Using closures for code generation

Marc Feeley
Guy Lapalme

Departement d’'informatique et de recherche operationnelle (1.R.O.)
Université de Montreal
PO.B. 6128, Station A
Montreal, Quéebec, H3C 3J7 (Canada)

ABSTRACT

This paper describes amepproach to compiling which is based on thkéeasie
use of closuresin this method, a compiled expression is embodied by a closure whose
application performs thevdluation of the gien expression. Br each primitre mnstruct
contained in the expression to compile, a closure is generated. As a whole, the compiled
expression consists of a neivk of these closures. In aay 'code generation’ is
replaced by 'closure generation’. This method, combined with an efficient closure imple-
mentation, produces compiled code which compameadbly (in execution time) with
its interpreted counterpartt can also be used to implement compilers for embedded lan-
guages and as it has been implemented in Scheme, it yields a straightforward metacircu-
lar compiler for Scheme.

Keywords: CodeGeneration, Closure, Compiling, Interpretation, Lisp, Scheme

1. Introduction

A computer language can be implemented i tways: with a compiler or an interpretétach
approach has its own advantages: usually an interpreter is easier to implevesiiettgr debugging tools
and is more portable; a compiler can mgkograms run much morefigiently. This paper describes an
original compiling technique which offers the adtages of an interpreter with the speed of compiled code.
Code generation relies only on closure generation. Scheme [1], which is a dialect of Lisp, is used as the
source and implementation language. As closures are already implemented in Scham#juswossible
to write an efficient and portable Scheme compiler in Scheme. The technique is not restricted to Scheme
and can also be used for other languages as long as it is possible to create struoteles® égeiosures.

We first give a #iort overview of Scheme and closures; we then describs bBach primitive form of
Scheme can be compiled complete example and imprements @er the basic technique are theneji.
Finally, we eplain hav this technique can be applied to other languages and we analyse its performance.

2. Schemend closures
In mary lexically scoped dialects of Lisp, e.g. Scheme [28] [1] [2], T [24] [25] and Common Lisp
[30], procedures are first class objects. yTae defined by lambda-expressions of the form:
(larbda formal-argument-list body)

The formal argument list declares ttaiables that will contain the actual argument values when the proce-
dure is later called and the body indicates trassion that will bewaluated to compute the resulthe
evduation of a IambdaaepressionJr returns a procedure thatemembers’ the current state of the

" Jambda-&pression ealuation differs from the wocation of the procedure it produces. In Common Lisp, lambda-
expression ealuation is written agfunction (lambda ...)).

ervironment (i.e. the set of current variable bindings). This operation is called clodergeak of the
resulting procedure as being a closure. In fact, we shall consider them to be synonymous in this paper.

Closures are a useful programming featuféey can be used toxpress data abstractions [1], to
implement actors [27] [32] and also to provide classes and data protection [34].ofkhefvtkinson and
Morrison [6] discusses their usefulness in implementing modules, separate compilation and database vie
Felleisen and Friedman [11] shdow to incorporate modules in Scheme via syntactiemsions which
malke use of closures. Closures are used here to represent compiled code.

The possibility of naming computed values in order to ease their manipulation is a fundamental
aspect of programming languages. This feature igighed by \ariables. Avariable designates a location
where a value can be stored. Ariables value can be accessed through the use ofahable reference
and assignment operations. Certain constructs are used to creatarables and ge them names.
These are known as the binding construdts.Scheme, the most fundamental binding construct is the
lambda special form (i.e. lambdaxpression). Allother binding constructs, such as tle¢, letrec, define
and do special forms, can be explained in terms of lambgaessions. Whout ary loss of generality
we shall consider that the only binding construgilable is the lambda-expression. The formauanent
list indicates the names of the variables that are created. In accordance with lexical scoping rules, the only
region of the program where these nanagable associations arefeftive is the body of the lambda-
expression that declares therAny use of a name, in a variable access, refers to dhable associated
with this name in the innermost lambda-expression that binds the name and contains the use. dbiistinct v
ables can hs& the same nameHowever, & most one of these variables is accessible atvengime
according to the previous rule.

The main operations permitted on closures are creation gochiion. Creations obtained by the
evduation of a definition, which is a lambdapgession. Theesult of the ealuation is a closure which
remembers the current state of theiemment. Lile aher objects, closures can be stored in variables and
data structures, passed aguanents to procedures, returned as the result of procedures|retocation is
obtained by thewaluation of a combination A combination is a list of the forrfoperator operandl ...)
whose first element is not theykvord of a special fornt. The aluation of the Bpressioroperator must
result in a closure. The result of theanation is the result of thevaluation of the body of the closuge’
definition in an environment consisting of the environment which wadentefhen the closure was cre-
ated augmented by wename-wariable associations. Note that the environment in which the cledmay
is evaluated has nothing to do with the environment in effect when the closurel®dn Thisis not the
case of dynamically scoped dialects of Lisp which, in a sense, allocate the fayorakat variables in
front of the environment in effect when the closure wsked.

3. Owerview of the compiler

The compiler is implemented as a one argument procedure rwamgde. It takes the list represen-
tation of a Scheme lambdapression and returns a procedure that implements then dambda-
expression in the global emonment. Br example, thevaluation of the folleving two expressions (at top-
level) result in equialent procedures:

(larbda (x) (+ x 1))
(compile ’(larbda (x) (+ x 1)))

The basic idea used in our compiling method is that for each penainstruct (of the source language)
contained in the expression to compile, a procedure (i.e. a closure) is generated. Each generated closure
has the property that when it is applied, it will perform tveuation of the corresponding part of the origi-

nal expression. Closureare used because, yhean retain (through the use of closed variables) #heeg

that are necessary to parameterize theirldetia For example, the closure generated for the constant con-
struct is parameterized by the value of the constant. Each closure is a procedure which accegpis one ar
ment, corresponding to the run-time environment in which the praratinstruct is ealuated.

" Invocation can also be performed by usingabply procedure gqrin Common Lisp, by the form
(funcall operator operandl ...).

In Scheme we ha the following primitve cnstructs: constant, variable reference and assignment,
conditional ®aluation, procedure application and procedure definition (i.e. lamkatassion). Othecon-
structs, such asegin, cond, and, or, let, letrec and others can bejressed with the primite mnstructs
[28] [29]. They are written as macros and are processed by the front-end of the compiler which is not dis-
cussed in this papefThus, we limit our discussion to these pringtionstructs.

The heart of the compiler is a procedure of orgument namedjen It performs the recurge
traversal of the expression to compile. The expression is classified according to the/@momstruct and
the corresponding code generation procedure is called. As statez] tilese procedures return a closure
that will perform the ealuation of the corresponding part of the origingbreession when it is appliedll
subepressions of the examined form which may need tovhleiaed are compiled recuvely by gen
This happens for the variable assignment, conditioraili@tion, procedure application and procedure defi-
nition constructs. The closures generated by the compilation of the subexpressions are passed to the code
generation procedure to parameterize the behaviour of the closure it generates. The compilation of an
expression has the effect of constructing a wekwof closures which is reminiscent of the code generated
for threaded languages [19] [21].

Not surprizingly the compiler has a structure very similar to an interprdeth receve data struc-
tures representing expressions, classify them and redyrsaverse the compound ones. The mairfedif
ence is that the interpretevaluates the expression as soon as it is recognized but the compiler generates
the code that will perform thesauation. In this latter case, thgahuation is done when the code is called.
The interpreter must classify the expression each time it needs valbated lut the compiler does that
only once at compile time. This fact explainsyexecuting compiled code is more efficient than interpret-
ing the source code. Morea, a ®mpiler can recognize at compile time special typesvatiations that
can be handled morefiefently. This is not really useful when interpreting code because usually more time
is spent recognizing a special case thanviedsfor its special handling.

We @nsider each primite onstruct of the source language to see what must be done to compile it.
The implementation of these functions depends in part on the representation of the runitonenents.
For the sak of dmplicity, we havechosen to represent the environment with an association list (of symbols
and values) which is used dila $ack. Later we will consider a more efficient approach avel e neces-
sary modifications to be done to the code generation procedures.

3.1. Constant

The following procedure is used to implement the constant construct whiiduslly is independent
of the environment:

(define (gen-cst a) (larbda (erv) a))

The application ofjen-cstto a specific value returns a procedure which, when it is later applied, will return
this value. For example:

(define codel (gen-cst 123))
(codel '()) = 123

3.2. \Variable reference:

Variable reference consists of fetching, from the curremir@mment, the value which is associated
with a particular ariable. Accessing variable consists of searching, via #esqprocedure, the &iron-
ment list for a pair whose symbol is the same as the symbol representing the variable toVaciedss.
reference is implemented by then-ref procedure, as follows:

(define (gen-ref a) (larbda (erv) (cdr (asgy a ew)))) .

The application ofjen-refto a specific symbol returns a procedure which, when it is later applied (to the
run-time environment), will return the value associated with the variable it represents.

3.3. \ariable assignment:

Variable assignment can be dealt with in a simikhfon. Thisconstruct is parameterized by the
symbol that represents the variable which is assigned to and also by the code (i.e. the closure) used to com-
pute the value to assign. Application of the closure that corresponds to the value to assign will be per
formed by the closure corresponding to the assignment constfartable assignment is implemented by
thegen-setprocedure, as follows:

(define (gen-set a b) (larbda (erv) (set-cdr! (asg a ew) (b env))))

The b agument of this procedure corresponds to the compiled form (i.e. the closure) which computes the
value to assign. Here is an example of variable reference and assignmermgaumsieflandgen-set

(define code2 (@en-set 'b (gen-cst 78)))
(define code3 (gen-ref ’'b))

(define erv "((a . 12) (b . 34) (c . 56)))
(code2 ew)

ev => ((a . 2) (b . 78) (c . 56))
(code3 ew) => 78 .

3.4. Conditionalevduation
The conditional eeluation construct corresponds to attwanchedf of the form:

(if condition consequent alternative)

This construct is parameterized by the code used to comput®ritidion, consequent and alternative.
Depending on the result of the application of the closure corresponding to the condition, the conditional
evduation construct will perform the application of the closure corresponding to the consequent or alterna-
tive. Thegen-tstprocedure is used to implement conditionalation, as follows:

(define (gen-tst ab c) (larbda (ernv) (if (a ew) (b env) (c aw))))

3.5. Procedure goplication
The procedure application construct corresponds to the form:

(operator operandl ...)

whereoperator is not the keyword of a special form. This construct is parameterized by the code used to
compute the operator and each of the operaBiage the number of operands is not fixed, welthosen

to implement this construct usingvesal procedures each corresponding to an application with a specific
number of operande. The compiler will select the correct one when it compiles an application. The fol-
lowing procedures implement procedure application:

(define (gen-ap0 a) (larbda (erv) ((a ew))))
(define (gen-apl ab) (larbda (ernv) ((a ew) (b env))))
(define (gen-ap2 a b c) (larbda (ernv) ((a ew) (b env) (c ew))))

3.6. Procedure definition
In Scheme, as in most other dialects of Lisp, lambda-expressions of the form
(larbda formal-argument-list body)
define procedures. Th&atuation of this construct returns a procedure that remembers’ the current state of
the enironment. Whenthis procedure is later applied, its body will bedeated in an erironment

T We a@n also use a single code generation procedure basgzblyrbut it adds another kind of procedure application
mechanism and we want to rely only on the primitionstructs (in order to ke a netacircular compiler).

consisting of the retained environment augmented by the argument bindings. This construct is parameter
ized by the code used teatuate the body of the procedure and the symbols that representagiatievof

the formal argument listEnvironment allocation is performed by adding symbaliue pairs to the front of

the environment list. Since the number of variables in the forrgahaent list is not fixed, this construct is
implemented by seral procedures each corresponding to a lambda-expression with a specific number of
amguments. Theompiler will select the correct one when it compiles a lambgaession. Théollowing
procedures implement procedure definition:

(define (gen-pr0 a) (larbda (erv)
(larbda () (a ev))))
(define (gen-prl a b) (larbda (erv)
(larbda (x) (a (cons (cons b x) env)))))
(define (gen-pr2 a b c) (larbda (env)
(larbda (x y) (a (cons (cons b x)
(cons (cons c y) env)))))

Thea agument of these procedures corresponds to the compiled form (i.e. the closure) which computes the
body of the proceduﬂé

4. Acomplete example
Consider the expression:

(define add1 (conpile ’(lanbda (x) (+ x 1))))

The evaluation of this expression compiles theeessionlambda (x) (+ x 1))and binds the resulting pro-
cedure to theariable add1l. The recursie raversal of this &pression by the compiler is egdient to the
following expanded form:

(define adl ((gen-prl (gen-ap2 (gen-ref '+) (gen-ref 'x) (gen-cst 1))
!X)
glo-env))

The value of the ariable*glo-env* corresponds to the association list representing the globiabement
(it should at least contain the definition of tlaigble+). Thecode generated by the compiler iswhan
Figure 1.

5. Discussiomf the method

Overall, the compiler described is of the same size and caitypés an equiglent interpreter This
can be seen in the programsapi in the appendices A and Bret programs compiled using this method
execute faster than when there interpreted.This point will be discussed in the "performance” section of
this paper The essential qualities of the interpretasweve, need not be lost. In particuladebugging
capabilities and profile generation can be obtained by adding the necessary code to the body of the gener
ated closuresA compiler switch can control the generation of thasealities thus providing the best of
both worlds. Thoughoperational and efficient, this method can be optimized to increase its performance.

Instead of using an association list to represent the run-time environment, a simple list of values can
be used.The compiler computes the offset associated with a particular variable and fetches the value in the
list without a search. Also, the value associated with a global variable can be a property of the symbol that
represents theaviable. Otherepresentations for the environment are also possible such as a vector repre-
senting a stack or as a linked stack of heap allocated frames.

" Procedure definition can also be implemented by a single procedure:
(define (gen-pr a b) (lambda (env) (lambda | (a (alloc b | env)))))
Theb agument corresponds to the formal argument list which is scanned (aloniy lyitthe alloc procedure to perform
environment allocation and verify that the procedure is called with the correct number of arguments.

result of (carpile ’(larbda (x) (+ x 1)))

/ code for (a (cons (cons b *) env)) ‘

code for ((a *) (b *) (c *)) ‘

,,/ code for (cdr (asg a *)) ‘

r——/‘ code for a ‘

== a1
‘ code of the primitie procedure + ‘

‘ code of the primitie procedure< ‘

Note: * representhe argument passed to the closure

Fig. 1. Sample code generated by the compiler.

Another ineficienoy comes from passing the run-time environment argument to the closures gener
ated when theare evaluated. Insteadthe ewironment can be bound to a global variable and used freely
by all the closures generated. This global 'environment’ variable/ésl sad updated when entering a pro-
cedure and is restored to its originalue upon it T Thus, the closures generated are zero argument pro-
cedures and we can expect their application to be faster.

Another source of optimization stems from thetfthat certain forms are used more frequently than
others (e.g. small numeric constants, procedure application using a gioladller as operatoetc...).
Instead of using the general procedure to generate the code corresponding to these forms, a specific proce-
dure (which is less parameterized) can be usedexample, to generate the code for thewation of the
constantsl or #ltrue, the compiler can call the folldng procedures (instead of the more general proce-
duregen-cs) :

(define (gen-1) (larbda (env) 1))
(define (gen-true) (lanbda (env) #!true))

As a specialized code generation procedure is less parameterized than the corresponding general one, less
space is needed for the code. This method is muehhi classical strength reduction optimization tech-

nique [3]which consists of using less general but more efficient code instead of the usualrfarar.

case, we are actually constructing "custom-made" closures and tayloring them to each particular case. One
must tale care that the number of special cases does nat @ rapidly so this optimization is only used

for the more frequent ones.

Also, space can be\sal by sharing pieces of codelnstead of generating weclosures for each
expression (and subexpression) compiled, the compiler can reusaaugegenerated closure if it corre-
sponds to the samemession. Thiss possible because when a closure is called, itwvexdso a continu-
ation giving whereeecution must go after the code in this closurexeceted. Each program sharing some

" |f this is done, care must be taken to presdme tail-recursie ®mantics of Scheme. If the procedsridy is a pro-
cedure application (or one of the branches of a conditiorsuiaion containing a procedure application)yissnment
restoration should be performed after thelation of the arguments of the application and before the actual jump to the
called procedure.

code gves its own continuation to the closure. So instead of generating alosure each time, the com-
piler can check if a closure has the same parameters as a previously generated eredtdmadigif this is
the case. This operation can be easilygrated in the code generation fonctions. B@neplegen-ref can
be rewritten as follows:

(define *ref* ())

(define (gen-ref a)
(if (not (as9 a *ref*))
(set! *ref*
(cons (cons a (larbda (erv) (cdr (asg a aw))))
“ref*)))
(cdr (asg a *ref*)))

In this example, a globakviable*ref* keeps in an association list the previously created closures and their
parameters. This list is checked on entegag-refand, if a corresponding closure is found, then itvergi

back otherwise it is added to the list and returned. This technique is similar to hash consing [5] [15] [33]
but it applies to closures instead of pairs.

This method could also be igiated in the closure generation mecanism. A hash table could be used
to keep track of the closures generated and checked to see if a similar closure has already been generated
before creating a meone. Common sub-expressionewid be automaticaly detected and only one piece of
code would be generated for them.

Even if this method can lower the space requirement for the code, we can sanrglyhat the space
needed for &eping track of the closures might be larger than the spaeg Jdis would not be important
if it was not the case that the compilation arecation phases are disjoint but Scheme is an inteeakin-
guage and so the compiler must be \egtall the time. A reasonable tradéaefould be to keep the more
frequent ones and ignore the rest; this could be implemented with a fixed length table where entries are
entered and discarded using a "least-recently-usedypdia@smplify further, we muld only keep the clo-
sures associated with the current expression.

Since the number of different kinds of closures generated by the compiler igehelatv and that
the body of these closures is shared (see Figure 1), it is reasonable to hand code the body of these proce-
dures in assembler in the same way that the pwienfiocedures, e.gar, cons +, are usually coded in a
lower level language.

The execution of the generated code consists mainly of closure applications, thuicianteflosure
implementation will imprge performance. Such method is described in [9] [10]. In fact that method has
been used in conjunction with our compilation method to implement the compiler for the MC68000 using
MC68000 assembly language as the implementation language. Its performance is discussed in section 7.

The optimizations that ka been described w&hbys dealt with closure generation butyasther opti-
mizations could also be used, faraeple: ivariant remw@a, common subexpression elimination and
expression simplifications [4] [16] [29]. Data and controlflanalysis could also be computed [17] [18].

Many of these optimizations can be seen as source to source transformations as was done in the RABBIT
Scheme compiler [29]. It @uld also be interesting to link this technique with the Orbit compiler [20]
which has preen itself to be very efficient.

6. Application to other languages

This code generation can also be used for other languages than Sélereeample, it would be
possible to write a Pascal compilevai an gpropriate representation for each priw@ticonstruct and
given the forms of the closure to be generate@. Wuld also need to write the prinviéi functions and a
parser.

But a more appropriate use of this techniqueuld be for "embedded languages” within Scheme.
These languages are often designed in artificial intelligence (e.g. MRZRRANNER [31], CONNIVER
[22], OPS5 [12] and LCF [14]) and are usually implemented with an interpreter written in Lisp. Using the
technique described in this paper we could easily compile those languages and the programs would run

much faster.

The technique could also be implemented in another language than Scheme as long as the language
enables the creation of closures or their eg@nt. Mary lexically scoped dialects of Lisp (e.g. T [24] or
Common Lisp [30]) gie dosures as a primite cnstruct. But it can also be used within a language lik
Simula 67 [7] if closures are implemented with class instances.yH&lgives the details of this imple-
mentation and a small example isayi in gopendix E. In fact, most object oriented language allowing for
the dynamic creation of objects can be used for the implementation language.

7. Performance

We have conducted some benchmarks to measure the performance of the code generated by our
method. &ble 1 shows the run times for thaleation of(fib 20), (tak 18 12 6)[13] which are the "classi-
cal tests" imolving mary recursve alls and integer arithmetic ar{dort ‘(3 1 ...)) a =lection sort of 70
numbers allocating mgrpairs and using tail recursion for iterating. These programs can be found in the
appendix D.

Relative imes are shown in parenthesisle ested our implementation onavcheme interpreters:

- MIT C Scheme (version 6.1) [23] written in C, generating pseudo-code (S-code) and running on a
SUN-2/50;

- MacScheme (version 1.11)[26] written in MC68000 assembly language, generating pseudo-code (byte-
code) and running on a Macintosh Plus.

Four methods of waluating the gpressions were tried: directly in the implementation language (i.e.
in MIT C Scheme or MacScheme), with the interpreterefgin gopendix A), and with the optimizing and
non-optimizing compilers (gén in gopendix B and C).

The optimizing version of the compiler has the following features:
- itrepresents environments as a list of values in which the variables are accessed via an offset
- the environment is kept in a global variable which isdand restored at each procedure call

- two wersions of each closure are used for taking into account the tail-vecuesure of the
Scheme programs

other small but often used impm@ments consist of generating special efficient closures for:
- constantsl,2 and#!null
- accesses to global variables and the first three local variables
- applications with a global variable as an operator.
The optimizing compiler is gen in gopendix C and is about three times as long as the non-
optimizing compiler.

implementation implementation optimizing non-optimizing interpreter

call language compiler compiler
MIT C Scheme
(fib 20) 190 (1.0) 540 (2.0) 1700 (8.9) 3900 (20.5)
(tak 18 12 6) 430 (1.0) 1800 (4.1) 9700 (22.5) 16000 (37.2)
(sort’'(31..) 32(1.0) 110 (3.4) 850 (26.6) 1300 (40.6)
MacScheme
(fib 20) 53 (1.0) 120 (2.3) 190 (3.6) 440 (8.3)
(tak 18 12 6) 130 (1.0) 370 (2.8) 640 (4.9) 1400 (10.8)
(sort’'(31..) 9(1.0) 23(2.6) 44 (4.9) 98(10.9)

Table 1: CPU time (in seconds) for the implementation with closures in Scheme

Programs compiled by the non-optimizing compileeoaite 30% to 50% faster than whenyttaee
interpreted. The are four to twenty-fie imes slower than the implementation language. So thisrig v

good compared to the interpreter taking into account that the interpreter and the non-optimizing compiler
are almost of the same length and complexity.

When a fev simple optimisations are addedeeution times drop by 40% to 70% which is onlyotw
to four times slower than the implementation language.

This technique was also embedded in a compiler for Scheme generating assembly language; it is
described in [9] and table 2vgs the times for that implementation and for ExperLisp[8] which is also a
natve cde compiler We hand coded tw functions in assembly language using the same calkeations
as our compiler just toge s an dea of the "optimal” code.

call ourcompiler ExperLisp Assembly
language
(fib 20) 5.0 (1.0) 13.0 (2.6) 2.64

(tak 18 126) 17.0(1.0) 44.0 (2.6) 7.72
(sort’(31..) 1.1(1.0) 4.0 (3.6)

Table 2: CPU Times (in seconds) with assembly code

So we can see that this technique can be used tovaded eficiengy within a "real” compiler
while keeping the advantages of the interpreteis surprising indeed that this compilervgs programs
running less than three times slower than assembly language.

8. Conclusion

We haveshowvn that it is feasible to write a Scheme compiler in Scheme with the use of closures.
The generated code takes the form of a agtwf closures whose application performs the desired compu-
tations. Acompiler relatvely independent of the tget machine can be designed using this metiyati-
mizations to the basic method can be applied in order to gain effi@edgrovide a usable system.

The method discussed can also be used to implement imbedded languages in languages that possess
closures or their equalent (e.g. Scheme,, Tommon Lisp, SIMULA 67). While the compiler is portable
and fairly eficient compared to the classical interpreter method, the main qualities of the interpreter (e.g.
debugging capabilities, profile information, etc...) are not lost.

9. References

[1] AbelsonH., Sussman G. J., Sussman Sructure and Interpretation of Computer Programs. MIT
Press, Cambridge, Massachusetts, (1985).

[2] AbelsonH., Adams N., Bartle D., Brooks G., Clinger W., Friedman D., Halstead R., Hanson C.,
Haynes C., hlbecler E., Oxlg D., Pitman K., Rees J., Rozas B., Sussman G. J., Wandhd.,
Revised Revised Report on Scheme or an UnCommon Lisp. MIT Atrtificial Intelligence Memo 848,
Cambridge, Massachusetts, (1985).

[3] AhoA.V, Ulman J. D.,Principles of Compiler Design. Addison-Weslg, Reading, Massachusetts,
(1977).

[4] Allen F. E, Bibliography on program optimization. IBM Research Report RC-5767, Technical Jour
nal Watson Research Centéorktown Heights, Ne York, (1975).

[5] Allen J., Anatomy of Lisp. McGraw-Hill, New York, New York, (1978).

[6] Atkinson M. P, Morrison R., Procedures as Persistent Data Obje8@M Transactions on Pro-
gramming Languages and Systems, 7, no. 4, 539-559, (1985).

[71 DahlO.-J., Myhrhaug B., Nyaard K., SMULA 67 Common Base Language. Norwegian Comput-
ing Center Report 725, (1982).

[8] ExperTelligence, ExperLisp Reference Manual . Santa Barbara, California, (1984).

[9] Feeley M., Deux approches a I'implantation du langage Scheme , These de Maitrise, Document de
travail #183, Departement d'informatique et recherche opéerationnelleyetdite de Nbntreal,

-10 -

(1986).

[10] Feeleg M., Lapalme G.,Closure generation based on viewing LAMBDA as EPSILON plus COM-
PILE . Submitted for publication, (1986).

[11] FelleisenM., Friedman D.R A closer look at export and import statements , Computer Language,
11, 29-37 (1986).

[12] Forgy C. L., The OPS5 User’s Manual . Technical Report CMU-CS-81-135, Computer Science
Department, Carnegie-Mellon U¥sity, Pittsburgh, Pennsylvania, (1981).

[13] GabrielR. R, Masinter L. M., Performance of Lisp System&onference record of the 1982 ACM
Symposium on Lisp and Functional Programming , Fittsburgh, Pennsylvania, 123-142, (1982).

[14] GordonM., Milner R., Wadsworth C., Edinburgh LCF , Lecture Notes in Computer Sciences ,
Springer-Verlag, N& York, Nev York, (1979).

[15] GotoE., Monocopy and Associative Algorithms in an Extended Lisp . University of Tokyo, Japan,
(1974).

[16] HaraldssorA., A Partial Evaluator, and Its Use for Compiling Iterative Statementsin Lisp . Confer-
ence Record of the Fifth AnnualCM Symposium on Principles of Programming Languagas; T
son, Arizona, 195-202, (1978).

[17] HechtM. S., Data Flow Analysis of Computer Programs . American Elseier, New York, Newv
York, (1977).

[18] JonedN. D., Muchnick S. S., Fl@ Analysis and Optimisation of LISP-BkSructures. Conference
Record of the Sxth Annual ACM Symposium on Principles of Programming Languages , 244-256,
San Antonio, €xas, (1979).

[19] Kilint P, Interpretation TechniquesSoftware-Practice and Experience, 11, 963-973, (1981).

[20] KranzD., Kelsgy R., Rees J., Hudak P., Philbin J., Adams N., Orbit: an Optimizing Compiler for
Scheme,Proceedings of the SGPLAN' 86 Symposium on Compiler Construction , (1986).

[21] LoeligerR. G., Threaded Interpretive Languages . Byte Books, Peterborough, NeHampshire,
(1981).

[22] McDermottD., Sussman G. J.The CONNIVER Reference Manual . MIT Artificial Intelligence
Memo 259A, Cambridge, Massachusetts, (1973).

[23] MIT Scheme Manual . Seventh Edition, Cambridge, Massachusetts, (1984).

[24] Reesl. A., Adams N. I, T: A Dialect of Lisp of LAMBDA: The Ultimate Software dol. Confer-
ence record of the 1982 ACM Symposium on Lisp and Functional Programming , Pittsbuigh, Penn-
sylvania, 114-122, (1982).

[25] Reesl. A., Adams N. |, Meehan J. RThe T Manual . Computer Science Department, Yale b
sity, New Haven, Connecticut, (1984).
[26] SemantidMicrosystems,MacScheme Reference Manual . Sausalito, California, (1985).

[27] SteeleG. L., Lambda: the ultimate declarative. MIT Artificial Intelligence Memo 379, Cambridge,
Massachusetts, (1976).

[28] SteeleG. L., Sussman G. JThe Revised Report on Scheme: A Dialect of Lisp . MIT Atrtificial Intel-
ligence Memo 452, Cambridge, Massachusetts, (1978).

[29] SteeleG. L., Rabbit: a compiler for Scheme . MIT Artificial Intelligence Memo 474, Cambridge,
Massachusetts, (1978).

[30] SteeleG. L., Common Lisp: the Language . Digital Press, (1984).

[31] SussmarG. J., Winograd T., Charniak EMICRO-PLANNER Reference Manual . MIT Atrtificial
Intelligence Memo 203A, Cambridge, Massachusetts, (1971).

[32] Sussmart. J., Steele G. L.Scheme: An Interpreter for extended Lambda Calculus. MIT Artificial
Intelligence Memo 349, Cambridge, Massachusetts, (1975).

-11 -

[33] Terashima M.,Algorithms Used in an Implementation of HLISP . Information Sciences Laboratory
Technical Report 75-03, Uwérsity of Tokyo, Japan, (1975).

[34] Wand M., Continuation-Based Multiprocessingonference record of the 1984 ACM Symposium on
Lisp and Functional Programming , Stanford, California, 19-28, (1980).

APPENDIX A

Schene interpreter witten in Schene

Note: Only the "quote’, 'set!’, 'if’ and 'l anbda’ special forns, and the
; constant reference, variable reference and procedure application
constructs are handl ed by the interpreter.

(define (interpret expr)
(int expr *glo-env*))

(define (int expr env)
(cond ((synbol ? expr)
(int-ref expr env))
((not (pair? expr))
(int-cst expr env))
((eq? (car expr) 'quote)
(int-cst (cadr expr) env))
((eq? (car expr) 'set!)
(int-set (cadr expr) (caddr expr) env))
((eq? (car expr) '"if)
(int-tst (cadr expr) (caddr expr) (cadddr expr) env))
((eq? (car expr) 'lanbda)
(let ((p (cadr expr)))
(cond ((null? p)
(int-prcO (caddr expr) env))
((symbol ? p)
(int-prcl/rest (caddr expr) p env))
((nul'l? (cdr p))
(int-prcl (caddr expr) (car p) env))
((symbol ? (cdr p))
(int-prc2/rest (caddr expr) (car p) (cdr p) env))
((nul'l? (cddr p))
(int-prc2 (caddr expr) (car p) (cadr p) env))
((symbol ? (cddr p))
(int-prc3/rest (caddr expr) (car p) (cadr p) (cddr p) env))
((null? (cdddr p))
(int-prc3 (caddr expr) (car p) (cadr p) (caddr p) env))
el se
((error "too many paraneters")))))
((null? (cdr expr))
(int-ap0 (car expr) env))
((null? (cddr expr))
(int-apl (car expr) (cadr expr) env))
((null? (cdddr expr))
(int-ap2 (car expr) (cadr expr) (caddr expr) env))
((null? (cddddr expr))
(:nt-apS (car expr) (cadr expr) (caddr expr) (cadddr expr) env))
el se
((error "too many argunments"))))

--- interpretation of constants ---

(define (int-cst a env)
a)

; --- interpretation of variable references ---

(define (int-ref a env)
(cdr (assq a env)))

-12 -

--- interpretation of assignnents ---

(define (int-set a b env)
(set-cdr! (assq a env) (int b env)))

; --- interpretation of 'if’ special form---

(define (int-tst a b c
(if (int a env) (int

env)
b env) (int c env)))

--- interpretation of procedure application ---

(define (int-ap0 a env)

((int a env)))

(define (int-apl a b env)

((int a env) (int b

(define (int-ap2 a b c
((int a env) (int b

(define (int-ap3 a b c
((int a env) (int b

env)))

env)
env) (int c env)))

d env)
env) (int c env) (int denv)))

--- interpretation of 'lanbda special form---

(define (int-prcO a en
(1 anbda ()
(int a env)))

(define (int-prcl a b
(lambda (x)
(int a (cons (cons

(define (int-prc2 a b
(lambda (x y)
(int a (cons (cons

(define (int-prc3 a b
(lambda (x y z)
(int a (cons (cons

(define (int-prcl/rest
(lambda x
(int a (cons (cons

(define (int-prc2/rest
(lambda (x . vy)
(int a (cons (cons

(define (int-prc3/rest
(lambda (x y . 2z)

(int a (cons (cons

--- global variable

(define (define-globa
(if (assq var *glo-e

v)

env)

b x) env))))
c env)

b x) (cons (cons c y) env)))))
c d env)

b x) (cons (cons ¢ y) (cons (cons d z) env))))))
a b env)

b x) env))))

a b c env)

b x) (cons (cons c y) env)))))
abcdenv

b x) (cons (cons c y) (cons (cons d z) env))))))

definition ---
var val)
nv*)

(set-cdr! (assq var *glo-env*) val)

(begin
(set-cdr! *glo-e
(set-car! *glo-e

(define *glo-env* (lis
(define-global ’'cons
(define-global ’car
(define-global ’cdr
(define-global 'null?
(define-global 'not
(define-global '<
(define-global '+

(define-global -

nv* (cons (car *glo-env*) (cdr *glo-env*)))
nv* (cons var val)))))

t (cons 'define define-global)))

cons)
car)
cdr

nul | ?)
not)
<)
+)
-)

-13-

--- to evaluate an expression we call the interpreter ---

(define

(eval uate expr)

(interpret expr))

; Sanpl e use of the conpiler:

Z To eval uat e: one should enter:
Z (define fib (evaluate ' (define '"fib
; (lambda (x) (lambda (x)
; (if (< x 2) (if (< x 2)
; X X
; (+ (fib (- x 1)) (+ (fib (- x 1))
; (fib (- x 2)))))) (fib (- x 2)))))))
: (fib 20) (evaluate ' (fib 20))
APPENDIX B

Z Non- opti mi zi ng Scheme conpiler witten in Schene
Z Note: Only the 'quote’, 'set!’, "if’ and ’'|anbda special forns, and the
; constant reference, variable reference and procedure application
; constructs are handl ed by the conpil er.
(define (conpile expr)

((gen expr) *glo-env*))
(define (gen expr)

(cond ((synbol ? expr)

(gen-ref expr))
((not (pair? expr))
(gen-cst expr))
((eq? (car expr) 'quote)
(gen-cst (cadr expr)))
((eq? (car expr) 'set!)
(gen-set (cadr expr) (gen (caddr expr))))
((eq? (car expr) "if)
(gen-tst (gen (cadr expr)) (gen (caddr expr)) (gen (cadddr expr))))
((eq? (car expr) 'lanbda)
(let ((p (cadr expr)))
(cond ((null? p)
(gen-prcoO (gen (caddr expr))))
((synbol ? p)
(gen-prcl/rest (gen (caddr expr)) p))
((nul'l? (cdr p))
(gen-prci (gen (caddr expr)) (car p)))
((synmbol ? (cdr p))
(gen-prc2/rest (gen (caddr expr)) (car p) (cdr p)))
((nul'l? (cddr p))
(gen-prc2 (gen (caddr expr)) (car p) (cadr p)))
((synbol ? (cddr p))
(gen-prc3/rest (gen (caddr expr)) (car p) (cadr p) (cddr p)))
((null? (cdddr p))
(gen-prc3 (gen (caddr expr)) (car p) (cadr p) (caddr p)))
el se
((error "too many paraneters")))))
((null? (cdr expr))
(gen-ap0 (gen (car expr))))
((null? (cddr expr))
(gen-apl (gen (car expr)) (gen (cadr expr))))
((null? (cdddr expr))
(gen-ap2 (gen (car expr)) (gen (cadr expr)) (gen (caddr expr))))
((null? (cddddr expr))
(gen-ap3 (gen (car expr)) (gen (cadr expr)) (gen (caddr expr))

-14 -

(el se
(error "too many argunments"))))

--- code generation for constants ---

(define (gen-cst a)
(lambda (env) a))

; --- code generation for variable references ---

(define (gen-ref a)
(lanmbda (env) (cdr (assq a env))))

--- code generation for assignnments ---

(define (gen-set a b)
(lambda (env) (set-cdr! (assq a env) (b env))))

; --- code generation for 'if’' special form---

(define (gen-tst a b c)
(lanmbda (env) (if (a env) (b env) (c env))))

--- code generation for procedure application ---

(define (gen-ap0 a)
(lanmbda (env) ((a env))))

(define (gen-apl a b)
(lanmbda (env) ((a env) (b env))))

(define (gen-ap2 a b c)
(lambda (env) ((a env) (b env) (c env))))

(define (gen-ap3 a b c d)
(lanmbda (env) ((a env) (b env) (c env) (d env))))

--- code generation for 'lanbda’ special form---

(define (gen-prcO a)
(lambda (env) (lanbda ()
(a env))))

(define (gen-prcl a b)
(lanmbda (env) (Ilanbda (x)
(a (cons (cons b x) env)))))

(define (gen-prc2 a b c)
(lanmbda (env) (lanbda (x y)

(a (cons (cons b x) (cons (cons c

(define (gen-prc3 a b ¢ d)
(lambda (env) (lanmbda (x y z)

(a (cons (cons b x) (cons (cons c

(define (gen-prcl/rest a b)
(lambda (env) (lambda x
(a (cons (cons b x) env)))))

(define (gen-prc2/rest a b c)
(lambda (env) (lanmbda (x . vy)

(a (cons (cons b x) (cons (cons c

(define (gen-prc3/rest a b c d)
(lambda (env) (lanmbda (x y . 2z)

(a (cons (cons b x) (cons (cons c

--- global variable definition ---

(define (define-global var val)
(if (assq var *gl o-env*)

(gen (cadddr expr))))

y)

y)

y)

y)

env))))))

(cons (cons d z) env)))))))

env))))))

(cons (cons d z) env)))))))

-15-

(set-cdr! (assq var *glo-env*) val)

(begin
(set-cdr! *glo-env* (cons (car *glo-env*) (cdr *glo-env*)))
(set-car! *glo-env* (cons var val)))))

(define *glo-env* (list (cons ’define define-global)))
(define-global 'cons cons)

(define-global ’car car)

(define-global ’cdr cdr

(define-global "null? null?)

(define-gl obal 'not not)
(define-global ’'< <)
(define-global '+ +)

)

(define-global - -
; --- to evaluate an expression we conpile it and then call the result ---

(define (eval uate expr)
((conpile (list "lambda ' () expr))))

Sanpl e use of the conpiler:

To eval uate: one shoul d enter
; (define fib (evaluate ' (define '"fib
; (lambda (x) (1 ambda (x)
; (if (<x2) (if (<X 2)
: (+ (fib (- x 1)) (+ (Fib (- x 1))
; (fib (- x 2)))))) (fib (- x 2)))))))
Z (fib 20) (evaluate ' (fib 20))

APPENDIX C

Optimzing Schenme conpiler witten in Schene

Note: Only the '"quote’, 'set!’, 'if’ and '|anbda’ special forns, and the
; constant reference, variable reference and procedure application
constructs are handl ed by the conpiler.

(define (gen expr env term
(cond ((synbol ? expr)
(ref (variable expr env) term)
((not (pair? expr))
(cst expr term)
((eq? (car expr) 'quote)
(cst (cadr expr) term)
((eq? (car expr) 'set!)
(set (variable (cadr expr) env) (gen (caddr expr) env #f) term)
((eq? (car expr) 'if)
(gen-tst (gen (cadr expr) env #f)
(gen (caddr expr) env term
(gen (cadddr expr) env term))

((eq? (car expr) 'lanbda)
(let ((p (cadr expr)))
I(prc p (gen (caddr expr) (allocate p env) #t) term))
el se
((Iet ((args (map (lanmbda (x) (gen x env #f)) (cdr expr))))
(let ((var (and (synbol ? (car expr)) (variable (car expr) env))))
(i gl obal ? var)

D QD

ép (cons var args) #t term
pp (cons (gen (car expr) env #f) args) #f ternm))))))

-16 -

(define (allocate parns env)
(cond ((null? parns) env)
((synbol ? parns) (cons parns env))
(el se (cons (car parns) (allocate (cdr parns) env)))))

(define (variable synb env)
(let ((x (meng synb env)))
(if x
(- (length env) (length x))
(begin
(if (not (assq synb *glo-env*)) (define-global synb ’undefined))
(assqg synb *glo-env*)))))

(define (global? var)
(pair? var))

(define (cst val term

(cond ((eqv? val 1) ((if term gen-1* gen-1)))
((eqv? val 2) ((if term gen-2* gen-2)))
((eqv? val "()) ((if termgen-null* gen-null)))
(el se ((if termgen-cst* gen-cst) val))))
(define (ref var term
(cond ((global? var) ((if term gen-ref-glo* gen-ref-glo) var))
((= var 0) ((if termgen-ref-loc-1* gen-ref-1loc-1)))
((= var 1) ((if termgen-ref-loc-2* gen-ref-1oc-2)))
((= var 2) ((if termgen-ref-1oc-3* gen-ref-1oc-3)))
(el se ((if termgen-ref* gen-ref) var))))
(define (set var val term
(cond ((global? var) ((if term gen-set-glo* gen-set-glo) var val))
((= var 0) ((if termgen-set-loc-1* gen-set-1loc-1) val))
((= var 1) ((if termgen-set-loc-2* gen-set-1loc-2) val))
((= var 2) ((if termgen-set-loc-3* gen-set-1loc-3) val))
(el se ((if termgen-set* gen-set) var val))))
(define (prc parns body term
((cond ((null? parnmns) (if term gen-prcO* gen- prcO))
((synbol ? parns) (if termgen-prcl/rest* gen-prcl/rest))
((null? (cdr parms)) (if termgen-prcl* gen-prcl))
((synmbol ? (cdr parns)) (if termgen-prc2/rest* gen-prc2/rest))
((null? (cddr parns)) (if term gen-prc2* gen-prc2))
((synmbol ? (cddr parns)) (if termgen-prc3/rest* gen-prc3/rest))
((null? (cdddr parms)) (if term gen-prc3* gen-prc3))
(el se (error "too many paraneters")))
body))

(define (app vals glo term
(apply (case (length vals)
((1) (if glo (if term gen-ap0-glo* gen-ap0-glo)

(if term gen-ap0* gen-ap0)))
((2) (if glo (if termgen-apl-glo* gen-apl-glo)
(if term gen-apl* gen-apl)))
((3) (if glo (if termgen-ap2-gl o* gen-ap2-gl o)
(if term gen-ap2* gen-ap2)))
((4) (if glo (if termgen-ap3-glo* gen-ap3-gl o)
(if term gen-ap3* gen-ap3)))
(el se (error "too many arguments")))
val s))

--- code generation procedures for non-ternminal evaluations ---
--- code generation for constants ---

(define (gen-cst a) ; any constant
(lanbda () a))

(define (gen-1) ; for constant 1
(lanbda () 1))

(define (gen-2) ; for constant 2
(lanbda () 2))

217 -

(define (gen-null) ; for constant ()

(lambda () "()))

; --- code generation for variable references ---

(define (gen-ref-glo a) ; for a global variable
(lambda () (cdr a)))

(define (gen-ref a) ; for any non-gl obal variable
(lambda () (do ((i O (+ i 1)) (env (cdr *env*) (cdr env)))
=i a) (car env)))))

(define (gen-ref-loc-1) ; for first local variable
(lambda () (cadr *env*)))

(define (gen-ref-loc-2) ; for second |ocal variable
(lanmbda () (caddr *env*)))

(define (gen-ref-loc-3) ; for third I ocal variable
(lambda () (cadddr *env*)))

; --- code generation for assignnents ---

(define (gen-set-glo a b) ;

f a gl obal variable
(lanmbda () (set-cdr! a (b))
f

or
))
(define (gen-set a b) ; for any non-global variable
(lambda () (do ((i O (+ i 1)) (env (cdr *env*) (cdr env)))
i a) (set-car! env (b))))))

(define (gen-set-loc-1 a) ; for first local variable
(lambda () (set-car! (cdr *env*) (a))))

(define (gen-set-loc-2 a) ; for second local variable
(lambda () (set-car! (cddr *env*) (a))))

(define (gen-set-loc-3 a) ; for third local variable
(lambda () (set-car! (cdddr *env*) (a))))

; --- code generation for '"if’' special form---

(define (gen-tst a b c)
(tanbda () (if (a) (b) (c))))

--- code generation for procedure application ---

(define (gen-ap0 a) ; any application (of 0 to 3 argunents)

(lambda () ((a))))

(define (gen-apl a b)
(lanbda () ((a) (b))))

(define (gen-ap2 a b c)

(lambda () ((a) (b) (c))))

(define (gen-ap3 a b c d)
(anbda () ((a) (b) (c) (d))))

(define (gen-ap0-glo a) ; application with global variable as operator
(lanbda () ((cdr a))))

(define (gen-apl-glo a b)
(anbda () ((cdr a) (b))))

(define (gen-ap2-glo a b c)
(lambda () ((cdr a) (b) (c))))

(define (gen-ap3-glo a b ¢ d)
(lanbda () ((cdr a) (b) (c) (d))))

--- code generation for ’'lanbda’ special form---

-18 -

(define (gen-prcO a) ; no rest paraneter (0 to 3 paraneters)
(lambda () (let ((def (cdr *env*)))
(lambda ()
(set! *env* (cons *env* def))
(a)))))

(define (gen-prcl a)
(lambda () (let ((def (cdr *env*)))
(lanbda (x)
(set! *env* (cons *env* (cons x def)))

(a)))))

(define (gen-prc2 a)
(lambda () (let ((def (cdr *env*)))
(lanbda (x y)
(set! *env* (cons *env* (cons x (cons y def))))

(a)))))

(define (gen-prc3 a)
(lambda () (let ((def (cdr *env*)))
(Iwmda(xy z)
(set! *env* (cons *env* (cons x (cons y (cons z def)))))

(2)))))

(define (gen-prcl/rest a) ; when a rest paraneter is present
(lambda () (let ((def (cdr *env*)))
(lanbda x
(set! *env* (cons *env* (cons x def)))

(a)))))

(define (gen-prc2/rest a)
(lambda () (let ((def (cdr *env*)))
(lanbda (x . vy)
(set! *env* (cons *env* (cons x (cons y def))))

(a)))))
(define (gen-prc3/rest a)
(lambda () (let ((def (cdr *env*)))
(lanbda (x y . 2z)
(set! *env* (cons *env* (cons x (cons y (cons z def)))))

(a)))))

--- code generation procedures for term nal evaluations ---
--- code generation for constants ---

(define (gen-cst* a) ; any constant
(lambda () (set! *env* (car *env*)) a))

(define (gen-1*) ; for constant 1
(lanmbda () (set! *env* (car *env*)) 1))

(define (gen-2*) ; for constant 2
(lambda () (set! *env* (car *env*)) 2))

(define (gen-null*) ; for constant ()
(lambda () (set! *env* (car *env*)) '()))

--- code generation for variable references ---

(define (gen-ref-glo* a) ; for a global variable
(lambda () (set! *env* (car *env*)) (cdr a)))

(define (gen-ref* a) ; for any non-gl obal variable
(lambda () (do ((i O (+ i 1)) (env (cdr *env*) (cdr env)))
((=1 a) (set! *env* (car *env*)) (car env)))))

(define (gen-ref-loc-1*) ; for first local variable
(lambda () (let ((val (cadr *env*))) (set! *env* (car *env*)) val)))

(define (gen-ref-loc-2*) ; for second |ocal variable
(lambda () (let ((val (caddr *env*))) (set! *env* (car *env*)) val)))

-19-

(define (gen-ref-loc-3*) ; for third local variable
(lambda () (let ((val (cadddr *env*))) (set! *env* (car *env*)) val)))

- code generation for assignnents ---

(define (gen-set-glo* a b) ; for a global variable
(lambda () (set! *env* (car *env*)) (set-cdr! a (b))))

(define (gen-set* a b) ; for any non-global variable
(lambda () (do ((i O (+ i 1)) (env (cdr *env*) (cdr env)))
((=1i a) (set-car! env (b)) (set! *env* (car *env*))))))

(define (gen-set-loc-1* a) ; for first local variable
(lambda () (set-car! (cdr *env*) (a)) (set! *env* (car *env*))))

(define (gen-set-loc-2* a) ; for second |ocal variable
(lambda () (set-car! (cddr *env*) (a)) (set! *env* (car *env*))))

(define (gen-set-loc-3* a) ; for third local variable
(lambda () (set-car! (cdddr *env*) (a)) (set! *env* (car *env*))))

- code generation for procedure application ---

(define (gen-ap0* a) ; any application (of 0 to 3 argunents)
(lanbda () (let ((w(a)))
(set! *env* (car *env*))

(wW)))

(define (gen-apl* a b)
(lambda () (let ((w(a)) (x (b)))
(set! *env* (car *env*))

(wx))))
(define (gen-ap2* a b c)

(lambda () (let ((w(a)) (x (b)) (y (c)))
(set! *env* (car *env*))
(wxy))))
(define (gen-ap3* a b ¢ d)
(lambda () (let ((w(a)) (x (b)) (y (¢)) (z (d)))
(set! *env* (car *env*))

(wxy 2))))

(define (gen-ap0-glo* a) ; application with global variable as operator
(I'anbda ()
(set! *env* (car *env*))

((cdr a))))

(define (gen-apl-glo* a b)
(lambda () (let ((x (b)))
(set! *env* (car *env*))

((cdr a) x))))

(define (gen-ap2-glo* a b c)
(tanbda () (let ((x (b)) (y (
(set! *env* (car
((cdr a) xy))))

d

(define (gen-ap3-glo* a b ¢ d)
(Fambda () (let ((x (b)) (y (c)) (z (d)))

(set! *env* (car *env*))
((cdr a) xy 2))))

- code generation for ’'lanbda’ special form---

(define (gen-prcO* a) ; no rest paraneter (0 to 3 paraneters)
(lambda () (let ((def (cdr *env*)))
(set! *env* (car *env*))
(lanbda ()
(set! *env* (cons *env* def))

(a)))))

-20-

(define (gen-prcl* a)
(lambda () (let ((def (cdr *env*)))
(set! *env* (car *env*))
(lanmbda (x)
(set! *env* (cons *env* (cons x def)))

(a)))))

(define (gen-prc2* a)
(lambda () (let ((def (cdr *env*)))
(set! *env* (car *env*))
(lanbda (x y)
(set! *env* (cons *env* (cons x (cons y def))))

(a)))))

(define (gen-prc3* a)
(lambda () (let ((def (cdr *env*)))
(set! *env* (car *env*))
(lanmbda (x y 2)
(set! *env* (cons *env* (cons x (cons y (cons z def)))))

(a)))))

(define (gen-prcl/rest* a) ; when a rest paraneter is present
(lambda () (let ((def (cdr *env*)))
(set! *env* (car *env*))
(1l anbda x
(set! *env* (cons *env* (cons x def)))

(a)))))

(define (gen-prc2/rest* a)
(lambda () (let ((def (cdr *env*)))
(set! *env* (car *env*))
(lanmbda (x . vy)
(set! *env* (cons *env* (cons x (cons y def))))

(a)))))

(define (gen-prc3/rest* a)
(lambda () (let ((def (cdr *env*)))
(set! *env* (car *env*))
(lanbda (x y . 2z)
(set! *env* (cons *env* (cons x (cons y (cons z def)))))

(a)))))

--- global variable definition ---

(define (define-global var val)
(if (assq var *gl o-env*)
(set-cdr! (assq var *glo-env*) val)
(set! *glo-env* (cons (cons var val) *glo-env*))))

(define *glo-env* (list (cons ’define define-global)))
(define-global 'cons cons)

(define-global ’car car)

(define-global ’cdr cdr

(define-global "null? null?)

(define-global - -

(define-gl obal 'not not)
(define-global ’'< <)
(define-global '+ +)

)

; --- to evaluate an expression we conpile it and then call the result ---

(define (eval uate expr)
((conpile (list "lambda ' () expr))))

(define *env* ’(dumy)) ; current environnent
Sanpl e use of the conpiler:

To eval uate: one shoul d enter

-21-

(define fib (evaluate ' (define '"fib
(lambda (x) (lambda (x)
(if (<x 2 (if (<x 2
?+(fib(- x 1)) ?+(fib(x 1))
(fib (- x 2)))))) (fib (- x 2)))))))
(fib 20) (evaluate ' (fib 20))
APPENDIX D
; fib
(define fib
(lambda (x)
(if (<x 2
2(+ (fib (- x 1))
(fib (- x 2))))))
(fib 20)
o tak
(define tak

(lambda (x y z)
(if (not (<vy Xx))

ftak (tak (- x 1) y 2)
(tak (- y 1) z x)
(tak (- z 1) x¥)))))

(tak 18 12 6)
;osort

(define sort
(lanbda (I st)
(if (null? Ist)

(sort-aux (cdr Ist) "() (car Ist)))))

(define sort-aux
(lanmbda (I st rest mn)
(if (null? Ist)
(cons mn (sort rest))
(if (< (car Ist) mn)

(sort-aux (cdr Ist) (cons mn rest) (car Ist))
(sort-aux (cdr Ist) (cons (car Ist) rest) nin)))))
(sort "(3141592653589793238462614
33832795028 2718281828414
5904523536028747135268624)) pi and e
APPENDIX E
| o o o o e
!
! Code generation exanple in SIMJLA 67
!
| o o o o e
BEG N
I --- data types (environnents, integers, bool eans and functions) --- ;
CLASS DATA;
BEG N

END;

-22-

DATA CLASS ENVI RONVENT(VAR VAL, ENV) ;
CHARACTER VAR;
REF(DATA) VAL;
REF(ENVI RONVENT) ENV;

BEG N

REF(DATA) PROCEDURE LOOKUP(X); CHARACTER X;
LOOKUP :- |F X = VAR THEN VAL ELSE ENV. LOOKUP(X) :

PROCEDURE ASSI GN(X, Y); CHARACTER X; REF(DATA) Y;
IF X = VAR THEN VAL :- Y ELSE ENV. ASSIGN\(X, Y);

END;

DATA CLASS | NTG(VAL); | NTEGER VAL;
BEG N
END;

DATA CLASS BOOL(VAL); BOOLEAN VAL;
BEG N
END;

DATA CLASS FUNC
VI RTUAL :
PROCEDURE APPLY1 IS
REF(DATA) PROCEDURE APPLY1(X); REF(DATA) X :
PROCEDURE APPLY2 |'S
REF(DATA) PROCEDURE APPLY2(X,Y); REF(DATA) X, VY;;
BEG N
END;

! --- code generation procedures --- ;

FUNC CLASS GEN CST(A); REF(DATA) A;

BEG N
REF(DATA) PROCEDURE APPLY1(ENV); REF(ENVI RONVENT) ENV;
APPLY1 :- A
END;

FUNC CLASS GEN REF(A); CHARACTER A;
BEG N
REF(DATA) PROCEDURE APPLY1(ENV); REF(ENVI RONVENT) ENV;
APPLY1 :- ENV. LOOKUP(A);
END;

FUNC CLASS GEN TST(A, B, C); REF(FUNC) A B, C
BEG N
REF(DATA) PROCEDURE APPLY1(ENV); REF(ENVI RONVENT) ENV;
APPLY1 :- |F A APPLY1(ENV) QUA BOOL. VAL THEN B. APPLY1(ENV)
ELSE C. APPLY1(ENV);
END;

FUNC CLASS GEN AP1(A B); REF(FUNC) A B;
BEG N
REF(DATA) PROCEDURE APPLY1(ENV); REF(ENVI RONMVENT) ENV;
APPLY1 :- A APPLY1(ENV) QUA FUNC. APPLY1(B.APPLY1(ENV));
END;

FUNC CLASS GEN_AP2(A B, C); REF(FUNC) A B, G
BEG N
REF(DATA) PROCEDURE APPLY1(ENV); REF(ENVI RONMVENT) ENV;
APPLY1 :- A APPLYL(ENV) QUA FUNC. APPLY2(B. APPLY1(ENV),
C. APPLYL(ENV));
END;

FUNC CLASS GEN FNL(A, B); REF(FUNC) A; CHARACTER B;
BEG N
REF(DATA) PROCEDURE APPLY1(ENV); REF(ENVI RONVENT) ENV;
APPLY1 :- NEWFNL(A B, ENV);
END;

GEN_FNL CLASS FN1(ENV); REF(ENVI RONMVENT) ENV:

-23-

BEG N
REF(DATA) PROCEDURE APPLY1(X); REF(DATA) X:
APPLY1 :- A APPLYL1(NEW ENVI RONVENT(B, X, ENV));
END;

I --- predefined functions --- ;

FUNC CLASS SMALLER;
BEG N
REF(DATA) PROCEDURE APPLY2(X,Y); REF(INTG X VY;
APPLY2 :- NEWBOOL(X. VAL < Y.VAL);
END;

FUNC CLASS ADD;
BEG N
REF(DATA) PROCEDURE APPLY2(X,Y); REF(INTG X VY;
APPLY2 :- NEWINTG X VAL + Y.VAL);
END;

FUNC CLASS SUB;
BEG N
REF(DATA) PROCEDURE APPLY2(X, Y); REF(INTG XY;
APPLY2 :- NEWINTG X VAL - Y.VAL);
END;
REF(ENVI RONMVENT) GLO _ENv; ! gl obal environnent

1

! --- initialize global environment ---

1

1

GLO_ENV :- NEW ENVI RONMVENT(' F', NONE,
NEW ENVI RONMENT(' <', NEW SMALLER,
NEW ENVI RONMVENT(* +, NEW ADD,

NEW ENVI RONMVENT(" -, NEWSUB, NONE))));
! --- code generation for the fibonacci function: -
I --- (lanbda (x) (if (< x 2) x (+ (f (- x 1)) (f (- x2))))) -

GLO ENV. ASSI G\(' F,
NEW GEN_FN1(
NEW GEN_TST(
NEW GEN_AP2(
NEW GEN_REF(' <'),
NEW GEN_REF(' X'),
NEW GEN_CST(NEWINTG(2))),
NEW GEN REF(' X'),
NEW GEN_AP2(
NEW GEN_REF('+),
NEW GEN_AP1(
NEW GEN REF(' F'),
NEW GEN_AP2(
NEW GEN REF('-'),
NEW GEN REF(' X),
NEW GEN_CST(NEWINTG(1)))),
NEW GEN_AP1(
NEW GEN REF(' F'),
NEW GEN_AP2(
NEW GEN REF('-'),
NEW GEN_REF(' X'),
NEW GEN_CST(NEWINTG2)))))),
"X).APPLY1(GLOENV));

! --- computation of fib(10) --- ;
OUTI NT(GLO_ENV. LOOKUP(' F') QUA
FUNC. APPLY1(NEW I NTE 10)) QUA
INTG VAL, 4);
OUTI MAGE; I wites: 55 ;

END;

