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Abstract

Programs compiled by Gambit, our Scheme compiler, achieve
performance as much as twice that of the fastest available
Scheme compilers. Gambit is easily ported, while retaining
its high performance, through the use of a simple virtual
machine (PVM). PVM allows a wide variety of machine-
independent optimizations and it supports parallel computa-
tion based on the future construct. PVM conveys high-level
information bidirectionally between the machine-indepen-
dent front end of the compiler and the machine-dependent
back end, making it easy to implement a number of common
back end optimizations that are difficult to achieve for other
virtual machines.

PVM is similar to many real computer architectures and
has an option to efficiently gather dynamic measurements of
virtual machine usage. These measurements can be used in
performance prediction for ports to other architectures as
well as design decisions related to proposed optimizations
and object representations.

1 Introduction

Our primary interest is in efficient mechanisms for imple-
menting future-based symbolic computation on currently
available MIMD machines. Having already done work in this
area using the Scheme language (augmented with the future
mechanism[8][13]) we are now extending our interpreter-
based results into the realm of compiled Scheme code. For
this purpose we undertook the implementation of a new
Scheme compiler, Gambit, with the intention of creating
a simple environment for experiments across a wide range
of hardware platforms and over a range of implementation
techniques. The major design goals for Gambit, from the
outset, were:

1. Code generation for multiple target machines, span-
ning both common CISC computers (DEC Vax, Mo-
torola MC68000) and RISC computers (HP Precision
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Architecture (HPPA), MIPS R2000, Motorola 88K,
BBN Monarch). For our purposes it was important
that retargetting the compiler be simple and yet still
yield a high performance system. We rejected exist-
ing compiler-based Scheme systems (T with Orbit[11],
CScheme with Liar[12]) mainly because of the diffi-
culty of retargetting and modifying the compilation
strategy of these large systems.

2. High performance of output programs. We are not
concerned with program development features. For ex-
ample we do not allow the user to interrupt execution
of a program other than by aborting it.

3. Support for task creation and synchronization through
implicit data operations, possibly augmented by con-
trol constructs. The future construct provides these
features compatibly with most other features of the
Scheme language and was, therefore, our initial focus.
We are also interested in exploring other parallel con-
trol and data constructs.

While the first and second goals are somewhat at odds
with one another, we believe that architectural comparisons
and architecture independent implementation techniques will
be among the important results from our research. We have
therefore chosen to build a compiler based on an easily re-
targetted virtual machine even though it may result in less
efficient compiled code. Fortunately, our experience with
Gambit indicates that a well chosen virtual machine does
not result in any noticeable performance penalties.

2 PVM: A Parallel Virtual Machine

In designing our virtual machine we tried to avoid a pair of
twin hazards that we have seen in other virtual machines
used for compilation. On the one hand, there are virtual
machines (like MIT’s scode[3], or the code objects of UMB
Scheme[4]) that are so close to the source language that the
machine independent front end of the compiler is unable to
express important optimizations in the virtual machine’s in-
struction set. This places a major burden on the back end,
which becomes responsible for analysis of the virtual ma-
chine code — a task very nearly as difficult as the original
compilation task. On the other hand, there are virtual ma-
chines (like Multilisp’s mcode[8] or Scheme 311’s byte code)
that match neither the actual target machine nor the source
language. The result is either a complex back end that again
attempts to recover data and control flow information from



the virtual machine, or a simple back end that produces
poor code.

Our Parallel Virtual Machine, or PVM, is intended to
fall in between these kinds of machines. We allow each back
end to specify a wide range of “architectural details” of the
virtual machine, including a description of primitive proce-
dures available on the target machine and the number of
general purpose registers. As a result, we can think of PVM
as a set of virtual machines, depending on the back end de-
scription that is used. Each specific virtual machine is close
to its target machine, yet the common abstraction hides the
precise details from the front end. PVM also remains close
to the source language since its small instruction set closely
matches the Scheme language itself.

PVM can be viewed as a bidirectional communication
medium between the front and back ends of the compiler.
The traditional role of a virtual machine, of course, is to con-
vey information from the front end to the back end. PVM,
however, conveys information in the reverse direction as well:

The number of general registers.

The procedure calling convention.

The format of closures.

Enumeration and description of primitive procedures.
Machine-specific declarations.

We view this bidirectional communication as an impor-
tant component of Gambit’s organization. The communica-
tion is supported by a language for describing implementa-
tion-level objects, which is the basis of the PVM abstraction.
Four types of objects are manipulated using this language:
primitive procedures, data objects, stack frames, and argu-
ment/parameter blocks. Corresponding to each of these is
a means of reference: the name of the primitive procedure,
slots within a data structure, slots within a stack frame,
and argument/parameter number. This particular level of
abstraction 1s convenient for both the front and back ends.
For example, both the back and front ends agree to discuss
stack slots as positive integers, in units of Scheme objects,
increasing as objects are pushed on the stack. This is clearly
convenient for the front end, and the back end can easily
translate this into appropriate offsets from a base register,
taking into account the number of bytes per argument, the
direction of stack growth, and the choice of stack discipline
on the target machine.

2.1 Operands

PVM has seven classes of operands, as shown in Figure 1,
which naturally divide storage into disjoint areas: registers,
current stack frame, global variables, heap storage, constant
area, and code area. This makes it easy to track values and
(with the exception of mem operands) removes the traditional
aliasing problem.

Neither the stack nor the heap pointer is directly visible.
Instead, the stack is accessible by indexing off of a virtual
frame base pointer that is modified as part of the proce-
dure call mechanism. The heap is accessed implicitly when
allocating objects and explicitly by indexing relative to ex-
isting heap-allocated objects. By making the stack pointer
and heap pointer invisible, we allow the back end to make a
number of optimizations based on the target architecture.

The mem operand, which gives access to heap storage,
allows nesting of other operands in its base component. Our
front end, however, uses it only for access to closed variables;

Operand Meaning

reg(n) General purpose register n

stk(n) Nth slot of the current stack frame
glob(name) Global variable

Indexed reference (base is an
operand, offsetis a constant)

mem (base, offset)

Constant
Program label

obj (object)
1b1(n)

?loc Parallelism support, see Section 2.7

Figure 1: PVM Operands

we leave other data structure accesses to the more general
APPLY instruction. As a result, the ability to nest other
operands within mem is not actually in use, although the
back ends support it.

Finally, we note that all operands can be used as the
source of values. However values cannot be stored into obj,
1bl, or 7 operands.

2.2 Instructions for Sequential Computation

The PVM instruction set provides a small set of general
instructions to efficiently encode the operation of Scheme
programs. Like many compilers, Gambit represents the pro-
gram as a set of basic blocks. This representation is ap-
parent in the PVM code. Each basic block is headed by a
code label, followed by the code for the data operations in
the block, and ends with a branch instruction. Our current
instruction set for sequential computation consists of four
kinds of code labels, three data manipulating instructions,
and three branch instructions.

An important part of Gambit’s communication mecha-
nism is the description of a set of procedures, known as prim-
itives, that are supported by the back end. All primitives
are available through the general procedure call mechanism,
but some can also be open coded by the APPLY and COND
instructions. The front end requires the back end to supply
a specific minimal set of (about 35) primitive operations;
but the back end can, in fact, specify any procedure as a
primitive. The description of each primitive indicates its ar-
ity and strictness. It also indicates whether it can be open
coded, and whether it can return a placeholder as a value.
Thus, 1ist has unbounded arity, is not strict in any argu-
ment, and never returns a placeholder, while set-car! has
arity two, is strict in its first argument but not its second,
and never returns a placeholder.

PVM’s handling of stack frames is unusual, and is de-
scribed in Section 2.3. The size parameter to the label and
branch instructions is used to support this mechanism, and
is described in detail in that section.

The description of the sequential PMV instructions fol-
lows. Figure 2 shows a simple program (iterative factorial),
along with its PVM code and the code generated for the
MC68020. A comparison to code from other compilers is
included in Appendix A.

LABEL(n, size)
A simple label, n, which may appear only in JUMP
and COND instructions.



(##tdeclare (standard-bindings) (fixnum))

(define (fact n)

Iterative factorial

(let loop ((i n) (ans 1))

(if (=1 0)
ans

(loop (- i 1) (% ans i)))))

Virtual Machine Code
LABEL(1,0,PROC,1)

COPY (obj (1) ,reg(2))

COND (##fixnum.=,reg(1),0bj(0),5,6,0)

LABEL(6,0)

APPLY (##fixnum.*,reg(2) ,reg(l),reg(2))

APPLY (##fixnum.-,reg(1) ,0bj(1),reg(1))
COND (##fixnum.=,reg(1),0bj(0),5,6,0)

LABEL(5,0)
COPY (reg(2) ,reg(1))
JUMP (reg(0) ,0)

MC68020 Code
L1: bmi L7 ; Entry point
jsr 20(a6) ; Arity error
L7:
moveq #8,d2
move.l d1,d0

beq L5
L6:

asr.1l #3,d2

mulg.1l d1,d2

subq.1l #8,d1

move.l d1,d0

bne L6
L5:

move.l d2,d1

jmp (a0)

Figure 2: Sample Program with Gambit Output

LABEL(n, size, CONT)
A continuation label, similar to a return address in
other architectures. These are not the objects returned
to a Scheme program that calls call-with-current-
continuation, but are an architectural feature to sup-
port fully tail-recursive behavior[15][18].

LABEL(n, size, PROC, desc)
A procedure label with desc defining the number
(or range) of arguments expected. This instruction
modifies the stack and registers to account for any dis-
crepancy between desc and the number of arguments
actually passed (as specified by the JUMP instruction
used to arrive here).

LABEL(n, size, PROC, desc, CLOSED)
A closure label, similar to a procedure label, but
the label n may appear only within a closure object
created by MAKE_CLOSURES.

APPLY (prim, operand,, ..., [locl)
Apply the primitive procedure prim to the operands
and store the result in loc (or discard it if loc is not
specified).

COPY (operand, loc)
Copy the value of operand to the location specified by
loc.

MAKE_CLOSURES (descriptioni/. . ./descriptiony)
Create n closure objects. A closure object con-
tains a code label and a number of data slots. Each
description specifies a location into which a closure
object will be stored, the closure label for the code of

that closure, and operands to be stored in the closure’s
data slots.

COND (prem, operand,, ..., tIbl, f.lbl, size)
A conditional branch based on the value of prim ap-
plied to the operands (on false branch to f_{bl, other-
wise to ¢_1bl, both of which must specify simple labels).

JUMP (operand, size)
Jump to the simple or continuation label specified by
the value of operand.

JUMP (operand, stze, nargs)
Jump to the address specified by operand. This in-
struction also states that nargs have been placed in
the appropriate argument passing locations. The value
of operand must be either a procedure label, a closure
object, or a primitive procedure object.

2.3 Stack Frames

PVM deals with the stack frame in a novel manner, sup-
plying the current stack frame size in the LABEL, COND, and
JUMP instructions. Our approach avoids the problems inher-
ent in using virtual machines either based purely around a
top of stack pointer or based purely upon a frame pointer.
Using a stack pointer leads to varying offsets for a given
stack slot and inefficient code on machines lacking explicit
stack instructions. Using only a frame base leaves the top
of stack unknown at garbage collection time and requires
update instructions on entry and exit of every basic block.

While the actual instruction set of PVM makes use of a
frame pointer and frame size information, we prefer to think



of the machine as having both a stack pointer and a frame
pointer. Since the frame size always specifies the distance
between the stack pointer and the frame pointer, either
pointer can be recomputed from the other. JUMP and COND
instructions cause the stack pointer to be recalculated, while
LABEL instructions recalculate the frame pointer. Within a
basic block, the stack pointer is updated based on the off-
sets of stk operands encountered so that it always covers
the active part of the stack frame.

The choice between stack pointer and frame pointer dis-
cipline is specific to the back end (see Section 3.3). We take
advantage of the fact that our front end produces the PVM
code for an entire basic block before beginning native code
generation. For each instruction, the front end calculates a
tight bound on the size of the stack frame using knowledge
of which slots are referenced between the current instruc-
tion and the end of the block. It supplies this information
to the back end, which can then easily implement any one of
four mechanisms: the two pointer model above, or a single
pointer model (frame base, frame top, or stack). The single
pointer models are derived from the two pointer model by
realizing that:

e Both the frame’s current size and its size at entry to
the current basic block are known at code generation
time.

o These frame sizes along with any single pointer specify
the other two pointers.

2.4 Calling Convention

A second novel aspect of our virtual machine design is the
implementation of the calling convention. PVM itself im-
poses no specific mechanism, but allows the back end to
choose an appropriate mechanism for general procedure calls.
The front end will generate PVM instructions for procedure
calls that load argument values into registers or stack loca-
tions as specified by the back end. At procedure and closure
labels, the back end is responsible for emitting code, if neces-
sary, to move arguments from their placement by the caller
to the location required by the callee. This is based on the
number of arguments actually passed at runtime compared
with the number of parameters required by the procedure.

In cases where the front end can analyze a procedure call
sufficiently to avoid the general mechanism, it can produce
optimized code by using simple labels (rather than proce-
dure or closure labels) as the target address. Unlike a pro-
cedure label, a simple label implies no stack reformatting
operations. Thus, the calling convention used for jumps to
simple labels 1s essentially under the control of the front end,
while for jumps to procedure or closure labels it is under the
control of the back end.

The back end specifies, in particular:

1. Where arguments are passed, based on the number
of arguments in the call. This is used by the front
end to generate the code prior to a JUMP instruction.
Our front end restricts the choices to combinations of
registers and stack slots.

2. Which register contains the value returned by proce-
dures.

3. Where the parameters are located after a LABEL in-
struction is executed. Since procedure and closure
labels modify the stack and registers, the back end

specifies where values are located after this reorgani-
zation has taken place. For a closure label, the back
end also specifies the location of the pointer to the clo-
sure object so that the front end can generate PVM
instructions to access its data slots. Our front end also
restricts these to be registers or stack slots.

The back end also decides how the argument count is
passed from the JUMP instruction to the destination proce-
dure or closure label. This decision is internal to the back
end since it is needed only to accomplish moving arguments
from the locations where they are passed by the caller to the
locations where they are expected by the destination code.
All of this code is included in the back end’s expansion of
the JUMP and LABEL instructions.

2.5 First-Class Procedures

Since Scheme programs often make use of first-class proce-
dures, we take a short digression to discuss the mechanism
Gambit uses to implement them. In general, procedures
carry with them the values of any free variables that they
reference, and we use the traditional name, closure, to re-
fer to the representation used when a procedure references
one or more free variables. Procedures with no references to
free variables can be represented simply by the address of
the code that implements them: in PVM, either a primitive
procedure object or a procedure label.

Gambit allocates closures on the heap. They consist of
a back-end dependent header region (typically instructions
executed when the closure is invoked) followed by storage
for the values of the free variables needed by the procedure.
FEach entry in the storage area contains either the value of
a free variable (if it is known to be immutable) or a pointer
to the variable’s storage location. Figure 4 shows the clo-
sure object created from the code shown in Figure 3 (see
Appendix A for further implementation details).

The runtime storage allocation required by closures is
expensive compared to other procedure representations, and
Gambit attempts to minimize the number of closures that
are created. The front end performs a combined data and
control flow analysis to discover all procedure calls that in-
voke a given procedure. If all calls can be located, standard
lambda lifting is performed; the net effect is to add the free
variables to the parameter list of the procedure and to mod-
ify all of the procedure calls to pass these values as argu-
ments. The procedure then has no free variable references
and is represented as a procedure label.

A second technique used to minimize the size of closures,
and possibly eliminate them entirely, is to subdivide the free
variables that are referenced. References to global variables
do not need to be stored in the closure since their values are
directly accessible at runtime (Gambit supports only one
top level environment). Similarly, variables that are known
to have constant values (either because of a declaration or
from data flow analysis) can be eliminated from the list of
free variables that must be stored in the closure. Thus,
the storage area of a closure contains values for the formal
parameters of lexical parents, which are referenced by the
body of the procedure, and which the compiler cannot infer
to have constant values.

Closures are created by the MAKE_CLOSURES instruction.
This instruction allows multiple closures to be made “si-
multaneously” to provide for mutually recursive procedures.
Considering the creation of the closures to occur atomically



(define (make-adder x)
(lambda (y) (+ y x)))

The following code (PVM and corresponding MC68000) is
the body of make-adder. It is responsible for creating a
closure to represent the value of the lambda expression:

; PVM -- LABEL(1,0,PROC,1)
Li: bmi L5
jsr 20 (a6)
; PVM -- MAKE_CLUSURES(Stk(l),3,reg(1))

L5: lea -16(a3),a3 ; allocate
move.l a3,a2
move.l #0x10£8, (a2)+ ; length and type
addq.l #2,a2 ; unused word
move.l a2,-(sp) ; store in stk(1)
move.w #0x4eb9, (a2)+ ; store JSR opcode
lea L3,al
move.l ail,(a2)+ ; destination
move.l di,(a2)+ ; data slot

; PVM -- COPY(stk(1),reg(1))
move.l (sp)+,dl

; PVM -- JUMP(reg(0),0)
cmp.l  64(ab),a3 ; GC check
bcc L6
jsr 32(ab)

L6: jmp (a0)

The following code is the body of the lambda expression:

; PVYM -- LABEL(3,0,PROC,1,CLOSED)

L3: move.l (sp)+,d4 ; reg(4) <--
subq.l #6,d4 ; closure pointer
move.w d0,d0 ; arity test
bmi L7
jsr 24 (a6)

; PVYM -- COPY (mem(reg(4),6) ,reg(5))

L7: move.l d4,al ; load x from
move.l 6(al),d5 ; data slot

; PVM —- APPLY (##fixnum.+,reg(1) ,reg(5) ,reg(1))
add.1l d5,d1

; PVM -- JUMP(reg(0),0)
jmp (a0)

Figure 3: Make-adder: A closure generator

length and type

unused | JSR
code address

slot 1: value of x

Figure 4: Closure for make-adder (for the MCG68000)

(with respect, in particular, to garbage collection) allows for
efficient implementation in some back ends. To make this
more concrete, consider the Scheme program make-adder
shown, with its PVM code, in Figure 3. The PVM code for

the body of make-adder includes the instruction

MAKE_CLOSURES (stk (1) ,3,reg(1))

which creates one closure object (shown in Figure 4) and
stores it on the stack at stk (1). The closure contains space
for one value, initialized from the contents of reg (1) (where
the value of x happens to be), and the closure label for the
body of the 1ambda expression is label 3.

The second form of the JUMP instruction is used for call-
ing procedures and specifies the number of arguments being
passed. The back end is responsible for emitting code that
stores this argument count and arrives at the appropriate
destination address. In the case of a closure, the destina-
tion is encoded in the closure object itself in a back-end de-
pendent manner by the MAKE_CLOSURES instruction. Thus,
the back end must arrange for a jump to a closure to be
indirect, whereas a jump to a simple procedure is direct.
Furthermore, the address of the closure itself must be made
available to the code at the closure label, since it is needed
to reference the values of the free variables stored in the
closure.

While PVM does not further specify the interface be-
tween the JUMP instruction and the destination LABEL, all of
our back ends have made the same implementation decision.
As shown in Figure 4, the header of our closure objects is
a short instruction sequence that jumps to the destination
label and stores the address of the closure’s data area into
a known register using the target machine’s jump-and-link
instruction (JSR on the MC68000).

2.6 Declarations

Like most other Scheme implementations, Gambit provides
a declaration mechanism that allows programmers to tell
the compiler that it may violate certain assumptions of the
basic language. For example, in Gambit, the declaration
standard-bindings allows the compiler to assume that ref-
erences to global variables with the names of the primitive
operations are, in fact, references to those primitives. This
allows the front end to generate an APPLY, COND, or JUMP in-
struction that references the primitive directly rather than
referencing a global variable as required by the language
definition. Similarly, the fixnum declaration allows the com-
piler to generate code for the standard numeric operations
that assumes all numbers are small integers and suppresses
overflow detection.

Some of these declarations, like standard-bindings, are
relevant only to the front end, and are available with all
back ends. Other declarations, like fixnum, are meaningful
to only some back ends. In Gambit, we permit the back
end to affect the code emitted by the front end based on the
current set of declarations as maintained by the front end.
For example, the primitive + might be usable in an APPLY
instruction if either the declaration fixnum or flonum is in
effect. In this case, the front end asks the back end what
primitive could be used instead of +, specifying the decla-
rations that are currently in effect. The back end responds
with either ##flonum.+ or ##fixnum.+ (or simply + if no
other operation is available).



2.7 Parallelism in PVM

We have introduced, so far, the sequential subset of PVM.
One of our major goals, however, is to efficiently support the
future mechanism for parallel computing. In this mecha-
nism, a parent spawns a child task and uses a placeholder[14]
to allow the parent task to refer to the value being computed
by the child. In earlier systems supporting futures ([8], [9],
[13]) there is a major cost associated with spawning a task,
arising from the need to create a separate thread of con-
trol and a placeholder at the time the child task is spawned.
PVM has three additional instructions and one operand type
to make future-based parallel computation efficient. Our
model is inspired by conversations with Halstead based on
a brief mention in [9].

LABEL (¢, size, TASK, w)

Define a task label, ¢ that marks the beginning of a
task. A task label can be used in place of a simple
label. A jump to a task label, however, spawns a new
(possibly parallel) task to execute the code between
the task label and its corresponding DONE instruction.
The label w is where the parent task continues execu-
tion after the new task is spawned.

LABEL(w, stze, WORK)
Define a work label, w, that specifies where a task
should resume execution after it spawns a new task.

DONE
End the current task and deliver the result.

These three instructions can be translated by the back
end to provide the same future mechanism used by earlier
systems or to provide lazy futures. Lazy futures treat task
spawning as a special kind of procedure call. When a task
is “called” it leaves a marker on the stack so that another
processor can recreate the parent task (in PVM, this is per-
formed by the task label). The processor is now effectively
executing on behalf of the child task and the parent task is
suspended.

Should another processor decide to resume the parent
task, that processor splits the stack at the marker, allocates
a placeholder and begins executing the code of the parent
task, using the placeholder to represent the value computed
by the child task. PVM provides no direct support for this
operation. Instead, a procedure is supplied by the runtime
system that understands the format of stack markers and
the code supporting task termination.

When control in the child task returns to the stack marker
created by a task label, the child will either return as a nor-
mal procedure (if no other processor resumed the parent
task) or store its result in the placeholder and look for some
other processor’s parent task to resume. In PVM, this oc-
curs when a DONE instruction is executed.

In addition to this support for spawning and terminat-
ing tasks, PVM provides support for the underlying place-
holder data type through the use of the 7 operand annota-
tion. When Gambit compiles code for a parallel back end it
places a 7 around appropriate operands that are potentially
placeholders. “Appropriate operands” includes the strict
operands (as specified by the back end) in APPLY and COND
instructions, as well as the destination operand of JUMP in-
structions. By using information supplied by the back end,
the front end can determine whether the result of a primitive
procedure can be a placeholder; this information is then used
to suppress generation of the 7 in references to the value.

3 Optimization Techniques

Gambit employs a number of standard optimizations, in
both the front and back ends. This section enumerates the
current set of optimizations (without further discussion) pri-
marily for completeness. We expect to add additional opti-
mizations in the future.

3.1 Front End Optimizations

o Preferentially allocating temporary values to registers.

e Using a direct JUMP to a simple label for calling known
procedures.

e Tracking multiple homes for variables.

o Keeping values in registers as long as possible by track-
ing register contents and saving them on the stack
‘lazily.” This entails merging variable home informa-
tion around conditional branches.

e Lambda-lifting.

3.2 Optimizing the PVM Code

These optimizations are performed on the PVM code itself,
and are completely independent of both the source language
and the target machine.

e Branch cascade removal by replacing a branch with
the instruction at the destination.

e Reordering basic blocks to maximize the number of
fall-throughs.

e Dead code removal.

e Common code elimination.

3.3 Back End Optimizations

In addition to the traditional back end optimizations (e.g.
branch tensioning), Gambit makes use of its stack discipline
abstraction to optimize the allocation and deallocation of
stack frames. It is easy for the front end to use stk operands
in an exclusively stack-like manner (i.e. it only stores into
slots into which it has already stored or into the next higher
slot). The front end does this, and consequently on machines
with “push and pop” instructions (like the MC68000), the
back end incrementally allocates the frame by pushing values
on the stack as the slot number in stk operands increases.
Similarly, the frame is incrementally deallocated by popping
values when the frame size decreases.

On machines lacking these instructions, such as the MIPS
and HPPA, the back end uses a frame top pointer implemen-
tation. This allows the frame to be allocated or deallocated
with a single instruction at the end of each basic block (con-
veniently filling the branch delay slot on these machines).

4 Other approaches

We have examined three kinds of virtual machines typi-
cally used in implementing Lisp systems: byte codes, syntax
trees, and register transfer languages. PVM belongs to this
last class, and represents a particular engineering approach
to the design of such an intermediate language. This sec-
tion compares PVM to other virtual machines used by the
Scheme community.



4.1 Byte Codes

There are a number of well known Scheme implementa-
tions based on a byte code interpreter: Indiana University’s
Scheme 311 (and its descendants MacScheme and Texas In-
struments PC Scheme) and Halstead’s Multilisp. In the in-
terpreted systems for which they were developed, byte cod-
ing provides two important features: speed of dispatch on
most hardware platforms, and code space compression (if
the opcodes are based on static instruction frequency statis-
tics).

As an intermediate representation for compilation, how-
ever, byte code leaves much to be desired. First, all of the
byte code systems mentioned above are based on a pure
stack machine. Since many important hardware platforms
are not stack based, the process of compiling native code
from the byte code requires recovering the higher-level in-
formation about intermediate values that was removed in
generating the byte code. Furthermore, the creation of the
byte code program does not produce information about vari-
able referencing patterns, and this is essential to permit ef-
ficient use of hardware registers in the equivalent compiled
code.

4.2 Code Trees

In interpreted Scheme systems that implement much of the
system code in Scheme, byte coding is problematic since the
byte coded programs have no natural representation within
Scheme itself (aside, of course, from byte strings). An ap-
pealing alternative is to represent a program as a syntax
tree, whose components are very similar to the pairs and vec-
tors of standard Scheme. This approach is taken in MIT’s
CScheme scode[12] (derived from the actual instruction set
of the Scheme 79 VLSI chip[10]) and the University Mas-
sachusetts Boston UMB Scheme system[4]. The type code
of each node in the tree is derived from the syntactic ex-
pression (special form or combination) it represents in the
program. The leaves of the tree are constants and variable
references.

This representation is easier to deal with in a Scheme pro-
gram than the byte codes, and faster to interpret than the
original list structure of the program as provided by read.
One of the major advantages of a code tree representation
is that it can be easily converted back into a program equiv-
alent to the original Scheme program from which it was de-
rived. Systems can, and do, use this equivalence for a variety
of debugging tools such as code inspectors and pretty print-
ers. This very fact, however, argues against the syntax tree
as a good intermediate code for compilation: the represen-
tation provides no information about commonly referenced
variables, nor any results of data or control flow analysis.

4.3 Register Transfer Languages

Neither of the earlier representations were envisioned as in-
termediate representations for compilation, and so it is not
surprising that they serve this purpose rather poorly. We are
familiar with three intermediate languages designed specifi-
cally for this purpose, however: MIT’s RTL (register trans-
fer language), LeLisp’s LLM3[5], and PSL’s c-macros[7].
MIT’s RTL is an ad hoc language evolved from the ma-
chine description language in [1], through a version used in
an early compiler[17], and now part of the Liar compiler.

Presently, RTL consists primarily of ASSIGN commands sim-
ilar to the COPY and APPLY commands of PVM, TEST com-
mands similar to the COND of PVM, special purpose instruc-
tions to call compiler support routines in the runtime sys-
tem, frame adjust commands, and commands to generate
procedure headers.

Internally, Liar (like Gambit) has a back end module that
provides a description of the target machine to the front
end of the compiler. Liar’s front end is responsible for more
compilation decisions than Gambit’s, and consequently the
description is at a much lower level of detail. It consists
of information about the addressing granularity of the ma-
chine, the number of bits used for type codes and data, and
mappings from the front end’s special purpose registers to
the target machine’s physical registers. The front end of
Liar relies on and directly manipulates four virtual machine
registers: the dynamic link register (for return addresses),
a stack pointer, free pointer into the heap, and a pointer to
a set of memory locations (C variables) shared with the in-
terpreter. In addition, the front end supports the notion of
register sets by providing the back end with general purpose
procedures for allocating, deallocating, and liveness track-
ing for groups of registers specified by the back end. This
is used, for example, to allow the back end to separate the
use of general purpose and floating point (co-processor) reg-
isters.

The primary interface between the front and back ends
of Liar is through a rule-based language. The front end
generates RTL instructions that are matched against the
rules provided by the back end. This permits the precise
nature of Liar’s virtual machine to remain undefined while
still enabling a variety of back ends to be written. Unfor-
tunately, as the front end changes, the RTL instructions it
emits change and the rule sets of each back end must be
examined and modified individually. PVM’s regular struc-
ture, on the other hand, allows the construction of a back
end that handles the complete virtual machine and is thus
isolated from many changes to Gambit’s front end. PVM
implementations (i.e. back ends for Gambit) have similar
structures, since they are case dispatches on the PVM in-
struction and operand types; thus, updating a back end to
accommodate changes in PVM itself is straightforward.

The register transfer language LLILM3, developed at IN-
RIA for the language Lelisp, is a much larger language than
either PVM or RTL. It has over 100 instructions (including
a number of redundant ones), providing control over aspects
as diverse as garbage collection and file system operations.
Implementing such a machine is a major undertaking and
not suitable for our environment where a quick port to a
new architecture or operating system is essential. Further-
more, the low level of control specified by LLM3 requires
the front end to be more elaborate than we would like, and
leaves little room for optimizations by the back end.

5 Current Status

At the time of writing, we have completed the Gambit imple-
mentation for the MC68000 and are in the final debugging
stages of a port to the MIPS machines. A port to the HPPA
is also nearing completion. Preliminary performance figures
comparing Gambit to T’s Orbit and MIT’s Liar compiler are
shown in Figure 5. As that table indicates, the MC68000
implementation achieves very good performance over a wide
range of benchmarks. This implementation also includes an



option for efficiently gathering dynamic usage statistics, as
discussed in Appendix B.

In addition, we have a preliminary version of a Scheme
to C compiler, inspired by the work of Bartlett[2]. This back
end generates portable C code with good performance char-
acteristics, but is not yet capable of producing separately
compilable modules. As a result, it can currently only be
used for compiling rather small Scheme programs.

6 Future Plans

Our next major goal is to create a back end for a stock
MIMD parallel machine. We have made several early pro-
totype versions and are encouraged by the results. Gam-
bit’s control and data flow analysis appear to be sufficiently
general to allow us to explore a number of mechanisms for
reducing the cost of the touch and future operations that
dominate the performance of our own and other parallel
Scheme systems[8][9][13].

As part of this work, we plan to complete our work on the
Gambit C back end. This involves the implementation of a
separate compilation facility that has already been designed.
Measurements on the single module system indicate that the
performance i1s about half that of the native code produced
by Gambit, and we consider the advantage of having a single
back end that supports a number of hosts to outweigh this
performance degradation. The separate compilation design,
however, has a number of areas in which performance may
degrade and we plan to examine these in detail.

Finally, some very preliminary results indicate that it
may be interesting to consider compiling imperative lan-
guages such as C and Pascal into PVM. We are particu-
larly interested in combining a C to PVM compiler with the
PVM to C back end. An early experiment indicated that
PVM’s optimization of procedure calls generated C code
which, when compiled by a C compiler, outperformed the
equivalent hand-coded C program compiled by that com-
piler! We plan to see whether this holds up under closer
investigation.
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A Performance Measurements and Code Comparison

A detailed analysis and explanation of Gambit’s performance
is beyond the scope of this paper. This appendix provides
a brief sketch of our performance results and compares the
code generated by Gambit to that of MIT’s Liar compiler
and T’s Orbit compiler. Figure 5 shows the results of run-
ning Clinger’s version of the Gabriel benchmark programs|[6].
For the most part the figures need no explanation. The fol-
lowing points may help the reader to better interpret them:

Motorola MC68000

Gambit  Orbit Liar cc

boyer 4.74  x2.09 x1.96

browse 1.04 x1.65 x6.12

cpstak 56 x1.93  x1.57

dderiv 2.29 x2.04 x1.99

deriv 2.10 x1.76 x1.82

destruct 65 x1.49 x3.71

div-iter 41 x2.29  x1.39

div-rec 58 x2.14  x1.57

puzzle 3.51 x1.39 x3.59 x .61

tak .14 x1.30 x3.15 x1.71

takl 1.18 x1.53 x1.86 x1.80

traverse 32.01 x .80 x1.68

triangle 67.83 x .89 x1.96 x .83

MIPS R2000
Gambit  Orbit Liar cc scc

tak .06 x1.17 x2.83 x1.17 x2.00
takl 28 x1.14 x2.75 x1.79 x2.36

triangle 15.41 x1.02 x2.60 x .85 x1.77

Note: Timings for Gambit are absolute, in seconds. All
others times are relative to Gambit.

Figure 5: Performance Comparison

1. The measurements for the MC68000 family were taken
on a Hewlett-Packard 9000/340 system with a 16Mhz
MC68020 CPU, 16 megabytes of memory, and a lo-
cal disk. The measurements are based on the HP /UX
time functions which deliver an estimate of user CPU
time in units of 20 milliseconds. System time and
time for garbage collection (if any) are not included
in these numbers. All measurements were taken in full
(multi-user) operating mode, but with only a single
user logged in.

2. The measurements for the MIPS R2000 CPU were
taken on a Digital Equipment Corporation DECsta-
tion 3100 with 16 megabytes of memory and medium-
speed local disks, running under a preliminary release
of the CMU Mach 2.1 operating system. Again, mea-
surements are based on the Mach timing functions,
omit system and garbage collection time, and were
taken under multi-user conditions.

3. The column labeled “scc” contains timings from Joel
Bartlett’s Scheme to C compiler [2] of August 25, 1989.

The column labeled “cc” contains measurements for
some of the benchmarks that were hand coded in C
and compiled (with the —O switch for optimization)
using the vendor-supplied C compiler, “cc.”

4. All of the benchmarks are executed five times and the
mean is reported. In our experience, the measured
times are repeatable to within a few percent.

5. All benchmarks were run as supplied by Clinger but
with two differences. On all systems, a (compiler-
dependent) declaration was supplied that caused arith-
metic to be performed in fixnum mode (exact integers
with no overflow detection) only. In addition, each
benchmark was compiled both as written and enclosed
in a let expression to allow each compiler to take ad-
vantage of any flow analysis it performs. The best tim-
ings for a given compiler are recorded here. We are
unable to find a consistent pattern to explain which
form of the program will perform better for a given
compiler.

6. A number of procedures are used routinely by the
benchmarks and their performance can dominate the
performance of the entire benchmark. This is particu-
larly noticeable in the case of the get and put opera-
tions in the Boyer benchmark. In order to compensate
for this we wrote specialized version of the procedures
symbol->string, gensym, get and put. While the de-
tails of the code are system dependent (since they re-
quire non-standard procedures) the algorithms used
are the same on all systems.

We now turn to a more detailed look at the actual code
produced by the three compilers. Figure 6 shows the results
of compiling (for the MC68000) the following Scheme pro-
gram by Gambit (version 1.3), Orbit (version 3.1), and Liar
(Beta release of 7.0):

(define (reverse-map f 1)
(define (loop 1 x)
(if (pair? 1)
(loop (cdr 1) (cons (f (car 1)) x))
>0
(loop 1 7O)))

The code in Figure 6 has been slightly modified for presenta-
tion purposes. We have converted the instruction sequences
from each system’s private assembler notation into “stan-
dard” Motorola syntax. In addition, the code from all three
compilers actually includes interspersed words used by the
garbage collector and interrupt handlers. These have been
removed to make the code easier to read. They do not affect
performance, since they are not executed in the usual case.

We do not pretend to have undertaken a detailed study
of the code from these three compilers. However, from ex-
amination of a number of programs and after discussions
with several of the implementors (David Kranz for Orbit,
Chris Hanson and Guillermo Rozas for Liar) we can supply
the following observations that account for a large part of
the differences in output code. These comments apply to

Gambit used with the MC68000 and MIPS back ends:

Object Representation
Gambit use the three low bits of a data item for the
type tag, with 0 representing fixnums and other type
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Gambit Orbit Liar
; L1 is entry point ; D16 is entry point ; reversemap is entry point
; on entry: ; on entry: ; on entry:
; di=F, d42=L, a0=CONT (return adr) ;  al=F, a2=L, (sp)=CONT (return adr) ; 4(sp)=F, (sp)=L, 8(sp)=CONT (return adr)
L1: D15: reversemap:
beq L8 ; arg count = 2 7 move.l al,-(sp) ; save F cmp.l (a6),ab ; interrupt check
jsr 20 (a6) ; arity error move.l #65649,-(sp bge interrupt
LS: move.l a2,al ; ARG1 <-- L clr.l -(a7) ; ARG2 <-- ()
move.l d6,d3 ; X <—— () move.l d47,a2 ; ARG2 <-- () move.l 8(a7),-(a7) ; ARG1 <-- L
btst 42,47 ; (pair? L) bra LOOP_12  ; jump to LOOP bra loop5
bne L6 C_27: loop.5:
bra L5 ; jump to LOOP move.l a2,al ; RESULT <-- X cmp.l (a6),ab ; interrupt check
L7: lea 8(sp),sp ; deallocate frame bge interrupt
move.l d1,-(a3) ; ARG3 <-- moveq #-2,d5 ; return with 1 arg move.l (a7),d0 ; (pair? L)
move.l a3,d1 ;  (cons RESULT X) move.l (sp),a5 bfextu d0{0:6},d1
move.l (sp)+,-(a3) jmp (ab) cmp.b  #1,d1
move.l d1,d3 C_38: beq label_14
move.l (sp)+,al ; ARG2 <-- (cdr L) cmp.1l d7,al ; (null? L) move.l 4(a7),8(a6) ; RESULT <-- X
move.l -(al),dl bne C_15 lea 16(a7) ,a7 ; deallocate frame
move.l d1,d2 bra Cc_27 and.l d7,(a7) ; return
move.l (sp)+,d1 ; ARGl <-- F C_15: rts
move.l (sp)+,a0 ; restore CONT move.l a2,-(sp) ; save X label_14:
cmp.l 64(ab),a3 ; heap overflow? move.l al,-(sp) ; save L pea continuation?2 ; setup CONT
bece L9 pea D20 ; setup CONT or.b  #-0x60, (a7)
jsr 32(a6) ; heap overflow move.l 1(al),al ; ARGl <-- (car L) and.l d7,d0 ; ARG1 <-- (car L)
L9: move.l 16(sp),a0 ; jump to F move.l d0,a0
btst d2,d7 ; (pair? L) moveq #2,d5 ; with 1 arg move.l (a0),-(a7)
bne L6 jmp *21(d7) move.l 16(a7),-(a7) ; jump to F
L5: D20: jmp 0x68(ab) ; with 1 arg
move.l a0,-(sp) ; save CONT jsr *9(d7) ; TEMP <-- continuation?2:
move.l dl,-(sp) ; save F move.l al,1(a4) ; (cons RESULT X) cmp.l (a6),ab ; interrupt check
move.l d2,-(sp) ; save L move.l 8(sp),-3(ad) bge interrupt
move.l d3,-(sp) ; save X move.l 4(sp),a0 ; ARGl <-- (cdr L) move.l ab,do0 ; ARG2 <--
move.l d2,al ; ARG1 <—- (car L) move.l -3(a0),al or.1  #0x4000000,d0 ; (cons RESULT X)
move.l (al),dil move.l a4,a?2 ; ARG2 <-- TEMP move.l 8(a6), (ab)+
lea L7,a0 ; setup CONT lea 12(sp) ,sp ; deallocate frame move.l 4(a7),(ab)+
move.l 8(sp),al ; jump to F LOOP_12: move.l d0,4(a7)
moveq #-1,d0 ; with 1 arg move.l al,dé ; (list? L) move.l (a7),d0 ; ARG1 <-- (cdr L)
jmp (al) and.b #3,d6 and.l d7,d0
L6: cmp.b #3,d6 move.l d0,a0
move.l d3,d1 ; RESULT <-- X bne C_27 move.l 4(a0), (a7)
jmp (a0) ; return bra C_38 bra loop5 ; jump to LOOP




tags chosen to optimize references to the car and cdr
of pairs and direct jumps to procedures. Orbit uses the
two low bits for the type tag, and also chooses 0 for
fixnums. Liar uses the top six bits for a type tag, with
0 representing #F. Orbit and Liar use a single object to
represent the empty list and #F. Gambit distinguishes
between these two objects and only #F counts as false.

Free Pointer Alignment
Gambit keeps the free pointer octa-byte aligned at all
times, potentially wasting space when large numbers
of small objects are created. Orbit and Liar maintain
only quad-byte alignment.

Consing
Gambit performs consing by in-line code expansion,
as does Liar. Orbit performs this with a call to an
external procedure in order to allow GC checking to
be done when the allocation occurs.

GC Detection

Gambit detects the need for garbage collection by per-
forming a test at the end of any basic block in which
allocation occurs. Orbit places this test in the code
that performs the allocation itself, while Liar tests at
both the entry to a procedure and the entry to every
continuation point. Gambit’s garbage collector is not
yet fully functional on all of the back ends. The code
and measurements reflect the full cost of detecting the
need for GC, but none of the benchmarks actually in-
voked the garbage collector.

Interrupt Testing
Gambit does not test for interrupts, since it assumes
a stand-alone environment rather than a program de-
velopment environment. This will be changed for the
parallel implementations in order to allow timer in-
terrupts to produce a fair scheduler. Liar combines
the garbage collection and interrupt check into a sin-
gle short code sequence executed at the start of every
procedure and continuation. We do not know how this

is handled in Orbit.

“Unknown” Procedure Call

When calling a procedure that can’t be identified at
compile time, Gambit loads 3 arguments, the continu-
ation and the argument count into registers (the stack
is used to hold the other arguments if there are any).
Any procedure that may be called in this manner will
begin with a procedure label and the code will compare
the number of arguments passed with the number of
parameters expected and will move the arguments or
trap as appropriate. Liar passes the arguments and the
continuation on the stack. It uses an elaborate mech-
anism that distinguishes calls to procedures named by
variables at the top level of a compilation unit from
other procedure calls, and the interpreter supplies a
number of trampolines that are used to combine a link-
time arity test with runtime argument motion. An ex-
planation of one part of this mechanism can be found
in [16]. Orbit passes the arguments in registers and
the continuation on the stack. A mechanism similar
to, but somewhat simpler than, that of Liar is used for
arity checking.

T Compatibility
Orbit 1s actually the compiler for a distinct language,

T, that is closely related to Scheme. All of the bench-
marks were run in Scheme compatibility mode, whose
performance cost is not clearly understood. We rewrote
tak and takl in T and compared the actual code and
found no differences between the native T version and
the Scheme compatibility mode version.

There was one very noticeable cost in the T implemen-
tation that is not shared by Gambit or Liar. This is
the coding of the primitive procedure pair?. Orbit’s
two bit type tags do not distinguish pairs from the
empty list (so as to optimize T’s 1ist? operation).
Thus pair? is expensive with Orbit when compared
to the other compilers.

B PVM Usage Statistics

The MC68000 back end allows programs to be compiled in
a way that gathers measurements of dynamic usage of each
of the PVM instructions and the types of operands used.
This information can be used for performance analysis, and
has been used to allow us to choose what parts of the actual
implementation of PVM deserve careful optimization. The
mechanism is both simple and very efficient: as each basic
block is constructed, the front end counts the number of
each kind of PVM instruction and operand class used in the
basic block. The back end creates a counter for each basic
block and generates code to increment that counter when
the block is entered at runtime. At the end of a run, these
counters are used to recreate the statistics.

The resulting code runs 30 to 40% slower than unmea-
sured code, allowing sizable programs to be measured and
analyzed. See Figure 7 for a synopsis of the dynamic mea-
surements taken from running Gabriel’s[6] version of the
Boyer-Moore theorem prover benchmark.

Operand Usage Frequency

reg stk obj 1bl glob mem
66.4% 24.4% 4.5% 4.0% 04% 0.0%

Instruction Usage Frequency

COPY LABEL APPLY COND JUMP MAKE CLOSURES
42.9% 20.4% 161% 11.9% 8.5% 0.0%

Detailed Instruction Breakdown

LABEL APPLY COND
simple:  61.2% car: 45.0% pair?: 38.8%
continuation:  28.1% cdr:  25.4% null?: 28.9%
procedure: 10.5% coms: 11.1% eq?: 13.0%

Figure 7: Dynamic Measurements for Boyer Benchmark

In gathering these measurements, we used a version of
Boyer that is enclosed in a let expression. This accounts for



the lack of global variable references. The procedures put
and get (which dominate the performance of the bench-
mark) were implemented using assq.

There are only a few comments to be made on these re-
sults. First, label operands can appear either directly in a
JUMP instruction or as a source operand to another instruc-
tion (for example, it may be stored into a local variable for
later use). In this benchmark, labels appeared almost ex-
clusively (99.9% of the time) in this latter context. The
primary use of direct jumps i1s to branch around other arms
of a conditional when the conditional isn’t in the tail posi-
tion of an expression. Most conditionals in Boyer appear in
tail position; we don’t know how common this is in general
Scheme code.

The breakdown of the label code is interesting, since it
shows the dynamic execution frequency of the various types
of label. Recall that simple labels and continuations actually
generate no code, so there is no runtime associated with their
use. A procedure label, however, requires an arity check
and may require moving values from argument locations to
parameter locations.

The APPLY instruction is used by the front end to request
open coding of a primitive that the back end supports. Fig-
ure 7 shows the breakdown by primitive procedure of these
operations that occur when Boyer runs. The table shows
only those open coded primitives that account for more than
10% of the run time, although the actual statistics contain
numbers for all primitives. In fact, a good deal of detail has
been omitted from all of these tables to make the presenta-
tion more tractable.

COND is used for all conditionals. In the case of Boyer,
80.7% of the predicates encountered were open coded ver-
sions of pair?, null?, or eq?. Of the remaining 19.3% of
the predicates, 18.8% are not open coded and the remaining
open coded predicates occur under 0.1% of the time.



