn points. These restrictions are important to rememberbecause they simplify the analysis of the control ow.Figure 1 gives the graph for the procedure for-eachwhich contains all four types of branches. Returns and tailcalls have been represented with dotted lines because theydo not correspond to DAG edges. Solid lines are used forsubproblem calls to highlight the fact that, just like localbranches, it is known where control continues after the pro-cedure returns (if it returns at all). The generality of theDAG is only needed to express the sharing of code. For themoment, it is su�cient to make the simplifying assumptionthat the DAG has been converted into a tree by duplicat-ing each shared branch. The handling of shared code isdescribed in Section 6.A necessary condition for any polling strategy is thatan inline sequence of more than Lmax instructions is nevergenerated without an intervening interrupt check. The com-piler can exploit the code structure for this purpose. A lo-cally connected section is any subset of the basic blocks thatis connected by local branches only (for example, the threebasic blocks at the top of Figure 1 or the bottom one). Forany instruction I in a locally connected section, it is easy

(define (for-each f l)(if (null? l)#f(begin(f (car l))(for-each f (cdr l)))))��/ SSw�?for-each
?............#f (car l)(cdr l)(null? l)fFigure 1: The for-eachprocedure and its correspondingcode graph.to determine what instructions are on the path to I fromthe section's root. These instructions are exactly those thatare executed at runtime before I. Thus, for any instructionin a locally connected section, the compiler can tell how farback the last interrupt check occured (assuming there is oneon the same path from that section's root). The numberof instructions that seperate an instruction from the pre-vious interrupt check is called the instruction's delta . Forinstructions that are not preceded by an interrupt check inthe same section, the de�nition of delta will vary accordingto the polling strategy. When the delta reaches Lmax , aninterrupt check is inserted by the compiler before the in-struction. If this is in the middle of a critical section, thecompiler must move the interrupt check to the end (or be-ginning) of the critical section.3.2 Call-Return PollingPolling strategies di�er in how the transition between lo-cally connected sections is handled. Call-return polling is asimple strategy that consists of putting an interrupt checkas the very �rst instruction of each section's root. Since theroot of a section is either the entry point of the procedureor the return point of a subproblem call, this corresponds topolling on procedure call and return.At �rst glance, polling on return does not seem neces-sary since a procedure is bound to get called at some point.However, this would mean that there is no upper bound onthe interrupt latency because it is possible to build a con-tinuation that does not call any procedure for an arbitrarilylong time. For example, the following procedure does notcall any procedure during the unwinding of the recursion.(define (length-even? lst)(if (and (pair? lst) (length-even? (cdr lst)))#f#t))

(define (make-person name age gender)(vector name age gender))(define (person-name x) (vector-ref x 0))(define (person-age x) (vector-ref x 1))(define (person-gender x) (vector-ref x 2))(define (sum vect l h) ; sum vector from l to h(if (= l h)(vector-ref vect l)(let* ((mid (quotient (+ l h) 2))(lo (sum vect l mid))(hi (sum vect (+ mid 1) h)))(+ lo hi))))Figure 2: Two instances of short lived procedures.There are a few variations of call-return polling. The in-terrupt check at the return point can be removed if checksare put on all return branches. Similarly, the interrupt checkat the entry point can be replaced by checks on branches toprocedures (both tail calls and non-tail calls). The four pos-sible variations give equivalent dynamic behavior (i.e. samenumber of interrupt checks executed) but one may be prefer-able to the others if it yields more compact code. This de-pends on the particular code generation techniques used bythe compiler and the programs being compiled. Compact-ness of code is not a big issue here so it won't be consideredfurther.4 Short Lived ProceduresUnfortunately, call-return polling has poor performance incertain circumstances. The worst case occurs when proce-dures are short lived, that is they return shortly after beingcalled. At least two interrupt checks are performed per pro-cedure call in subproblem position (once on entry and onceon exit) and one if it is a reduction. This is a signi�cantoverhead if the procedure contains few instructions. In lan-guages that promote the use of large procedures this wouldnot be a serious problem, but in Lisp it is common to struc-ture programs into several short procedures.Two instances of this style, typi�ed by the procedures inFigure 2, are the implementation of data abstractions anddivide and conquer algorithms. In binary divide and conqueralgorithms, at least half of the recursive calls correspond tothe base case. If the algorithm is �ne grained, such as theprocedure sum, the overhead of polling will be noticeablebecause all the leaf calls are short lived.The problem with call-return polling is that it doesn'ttake the structure of the program into account. If it isknown that a procedure P is always called when delta isequal to n, then the compiler could infer that upon entryto P , delta is n. This would introduce a \grace period" ofLmax � n instructions at P 's entry point during which in-terrupt checks are not needed. A similar statement holdsfor return points. Note that this yields a perfect placementof interrupt checks if it is carried out at all procedure en-try and return points. Interrupt checks would occur exactlyevery Lmax instructions.A more realistic solution is needed to handle the casewhere procedures and return points are called in di�erentcontexts. A simple extension to the previous method is touse m instead of n, where m is the maximum delta of all callsites to P (and similarly for return points). This \maximal

z. R. . 	.. 9��3Interrupt checks 6? 6?BBBBM LmaxP mFigure 3: The maximal delta method.delta" method is illustrated in Figure 3 where dark rectan-gles are used to represent interrupt check instructions. Thisis not an ideal solution for two reasons. First, it forces allcontrol paths through P to have an early interrupt check(in P) if just one call site to P has a high delta. It wouldbe much better if each procedure call \paid it's own way",meaning that interrupt checks should be put on the call siteswith high deltas. Not only would this improve P 's grace pe-riod, it would put the interrupt check where it causes theleast overhead (because a high delta is a sign of a high num-ber of normal instructions)4 .A second shortcoming of this solution is that the sourceand destination of procedure calls has to be known at com-pile time. This information is not generally available. Onecould reasonably argue that with the use of programmerannotations and/or control ow analysis the destination ofmost procedure calls could be inferred by the compiler fortypical programs. However, the destination of returns isharder to determine because it would require a full dataowanalysis of the program and in general a procedure has anumber of possible points to return to. The existence ofhigher order functions is another source of di�culty.5 Balanced PollingThis section presents a general solution that does not relyon any knowledge of the control ow of the program. Themethod could be extended with appropriate rules, such asmaximal delta, to better handle the cases where control owinformation is available, but this is not considered here.The idea is to de�ne polling state invariants for procedureentry and exit. The polling strategy expects these invariantsto be true at the entry and return points of all proceduresand consequently must arrange for them to be true at pro-cedure calls and returns.Speci�cally, the invariant at procedure entry is that in-terrupts have been checked at most Lmax � E instructionsago. Here E is the grace period at entry points and is con-stant for all procedures. In other words, delta is de�nedto be Lmax � E at entry points. Delta now represents anupper bound to the distance from the last interrupt check.The invariant at procedure return is more complex. Eitherdelta is less than E or, the path from the entry point to thereturn instruction is at most E instructions. These invari-ants are shown in Figure 4. Procedure P has two branchesthat illustrate the two cases for procedure return. Note thata procedure can be exited by a procedure return as well as4This assumes that all paths to P are equiprobable.

.. procedurereturnprocedurereturn
��/ SSw6?6?

6? U....... �
Lmax � E

?..................?....??
P call sitesat most Eat most E

entry pointinstructionsinstructionsat most to P
instructionsFigure 4: Procedure return invariants in balancedpolling.a reduction call. For now, reduction calls will be ignored tosimplify the discussion.5.1 Subproblem CallsThese invariants have important implications. To beginwith, short lived procedures are handled well because thereis no need to check interrupts on any path that returnsshortly without a call to another procedure (i.e. with lessthan E non-call instructions). This corresponds to the right-most path in Figure 4.Moreover it allows the delta at return points to be de�nedas E plus the delta for the corresponding call point. This canbe con�rmed by considering the two possible cases. Assumeprocedure P1 does a subproblem call to procedure P2 whicheventually returns back to P1 via a procedure return in P2:P1 subproblemcall � P2 procedurereturn� P1Either the last interrupt check was in P2, so by de�nitiondelta at the return point (in P1) is less than E. Alterna-tively, P2 was short lived and didn't check interrupts, sothere are at most E instructions that seperate the call site(in P1) from the return point (in P1). As far as polling isconcerned, a procedure called in subproblem position can beviewed as an interrupt check free sequence of E instructions.The compilation rule here is that if delta at a call point ex-ceeds Lmax � E then an interrupt check is inserted at thecall.This rule means that up to bLmax =Ec subproblem pro-cedure calls can be done in sequence without any interrupt

checking. To see why, consider the scenario where the �rstcall is immediately preceded by an interrupt check. At thereturn point, delta is equal to E. If the instructions for argu-ment setup and branch are ignored, delta at the nth returnpoint is n�E. Only when this reaches Lmax is an interruptcheck needed.5.2 Reduction CallsAs described, the polling strategy does not handle reductionprocedure calls (tail calls) very gracefully. The case to con-sider here is when a subproblem call is to a procedure whichexits via a series of tail calls, �nally ending in a procedurereturn:P1 subproblemcall � P2 reductioncall � P3 � � � Pn�1 reductioncall � Pn procedurereturn� P1An interrupt check must always be put at a reduction callpoint to guard against the case where the called procedurereturns shortly without checking interrupts (as in Pn�1 call-ing Pn). Note that the return point in P1 can have a deltaas low as E. Note also that Pn can execute as many as Einterrupt check free instructions before returning to the re-turn point in P1. Thus, it is not valid for Pn�1 to jump toPn with a delta greater than 0 because this might violatethe polling invariant at the return point in P1.The treatment of reductions can be improved by intro-ducing a new parameter (R) and consequently adjusting thepolling invariants to support it. R is de�ned as the largestadmissible delta at a reduction call. Thus, an interruptcheck is put on any reduction call whose delta would other-wise be greater than R. The same polling behavior as beforeis obtained by setting R to 0. The polling constraints forreduction calls can be relaxed by increasing the value of R.R is at most Lmax � E because a reduction call might beto a procedure that doesn't check interrupts for as many asE instructions.A new invariant for return points has to be formulatedto accomodate R. The delta at return points must now beat least E +R to account for the case explained previously.That is, on return to P1 there could be up to E instructionsin Pn plus as much as R instructions at the tail of Pn�1 sincethe last interrupt check. When the compiler encounters asubproblem procedure call it sets the delta at the returnpoints to E plus the largest value between R and the deltafor the corresponding call point. Of course, if this value isgreater than Lmax an interrupt check is �rst put at the callsite and the delta at the return point is set to E + R. Theintroduction ofR also makes it possible to relax the invariantfor procedure returns. Since the delta for return points isat least E +R, a procedure return's delta as high as E +Rcan be tolerated without requiring an interrupt check. Withthese new invariants, there can be up to b(Lmax � R)=Ecsubproblem procedure calls in sequence without interruptchecks. This polling strategy will be called balanced polling .A summary of the compilation rules for balanced polling isgiven in Figure 5.The two constants E and R must be chosen carefullyto achieve good performance. Small values for E and Rincrease the number of interrupt checks for short lived pro-cedures and tail recursive procedures respectively. On theother hand, high values increase the number of interruptchecks in code with many subproblem procedure calls (e.g. re-cursive procedures). Choosing E = R = bLmax =kc is a

Location ActionEntry point � Lmax � ENon-branch if (� � Lmax � 1) theninstruction add interrupt check� 0� �+ 1 (for next instruction)Subproblem if (� � Lmax � E) thencall add interrupt check� 0� E +max(R;�) (for return point)Reduction if (� � R) thencall add interrupt checkProcedure if (� � E +R) and there are interruptsreturn on path from entry point thenadd interrupt checkFigure 5: Compilation rules for balanced polling.reasonable compromise and a value of k = 6 gives good per-formance in practice. This suggests that there are typicallyless than 6 subproblem procedure calls per procedure in thebenchmark programs (see Section 8).5.3 Minimal PollingThe choice of Lmax is also an issue. A high Lmax willgive a low polling overhead. However, it is important torealize that there is a limit to how low the polling overheadcan be made by increasing the value of Lmax . This is dueto the conservative nature of the strategy. Whatever thevalues of Lmax , E and R are, at least one interrupt check isgenerated between the entry point and the �rst procedurecall. Delta is Lmax � E on entry to a procedure, so clearlythe �rst call (reduction or subproblem) must be preceded byan interrupt check. Similarly, there is at least one interruptcheck between any return point and the exit of the procedure(return or reduction call) because delta at any return pointis at least E + R. These two types of paths are the onlyones that are necessarily part of any unbounded length path.Thus, it is su�cient to have one interrupt check on eachof these paths to guarantee that all possible control pathshave a bounded number of instructions between interruptchecks. This minimal polling strategy is useful because itsoverhead is a lower bound that can be used to evaluate othertechniques.An example of minimal polling for the procedure sumand the tail recursive variant tr-sum is presented in Fig-ure 6. For the call (sum v l h) there are exactly 2� (h� l)interrupt checks executed or nearly one interrupt check perprocedure call (assuming h � l + 1 is a power of two). Bycomparison, checking interrupts at procedure entry and exitwould require two interrupt checks per procedure call. How-ever, for the tail recursive procedure tr-sum both methodsare essentially equivalent with one interrupt check per iter-ation.It is interesting to note that balanced polling is more

vect l) (+ l h) 2)(quotient���/ SSSw
?
..................... ?....

(vector-refsum ??
(= l h)sum

(+ mid 1)(+ lo hi)sum
���/ SSSw?......... (- i 1).�(vector-ref(+ s vect i))str-sum (< i 0)

(define (tr-sum vect s i)(if (< i 0)s(tr-sumvect(+ s (vector-ref vect i))(- i 1))))Figure 6: Minimal polling for the recursive proceduresum and a tail recursive variant.

general than minimal polling and call-return polling. Thesecan be emulated by judiciously choosing E, R and Lmax .Minimal polling is obtained when 0 � E = R � Lmax(i.e. E and R are arbitrarily large and Lmax is arbitrar-ily larger). An interrupt check is put at the �rst call andanother one is put at the return or reduction call that fol-lows the last return point. Call-return polling occurs when0 = E � R = Lmax . This places interrupt checks at allentry points and return points.6 Handling Join PointsIt has been assumed that the code of procedures is in theform of a tree. However, the compilation of conditionals(i.e. and, or, if and cond) in subproblem position introducesjoin points that give a DAG structure to the code. Certainoptimization techniques, such as common code elimination,can also produce join points to express the sharing of iden-tical code branches. Join points can be handled with themaximal delta method. That is, the delta at the join pointis the maximum delta of all branches to the join point.7 Polling in GambitPolling is a general mechanism that can serve many pur-poses. Gambit is a Lisp system for shared memory multi-processors. Gambit uses polling for� Stack overow detection� Preemption interruption (for multitasking)� Inter-processor communication (for work distribution)� Inter-task communication (for killing tasks)� Barrier synchronization (e.g. for synchronizing all pro-cessors for a garbage collection and to copy objects andload code to the private memory of every processor)A special technique is used to check all these cases witha single test. The interrupt ag is really a pointer that isnormally set to point to the end of the area available forthe stack. Note that because stack overows are detectedasynchronously, the stack extends a little further than thislimit. An interrupt check consists of comparing the agto the current stack pointer, and to jumping to an out ofline handler when the stack pointer exceeds the limit. Aprocessor can be interrupted by setting the ag to a valuethat forces this situation (e.g. 0). The interrupt handler thenuses some other ags to discriminate between the possiblesources of interrupt. SML/NJ [2] uses a similar approachbased on the heap allocation pointer.Although it can be done with a single test, the inter-rupt check may still be relatively expensive. Because allprocessors must have access to a processor's interrupt ag,it is located in shared memory (which can't be cached eas-ily). Increasing Lmax is not a viable solution because thepolling frequency can't be lowered beyond a certain point.To provide a �ner level of control, interrupts can be checkedintermittently. Polling instructions generated by the com-piler represent \virtual" interrupt check points and an ac-tual check of the interrupt ag occurs once every n virtualchecks. This is easily implemented by a private counter thatis decremented at every virtual check. When it reaches zeroit is reset to n and the interrupt check is performed. Theaverage cost of an interrupt check will thus be the cost of

updating and checking the private counter plus 1=nth thecost of checking the interrupt ag.An interesting optimization occurs here. Balanced pollinghas a tendency to put the interrupt checks at branch points.An interrupt check itself involves a branch instruction so inmany cases it is possible to combine the two branches intoa single one. Moreover, several machines have a combined\decrement and branch" instruction that helps reduce thecost even further. All these ideas are implemented in Gam-bit. Below is an example showing the M68020 assembly codegenerated by Gambit for the tail-recursive procedure last.The boxed part is the interrupt check sequence (note thatn = 10 and that register a5 always contains a pointer to thestack limit pointer).(define (last lst)(let ((rest (cdr lst)))(if (pair? rest)(last rest)(car lst))))L1: ; entry: d1=lst & a0=ret adrmovl d1,a1 ; rest <- (cdr lst)movl a1@-,d2btst d2,d7 ; (pair? rest)bne L2movl d2,d1 ; lst <- restdbra d5,L1 ; decrement and test countermoveq #9,d5 ; reset countercmpl a5@,sp ; is sp beyond the limit?bcc L1 ; no interrupt if sp>=limitjsr handler ; call interrupt handlerbra L1 ; reduction call to lastL2:movl d1,a1 ; result <- (car lst)movl a1@,d1jmp a0@ ; return8 ResultsTo have a better idea of the polling overhead that can beexpected from these polling methods, it is important to mea-sure the overhead on actual programs. Two situations areespecially interesting to evaluate: the overhead on typicalprograms and on pathological programs that are meant toexhibit the best and worst performance.Several programs and polling methods were tested. Theprograms were compiled by Gambit in four di�erent ways:with no interrupt checks, with minimal polling, with call-return polling and balanced polling. For balanced polling,Lmax was set to values from 10 to 90 and E and R wereset at bLmax =6c. A value of n = 10 was used for pollingintermittently. The average runtime on ten runs was takenfor each situation. The overhead of minimal polling overthe program compiled with no interrupt checks is reportedin the �rst column of Table 1. The overhead for the otherpolling methods is expressed relative to the overhead of min-imal polling. Thus a relative overhead of 2 means that theoverhead is twice that of minimal polling.The program tight, shown below, was designed to ex-hibit worst-case behavior.(define (tight n)(if (> n 0)(tight (- n 1))))

Minimalpolling Balanced pollingOpoll Call-returnpolling Rel. ov. when E = R = bLmax =6c and Lmax isProgram (%) Rel. ov. 10 20 30 40 50 60 70 80 90tight 83.9 1.0 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0unfolded 6.1 0.9 10.8 6.5 4.2 3.5 3.7 3.9 2.3 2.3 2.3boyer 21.5 1.4 1.7 1.1 1.0 1.0 1.1 1.0 0.9 0.9 0.9browse 14.7 1.1 1.6 1.1 0.8 1.0 1.7 1.2 1.0 1.0 0.9cpstak 10.9 1.2 1.9 1.5 1.2 1.0 1.1 1.0 1.0 1.0 1.1dderiv 9.0 1.6 2.1 1.4 1.6 1.2 1.0 1.3 1.3 1.2 1.3deriv 8.1 1.4 1.8 1.4 1.8 1.1 0.9 1.0 1.0 1.1 1.2destruct 21.3 1.1 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0div 14.1 1.0 1.3 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0puzzle 14.5 0.9 2.1 1.7 1.2 1.0 1.0 1.0 0.9 0.9 0.9tak 8.7 4.6 3.9 1.4 1.8 1.2 1.0 1.0 1.0 1.0 1.0takl 29.3 0.9 1.5 1.0 1.1 1.0 0.9 0.9 0.9 0.9 0.9traverse 16.9 1.5 2.5 1.3 0.9 0.9 0.9 0.9 0.9 0.9 0.9triangle 3.9 3.7 6.0 6.0 3.2 3.8 2.4 2.1 2.3 1.0 2.0compiler 14.4 1.8 2.3 1.3 1.1 1.0 1.0 1.0 1.1 1.0 1.0conform 10.5 2.5 2.8 1.7 1.3 1.1 1.2 1.4 1.3 1.4 1.2earley 6.4 1.5 2.3 1.6 1.5 1.0 1.1 2.1 0.8 1.1 1.2peval 9.7 1.7 2.2 1.5 1.0 1.1 1.1 1.3 1.0 1.0 1.1abisort 11.4 1.3 2.5 1.7 1.4 1.4 1.0 1.1 1.1 1.0 1.0allpairs 4.4 1.0 3.9 2.6 2.0 2.0 2.0 0.5 1.8 1.0 1.0fib 18.7 2.1 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0mm 4.7 1.1 3.0 2.7 3.0 1.6 2.2 2.2 0.8 0.9 0.9mst 10.5 1.6 2.2 1.5 2.1 1.0 1.2 1.0 0.8 1.1 1.0qsort 12.3 1.3 1.9 1.3 1.0 1.3 1.0 1.0 1.0 1.0 1.0queens 15.2 1.4 3.0 1.5 1.5 1.5 1.4 1.3 1.3 1.2 1.3rantree 11.4 2.5 2.2 1.2 0.9 1.4 1.1 1.3 1.0 1.0 0.9scan 6.6 2.4 3.5 2.0 0.8 0.8 1.2 1.0 1.0 1.0 1.0sum 11.8 1.8 2.5 1.4 0.7 0.5 0.9 1.0 0.8 0.9 0.8tridiag 1.6 2.7 7.9 4.5 4.3 4.2 3.4 3.7 3.9 3.0 3.6Table 1: Overhead of polling methods on benchmark programs.

It is a tight loop that doesn't do anything except updatea loop counter. There are only two instructions executedon every iteration: an increment and a conditional branch.Interrupt checks will clearly add a high overhead to this.For most polling methods the overhead is about 80%. Inthe case of balanced polling with Lmax = 10 the overheadis roughly twice that because two interrupt checks get addedto every loop.The program unfolded is the same loop as tight butunfolded 80 times. Thus, it is a long inline sequence of80 decrements followed by one conditional branch instruc-tion. The polling methods do well on this program (about6% for minimal and call-return polling) because procedurecalls are relatively infrequent and it is easy to handle theinline sequence of instructions. As expected for balancedpolling, increasing Lmax decreased the overhead, down toabout 14%. Lmax would have to be greater than 90 to re-duce the overhead to that of minimal polling (at Lmax = 90there are two interrupt checks per loop).The other programs are split in three groups. The �rstgroup contains programs from the Gabriel benchmark suite[6]. The second group contains more realistic applicationsthat have not been designed with benchmarking in mind.They are fairly sizeable with at least 500 lines of code (15,000for compiler). The last group contains parallel programstaken from [4]. These programs are written in Multilispbut were compiled as sequential programs (i.e. with FUTUREand TOUCH operations removed) to factor out the overheadof supporting parallelism.The results show that minimal polling outperforms call-return polling in nearly all cases. Sometimes by as much as afactor of four, but by a factor closer to 1.7 on average. Thelargest di�erences occur for �ne grain recursive programs(e.g. tak and fib) and programs with a profusion of dataabstraction procedures (e.g. conform). The performance ofbalanced polling is rather poor for small values of Lmax , twoto three times the overhead of minimal polling when Lmax =10. However, balanced polling gives performance close tominimal polling when Lmax is high. With Lmax = 90 theoverhead ranges from 5% to 25%. The highest overheadsare for �ne grain recursive programs. Overall, the averageoverhead for balanced polling is about 15% for values ofLmax higher than 50.AcknowledgementsI wish to thank the following people for their help in un-derstanding the interrupt handling mechanism of particularsystems: Guy L. Steele Jr. and Jonathan Rees for Maclisp;Jon L. White for Maclisp and Lucid Common Lisp; DavidKranz for T; and Guillermo J. Rozas for MIT-Scheme. Ialso wish to thank the reviewers for their help.References[1] A. W. Appel. Allocation without locking. SoftwarePractice and Experience, 19(7):703{705, July 1989.[2] A.W. Appel. Compiling with continuations. CambridgeUniversity Press, 1992.[3] H. Baker. List processing in real time on a serial com-puter. Communications of the ACM, 21(4):280{294,April 1978.

[4] M. Feeley. An E�cient and General Implementationof Futures on Large Scale Shared Memory Multiproces-sors. PhD thesis, Brandeis University Department ofComputer Science, 1993.[5] M. Feeley and J. S. Miller. A parallel virtual machinefor e�cient Scheme compilation. In Proceedings of the1990 ACM Conference on Lisp and Functional Pro-gramming, Nice, France, June 1990.[6] R. P. Gabriel. Performance and Evaluation of Lisp Sys-tems. Research Reports and Notes, Computer SystemsSeries. MIT Press, Cambridge, MA, 1985.[7] R. Halstead. Multilisp: A language for concurrent sym-bolic computation. In ACM Trans. on Prog. Languagesand Systems, pages 501{538, October 1985.[8] D. Johnson. Trap architectures for Lisp systems. InProceedings of the 1990 ACM Conference on Lisp andFunctional Programming, Nice, France, June 1990.[9] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, andN. Adams. Orbit: An optimizing compiler for Scheme.In ACM SIGPLAN '86 Symposium on Compiler Con-struction, pages 219{233, June 1986.[10] H. Lieberman and C. Hewitt. A real-time garbage col-lector based on the lifetimes of objects. Communica-tions of the ACM, 26(6):419{429, June 1983.[11] J. S. Miller. Implementing a Scheme-based parallel pro-cessing system. International Journal of Parallel Pro-cessing, 17(5), October 1988.[12] G. J. Rozas. Liar, an Algol-like compiler for Scheme.S. b. thesis, Department of Electrical Engineering andComputer Science, Massachusetts Institute of Technol-ogy, January 1984.[13] G. L. Steele Jr. Private Communication, December1992.[14] J. L. White. Private Communication, December 1992.

