
A Parallel Virtual Machine forE�cient Scheme CompilationMarc Feeley and James S. Miller�Brandeis UniversityWaltham, MA 02254-9110AbstractPrograms compiled by Gambit, our Scheme compiler, achieveperformance as much as twice that of the fastest availableScheme compilers. Gambit is easily ported, while retainingits high performance, through the use of a simple virtualmachine (PVM). PVM allows a wide variety of machine-independent optimizations and it supports parallel computa-tion based on the future construct. PVM conveys high-levelinformation bidirectionally between the machine-indepen-dent front end of the compiler and the machine-dependentback end, making it easy to implement a number of commonback end optimizations that are di�cult to achieve for othervirtual machines.PVM is similar to many real computer architectures andhas an option to e�ciently gather dynamic measurements ofvirtual machine usage. These measurements can be used inperformance prediction for ports to other architectures aswell as design decisions related to proposed optimizationsand object representations.1 IntroductionOur primary interest is in e�cient mechanisms for imple-menting future-based symbolic computation on currentlyavailable MIMD machines. Having already done work in thisarea using the Scheme language (augmented with the futuremechanism[8][13]) we are now extending our interpreter-based results into the realm of compiled Scheme code. Forthis purpose we undertook the implementation of a newScheme compiler, Gambit, with the intention of creatinga simple environment for experiments across a wide rangeof hardware platforms and over a range of implementationtechniques. The major design goals for Gambit, from theoutset, were:1. Code generation for multiple target machines, span-ning both common CISC computers (DEC Vax, Mo-torola MC68000) and RISC computers (HP Precision�This research was supported in part by the Open Software Foun-dation, the Hewlett{Packard Corporation, and NSF equipment grantCDA{8715228. Marc Feeley is on study leave from the Universit�e deMontr�eal.

Architecture (HPPA), MIPS R2000, Motorola 88K,BBN Monarch). For our purposes it was importantthat retargetting the compiler be simple and yet stillyield a high performance system. We rejected exist-ing compiler-based Scheme systems (T with Orbit[11],CScheme with Liar[12]) mainly because of the di�-culty of retargetting and modifying the compilationstrategy of these large systems.2. High performance of output programs. We are notconcerned with program development features. For ex-ample we do not allow the user to interrupt executionof a program other than by aborting it.3. Support for task creation and synchronization throughimplicit data operations, possibly augmented by con-trol constructs. The future construct provides thesefeatures compatibly with most other features of theScheme language and was, therefore, our initial focus.We are also interested in exploring other parallel con-trol and data constructs.While the �rst and second goals are somewhat at oddswith one another, we believe that architectural comparisonsand architecture independent implementation techniques willbe among the important results from our research. We havetherefore chosen to build a compiler based on an easily re-targetted virtual machine even though it may result in lesse�cient compiled code. Fortunately, our experience withGambit indicates that a well chosen virtual machine doesnot result in any noticeable performance penalties.2 PVM: A Parallel Virtual MachineIn designing our virtual machine we tried to avoid a pair oftwin hazards that we have seen in other virtual machinesused for compilation. On the one hand, there are virtualmachines (like MIT's scode[3], or the code objects of UMBScheme[4]) that are so close to the source language that themachine independent front end of the compiler is unable toexpress important optimizations in the virtual machine's in-struction set. This places a major burden on the back end,which becomes responsible for analysis of the virtual ma-chine code { a task very nearly as di�cult as the originalcompilation task. On the other hand, there are virtual ma-chines (like Multilisp's mcode[8] or Scheme 311's byte code)that match neither the actual target machine nor the sourcelanguage. The result is either a complex back end that againattempts to recover data and control 
ow information from



the virtual machine, or a simple back end that producespoor code.Our Parallel Virtual Machine, or PVM, is intended tofall in between these kinds of machines. We allow each backend to specify a wide range of \architectural details" of thevirtual machine, including a description of primitive proce-dures available on the target machine and the number ofgeneral purpose registers. As a result, we can think of PVMas a set of virtual machines, depending on the back end de-scription that is used. Each speci�c virtual machine is closeto its target machine, yet the common abstraction hides theprecise details from the front end. PVM also remains closeto the source language since its small instruction set closelymatches the Scheme language itself.PVM can be viewed as a bidirectional communicationmedium between the front and back ends of the compiler.The traditional role of a virtual machine, of course, is to con-vey information from the front end to the back end. PVM,however, conveys information in the reverse direction as well:� The number of general registers.� The procedure calling convention.� The format of closures.� Enumeration and description of primitive procedures.� Machine-speci�c declarations.We view this bidirectional communication as an impor-tant component of Gambit's organization. The communica-tion is supported by a language for describing implementa-tion-level objects, which is the basis of the PVM abstraction.Four types of objects are manipulated using this language:primitive procedures, data objects, stack frames, and argu-ment/parameter blocks. Corresponding to each of these isa means of reference: the name of the primitive procedure,slots within a data structure, slots within a stack frame,and argument/parameter number. This particular level ofabstraction is convenient for both the front and back ends.For example, both the back and front ends agree to discussstack slots as positive integers, in units of Scheme objects,increasing as objects are pushed on the stack. This is clearlyconvenient for the front end, and the back end can easilytranslate this into appropriate o�sets from a base register,taking into account the number of bytes per argument, thedirection of stack growth, and the choice of stack disciplineon the target machine.2.1 OperandsPVM has seven classes of operands, as shown in Figure 1,which naturally divide storage into disjoint areas: registers,current stack frame, global variables, heap storage, constantarea, and code area. This makes it easy to track values and(with the exception of mem operands) removes the traditionalaliasing problem.Neither the stack nor the heap pointer is directly visible.Instead, the stack is accessible by indexing o� of a virtualframe base pointer that is modi�ed as part of the proce-dure call mechanism. The heap is accessed implicitly whenallocating objects and explicitly by indexing relative to ex-isting heap-allocated objects. By making the stack pointerand heap pointer invisible, we allow the back end to make anumber of optimizations based on the target architecture.The mem operand, which gives access to heap storage,allows nesting of other operands in its base component. Ourfront end, however, uses it only for access to closed variables;

Operand Meaningreg(n) General purpose register nstk(n) Nth slot of the current stack frameglob(name) Global variablemem(base, o�set) Indexed reference (base is anoperand, o�set is a constant)obj(object) Constantlbl(n) Program label?loc Parallelism support, see Section 2.7Figure 1: PVM Operandswe leave other data structure accesses to the more generalAPPLY instruction. As a result, the ability to nest otheroperands within mem is not actually in use, although theback ends support it.Finally, we note that all operands can be used as thesource of values. However values cannot be stored into obj,lbl, or ? operands.2.2 Instructions for Sequential ComputationThe PVM instruction set provides a small set of generalinstructions to e�ciently encode the operation of Schemeprograms. Like many compilers, Gambit represents the pro-gram as a set of basic blocks. This representation is ap-parent in the PVM code. Each basic block is headed by acode label, followed by the code for the data operations inthe block, and ends with a branch instruction. Our currentinstruction set for sequential computation consists of fourkinds of code labels, three data manipulating instructions,and three branch instructions.An important part of Gambit's communication mecha-nism is the description of a set of procedures, known as prim-itives, that are supported by the back end. All primitivesare available through the general procedure call mechanism,but some can also be open coded by the APPLY and CONDinstructions. The front end requires the back end to supplya speci�c minimal set of (about 35) primitive operations;but the back end can, in fact, specify any procedure as aprimitive. The description of each primitive indicates its ar-ity and strictness. It also indicates whether it can be opencoded, and whether it can return a placeholder as a value.Thus, list has unbounded arity, is not strict in any argu-ment, and never returns a placeholder, while set-car! hasarity two, is strict in its �rst argument but not its second,and never returns a placeholder.PVM's handling of stack frames is unusual, and is de-scribed in Section 2.3. The size parameter to the label andbranch instructions is used to support this mechanism, andis described in detail in that section.The description of the sequential PMV instructions fol-lows. Figure 2 shows a simple program (iterative factorial),along with its PVM code and the code generated for theMC68020. A comparison to code from other compilers isincluded in Appendix A.LABEL(n, size)A simple label, n, which may appear only in JUMPand COND instructions.



(##declare (standard-bindings) (fixnum))(define (fact n) ; Iterative factorial(let loop ((i n) (ans 1))(if (= i 0)ans(loop (- i 1) (* ans i)))))Virtual Machine Code MC68020 CodeLABEL(1,0,PROC,1) L1: bmi L7 ; Entry pointjsr 20(a6) ; Arity errorL7:COPY(obj(1),reg(2)) moveq #8,d2COND(##fixnum.=,reg(1),obj(0),5,6,0) move.l d1,d0beq L5LABEL(6,0) L6:APPLY(##fixnum.*,reg(2),reg(1),reg(2)) asr.l #3,d2muls.l d1,d2APPLY(##fixnum.-,reg(1),obj(1),reg(1)) subq.l #8,d1COND(##fixnum.=,reg(1),obj(0),5,6,0) move.l d1,d0bne L6LABEL(5,0) L5:COPY(reg(2),reg(1)) move.l d2,d1JUMP(reg(0),0) jmp (a0)Figure 2: Sample Program with Gambit OutputLABEL(n, size, CONT)A continuation label, similar to a return address inother architectures. These are not the objects returnedto a Scheme program that calls call-with-current-continuation, but are an architectural feature to sup-port fully tail-recursive behavior[15][18].LABEL(n, size, PROC, desc)A procedure label with desc de�ning the number(or range) of arguments expected. This instructionmodi�es the stack and registers to account for any dis-crepancy between desc and the number of argumentsactually passed (as speci�ed by the JUMP instructionused to arrive here).LABEL(n, size, PROC, desc, CLOSED)A closure label, similar to a procedure label, butthe label n may appear only within a closure objectcreated by MAKE CLOSURES.APPLY(prim, operand1, . . ., [loc])Apply the primitive procedure prim to the operandsand store the result in loc (or discard it if loc is notspeci�ed).COPY(operand, loc)Copy the value of operand to the location speci�ed byloc.MAKE CLOSURES(description1/. . ./descriptionn)Create n closure objects. A closure object con-tains a code label and a number of data slots. Eachdescription speci�es a location into which a closureobject will be stored, the closure label for the code of

that closure, and operands to be stored in the closure'sdata slots.COND(prim, operand1, . . ., t lbl, f lbl, size)A conditional branch based on the value of prim ap-plied to the operands (on false branch to f lbl, other-wise to t lbl, both of which must specify simple labels).JUMP(operand, size)Jump to the simple or continuation label speci�ed bythe value of operand.JUMP(operand, size, nargs)Jump to the address speci�ed by operand. This in-struction also states that nargs have been placed inthe appropriate argument passing locations. The valueof operand must be either a procedure label, a closureobject, or a primitive procedure object.2.3 Stack FramesPVM deals with the stack frame in a novel manner, sup-plying the current stack frame size in the LABEL, COND, andJUMP instructions. Our approach avoids the problems inher-ent in using virtual machines either based purely around atop of stack pointer or based purely upon a frame pointer.Using a stack pointer leads to varying o�sets for a givenstack slot and ine�cient code on machines lacking explicitstack instructions. Using only a frame base leaves the topof stack unknown at garbage collection time and requiresupdate instructions on entry and exit of every basic block.While the actual instruction set of PVM makes use of aframe pointer and frame size information, we prefer to think



of the machine as having both a stack pointer and a framepointer. Since the frame size always speci�es the distancebetween the stack pointer and the frame pointer, eitherpointer can be recomputed from the other. JUMP and CONDinstructions cause the stack pointer to be recalculated, whileLABEL instructions recalculate the frame pointer. Within abasic block, the stack pointer is updated based on the o�-sets of stk operands encountered so that it always coversthe active part of the stack frame.The choice between stack pointer and frame pointer dis-cipline is speci�c to the back end (see Section 3.3). We takeadvantage of the fact that our front end produces the PVMcode for an entire basic block before beginning native codegeneration. For each instruction, the front end calculates atight bound on the size of the stack frame using knowledgeof which slots are referenced between the current instruc-tion and the end of the block. It supplies this informationto the back end, which can then easily implement any one offour mechanisms: the two pointer model above, or a singlepointer model (frame base, frame top, or stack). The singlepointer models are derived from the two pointer model byrealizing that:� Both the frame's current size and its size at entry tothe current basic block are known at code generationtime.� These frame sizes along with any single pointer specifythe other two pointers.2.4 Calling ConventionA second novel aspect of our virtual machine design is theimplementation of the calling convention. PVM itself im-poses no speci�c mechanism, but allows the back end tochoose an appropriate mechanism for general procedure calls.The front end will generate PVM instructions for procedurecalls that load argument values into registers or stack loca-tions as speci�ed by the back end. At procedure and closurelabels, the back end is responsible for emitting code, if neces-sary, to move arguments from their placement by the callerto the location required by the callee. This is based on thenumber of arguments actually passed at runtime comparedwith the number of parameters required by the procedure.In cases where the front end can analyze a procedure callsu�ciently to avoid the general mechanism, it can produceoptimized code by using simple labels (rather than proce-dure or closure labels) as the target address. Unlike a pro-cedure label, a simple label implies no stack reformattingoperations. Thus, the calling convention used for jumps tosimple labels is essentially under the control of the front end,while for jumps to procedure or closure labels it is under thecontrol of the back end.The back end speci�es, in particular:1. Where arguments are passed, based on the numberof arguments in the call. This is used by the frontend to generate the code prior to a JUMP instruction.Our front end restricts the choices to combinations ofregisters and stack slots.2. Which register contains the value returned by proce-dures.3. Where the parameters are located after a LABEL in-struction is executed. Since procedure and closurelabels modify the stack and registers, the back end

speci�es where values are located after this reorgani-zation has taken place. For a closure label, the backend also speci�es the location of the pointer to the clo-sure object so that the front end can generate PVMinstructions to access its data slots. Our front end alsorestricts these to be registers or stack slots.The back end also decides how the argument count ispassed from the JUMP instruction to the destination proce-dure or closure label. This decision is internal to the backend since it is needed only to accomplish moving argumentsfrom the locations where they are passed by the caller to thelocations where they are expected by the destination code.All of this code is included in the back end's expansion ofthe JUMP and LABEL instructions.2.5 First-Class ProceduresSince Scheme programs often make use of �rst-class proce-dures, we take a short digression to discuss the mechanismGambit uses to implement them. In general, procedurescarry with them the values of any free variables that theyreference, and we use the traditional name, closure, to re-fer to the representation used when a procedure referencesone or more free variables. Procedures with no references tofree variables can be represented simply by the address ofthe code that implements them: in PVM, either a primitiveprocedure object or a procedure label.Gambit allocates closures on the heap. They consist ofa back-end dependent header region (typically instructionsexecuted when the closure is invoked) followed by storagefor the values of the free variables needed by the procedure.Each entry in the storage area contains either the value ofa free variable (if it is known to be immutable) or a pointerto the variable's storage location. Figure 4 shows the clo-sure object created from the code shown in Figure 3 (seeAppendix A for further implementation details).The runtime storage allocation required by closures isexpensive compared to other procedure representations, andGambit attempts to minimize the number of closures thatare created. The front end performs a combined data andcontrol 
ow analysis to discover all procedure calls that in-voke a given procedure. If all calls can be located, standardlambda lifting is performed; the net e�ect is to add the freevariables to the parameter list of the procedure and to mod-ify all of the procedure calls to pass these values as argu-ments. The procedure then has no free variable referencesand is represented as a procedure label.A second technique used to minimize the size of closures,and possibly eliminate them entirely, is to subdivide the freevariables that are referenced. References to global variablesdo not need to be stored in the closure since their values aredirectly accessible at runtime (Gambit supports only onetop level environment). Similarly, variables that are knownto have constant values (either because of a declaration orfrom data 
ow analysis) can be eliminated from the list offree variables that must be stored in the closure. Thus,the storage area of a closure contains values for the formalparameters of lexical parents, which are referenced by thebody of the procedure, and which the compiler cannot inferto have constant values.Closures are created by the MAKE CLOSURES instruction.This instruction allows multiple closures to be made \si-multaneously" to provide for mutually recursive procedures.Considering the creation of the closures to occur atomically



(define (make-adder x)(lambda (y) (+ y x)))The following code (PVM and corresponding MC68000) isthe body of make-adder. It is responsible for creating aclosure to represent the value of the lambda expression:; PVM -- LABEL(1,0,PROC,1)L1: bmi L5jsr 20(a6); PVM -- MAKE_CLOSURES(stk(1),3,reg(1))L5: lea -16(a3),a3 ; allocatemove.l a3,a2move.l #0x10f8,(a2)+ ; length and typeaddq.l #2,a2 ; unused wordmove.l a2,-(sp) ; store in stk(1)move.w #0x4eb9,(a2)+ ; store JSR opcodelea L3,a1move.l a1,(a2)+ ; destinationmove.l d1,(a2)+ ; data slot; PVM -- COPY(stk(1),reg(1))move.l (sp)+,d1; PVM -- JUMP(reg(0),0)cmp.l 64(a5),a3 ; GC checkbcc L6jsr 32(a6)L6: jmp (a0)The following code is the body of the lambda expression:; PVM -- LABEL(3,0,PROC,1,CLOSED)L3: move.l (sp)+,d4 ; reg(4) <--subq.l #6,d4 ; closure pointermove.w d0,d0 ; arity testbmi L7jsr 24(a6); PVM -- COPY(mem(reg(4),6),reg(5))L7: move.l d4,a1 ; load x frommove.l 6(a1),d5 ; data slot; PVM -- APPLY(##fixnum.+,reg(1),reg(5),reg(1))add.l d5,d1; PVM -- JUMP(reg(0),0)jmp (a0)Figure 3: Make-adder: A closure generatorlength and typeunused JSRcode addressslot 1: value of xFigure 4: Closure for make-adder (for the MC68000)

(with respect, in particular, to garbage collection) allows fore�cient implementation in some back ends. To make thismore concrete, consider the Scheme program make-addershown, with its PVM code, in Figure 3. The PVM code forthe body of make-adder includes the instructionMAKE CLOSURES(stk(1),3,reg(1))which creates one closure object (shown in Figure 4) andstores it on the stack at stk(1). The closure contains spacefor one value, initialized from the contents of reg(1) (wherethe value of x happens to be), and the closure label for thebody of the lambda expression is label 3.The second form of the JUMP instruction is used for call-ing procedures and speci�es the number of arguments beingpassed. The back end is responsible for emitting code thatstores this argument count and arrives at the appropriatedestination address. In the case of a closure, the destina-tion is encoded in the closure object itself in a back-end de-pendent manner by the MAKE CLOSURES instruction. Thus,the back end must arrange for a jump to a closure to beindirect, whereas a jump to a simple procedure is direct.Furthermore, the address of the closure itself must be madeavailable to the code at the closure label, since it is neededto reference the values of the free variables stored in theclosure.While PVM does not further specify the interface be-tween the JUMP instruction and the destination LABEL, all ofour back ends have made the same implementation decision.As shown in Figure 4, the header of our closure objects isa short instruction sequence that jumps to the destinationlabel and stores the address of the closure's data area intoa known register using the target machine's jump-and-linkinstruction (JSR on the MC68000).2.6 DeclarationsLike most other Scheme implementations, Gambit providesa declaration mechanism that allows programmers to tellthe compiler that it may violate certain assumptions of thebasic language. For example, in Gambit, the declarationstandard-bindings allows the compiler to assume that ref-erences to global variables with the names of the primitiveoperations are, in fact, references to those primitives. Thisallows the front end to generate an APPLY, COND, or JUMP in-struction that references the primitive directly rather thanreferencing a global variable as required by the languagede�nition. Similarly, the fixnum declaration allows the com-piler to generate code for the standard numeric operationsthat assumes all numbers are small integers and suppressesover
ow detection.Some of these declarations, like standard-bindings, arerelevant only to the front end, and are available with allback ends. Other declarations, like fixnum, are meaningfulto only some back ends. In Gambit, we permit the backend to a�ect the code emitted by the front end based on thecurrent set of declarations as maintained by the front end.For example, the primitive + might be usable in an APPLYinstruction if either the declaration fixnum or flonum is ine�ect. In this case, the front end asks the back end whatprimitive could be used instead of +, specifying the decla-rations that are currently in e�ect. The back end respondswith either ##flonum.+ or ##fixnum.+ (or simply + if noother operation is available).



2.7 Parallelism in PVMWe have introduced, so far, the sequential subset of PVM.One of our major goals, however, is to e�ciently support thefuture mechanism for parallel computing. In this mecha-nism, a parent spawns a child task and uses a placeholder[14]to allow the parent task to refer to the value being computedby the child. In earlier systems supporting futures ([8], [9],[13]) there is a major cost associated with spawning a task,arising from the need to create a separate thread of con-trol and a placeholder at the time the child task is spawned.PVM has three additional instructions and one operand typeto make future-based parallel computation e�cient. Ourmodel is inspired by conversations with Halstead based ona brief mention in [9].LABEL(t, size, TASK, w)De�ne a task label, t that marks the beginning of atask. A task label can be used in place of a simplelabel. A jump to a task label, however, spawns a new(possibly parallel) task to execute the code betweenthe task label and its corresponding DONE instruction.The label w is where the parent task continues execu-tion after the new task is spawned.LABEL(w, size, WORK)De�ne a work label, w, that speci�es where a taskshould resume execution after it spawns a new task.DONE End the current task and deliver the result.These three instructions can be translated by the backend to provide the same future mechanism used by earliersystems or to provide lazy futures. Lazy futures treat taskspawning as a special kind of procedure call. When a taskis \called" it leaves a marker on the stack so that anotherprocessor can recreate the parent task (in PVM, this is per-formed by the task label). The processor is now e�ectivelyexecuting on behalf of the child task and the parent task issuspended.Should another processor decide to resume the parenttask, that processor splits the stack at the marker, allocatesa placeholder and begins executing the code of the parenttask, using the placeholder to represent the value computedby the child task. PVM provides no direct support for thisoperation. Instead, a procedure is supplied by the runtimesystem that understands the format of stack markers andthe code supporting task termination.When control in the child task returns to the stack markercreated by a task label, the child will either return as a nor-mal procedure (if no other processor resumed the parenttask) or store its result in the placeholder and look for someother processor's parent task to resume. In PVM, this oc-curs when a DONE instruction is executed.In addition to this support for spawning and terminat-ing tasks, PVM provides support for the underlying place-holder data type through the use of the ? operand annota-tion. When Gambit compiles code for a parallel back end itplaces a ? around appropriate operands that are potentiallyplaceholders. \Appropriate operands" includes the strictoperands (as speci�ed by the back end) in APPLY and CONDinstructions, as well as the destination operand of JUMP in-structions. By using information supplied by the back end,the front end can determine whether the result of a primitiveprocedure can be a placeholder; this information is then usedto suppress generation of the ? in references to the value.

3 Optimization TechniquesGambit employs a number of standard optimizations, inboth the front and back ends. This section enumerates thecurrent set of optimizations (without further discussion) pri-marily for completeness. We expect to add additional opti-mizations in the future.3.1 Front End Optimizations� Preferentially allocating temporary values to registers.� Using a direct JUMP to a simple label for calling knownprocedures.� Tracking multiple homes for variables.� Keeping values in registers as long as possible by track-ing register contents and saving them on the stack`lazily.' This entails merging variable home informa-tion around conditional branches.� Lambda-lifting.3.2 Optimizing the PVM CodeThese optimizations are performed on the PVM code itself,and are completely independent of both the source languageand the target machine.� Branch cascade removal by replacing a branch withthe instruction at the destination.� Reordering basic blocks to maximize the number offall-throughs.� Dead code removal.� Common code elimination.3.3 Back End OptimizationsIn addition to the traditional back end optimizations (e.g.branch tensioning), Gambit makes use of its stack disciplineabstraction to optimize the allocation and deallocation ofstack frames. It is easy for the front end to use stk operandsin an exclusively stack-like manner (i.e. it only stores intoslots into which it has already stored or into the next higherslot). The front end does this, and consequently on machineswith \push and pop" instructions (like the MC68000), theback end incrementally allocates the frame by pushing valueson the stack as the slot number in stk operands increases.Similarly, the frame is incrementally deallocated by poppingvalues when the frame size decreases.On machines lacking these instructions, such as the MIPSand HPPA, the back end uses a frame top pointer implemen-tation. This allows the frame to be allocated or deallocatedwith a single instruction at the end of each basic block (con-veniently �lling the branch delay slot on these machines).4 Other approachesWe have examined three kinds of virtual machines typi-cally used in implementing Lisp systems: byte codes, syntaxtrees, and register transfer languages. PVM belongs to thislast class, and represents a particular engineering approachto the design of such an intermediate language. This sec-tion compares PVM to other virtual machines used by theScheme community.



4.1 Byte CodesThere are a number of well known Scheme implementa-tions based on a byte code interpreter: Indiana University'sScheme 311 (and its descendants MacScheme and Texas In-struments PC Scheme) and Halstead's Multilisp. In the in-terpreted systems for which they were developed, byte cod-ing provides two important features: speed of dispatch onmost hardware platforms, and code space compression (ifthe opcodes are based on static instruction frequency statis-tics).As an intermediate representation for compilation, how-ever, byte code leaves much to be desired. First, all of thebyte code systems mentioned above are based on a purestack machine. Since many important hardware platformsare not stack based, the process of compiling native codefrom the byte code requires recovering the higher-level in-formation about intermediate values that was removed ingenerating the byte code. Furthermore, the creation of thebyte code program does not produce information about vari-able referencing patterns, and this is essential to permit ef-�cient use of hardware registers in the equivalent compiledcode.4.2 Code TreesIn interpreted Scheme systems that implement much of thesystem code in Scheme, byte coding is problematic since thebyte coded programs have no natural representation withinScheme itself (aside, of course, from byte strings). An ap-pealing alternative is to represent a program as a syntaxtree, whose components are very similar to the pairs and vec-tors of standard Scheme. This approach is taken in MIT'sCScheme scode[12] (derived from the actual instruction setof the Scheme '79 VLSI chip[10]) and the University Mas-sachusetts Boston UMB Scheme system[4]. The type codeof each node in the tree is derived from the syntactic ex-pression (special form or combination) it represents in theprogram. The leaves of the tree are constants and variablereferences.This representation is easier to deal with in a Scheme pro-gram than the byte codes, and faster to interpret than theoriginal list structure of the program as provided by read.One of the major advantages of a code tree representationis that it can be easily converted back into a program equiv-alent to the original Scheme program from which it was de-rived. Systems can, and do, use this equivalence for a varietyof debugging tools such as code inspectors and pretty print-ers. This very fact, however, argues against the syntax treeas a good intermediate code for compilation: the represen-tation provides no information about commonly referencedvariables, nor any results of data or control 
ow analysis.4.3 Register Transfer LanguagesNeither of the earlier representations were envisioned as in-termediate representations for compilation, and so it is notsurprising that they serve this purpose rather poorly. We arefamiliar with three intermediate languages designed speci�-cally for this purpose, however: MIT's RTL (register trans-fer language), LeLisp's LLM3[5], and PSL's c-macros[7].MIT's RTL is an ad hoc language evolved from the ma-chine description language in [1], through a version used inan early compiler[17], and now part of the Liar compiler.

Presently, RTL consists primarily of ASSIGN commands sim-ilar to the COPY and APPLY commands of PVM, TEST com-mands similar to the COND of PVM, special purpose instruc-tions to call compiler support routines in the runtime sys-tem, frame adjust commands, and commands to generateprocedure headers.Internally, Liar (like Gambit) has a back end module thatprovides a description of the target machine to the frontend of the compiler. Liar's front end is responsible for morecompilation decisions than Gambit's, and consequently thedescription is at a much lower level of detail. It consistsof information about the addressing granularity of the ma-chine, the number of bits used for type codes and data, andmappings from the front end's special purpose registers tothe target machine's physical registers. The front end ofLiar relies on and directly manipulates four virtual machineregisters: the dynamic link register (for return addresses),a stack pointer, free pointer into the heap, and a pointer toa set of memory locations (C variables) shared with the in-terpreter. In addition, the front end supports the notion ofregister sets by providing the back end with general purposeprocedures for allocating, deallocating, and liveness track-ing for groups of registers speci�ed by the back end. Thisis used, for example, to allow the back end to separate theuse of general purpose and 
oating point (co-processor) reg-isters.The primary interface between the front and back endsof Liar is through a rule-based language. The front endgenerates RTL instructions that are matched against therules provided by the back end. This permits the precisenature of Liar's virtual machine to remain unde�ned whilestill enabling a variety of back ends to be written. Unfor-tunately, as the front end changes, the RTL instructions itemits change and the rule sets of each back end must beexamined and modi�ed individually. PVM's regular struc-ture, on the other hand, allows the construction of a backend that handles the complete virtual machine and is thusisolated from many changes to Gambit's front end. PVMimplementations (i.e. back ends for Gambit) have similarstructures, since they are case dispatches on the PVM in-struction and operand types; thus, updating a back end toaccommodate changes in PVM itself is straightforward.The register transfer language LLM3, developed at IN-RIA for the language LeLisp, is a much larger language thaneither PVM or RTL. It has over 100 instructions (includinga number of redundant ones), providing control over aspectsas diverse as garbage collection and �le system operations.Implementing such a machine is a major undertaking andnot suitable for our environment where a quick port to anew architecture or operating system is essential. Further-more, the low level of control speci�ed by LLM3 requiresthe front end to be more elaborate than we would like, andleaves little room for optimizations by the back end.5 Current StatusAt the time of writing, we have completed the Gambit imple-mentation for the MC68000 and are in the �nal debuggingstages of a port to the MIPS machines. A port to the HPPAis also nearing completion. Preliminary performance �gurescomparing Gambit to T's Orbit and MIT's Liar compiler areshown in Figure 5. As that table indicates, the MC68000implementation achieves very good performance over a widerange of benchmarks. This implementation also includes an



option for e�ciently gathering dynamic usage statistics, asdiscussed in Appendix B.In addition, we have a preliminary version of a Schemeto C compiler, inspired by the work of Bartlett[2]. This backend generates portable C code with good performance char-acteristics, but is not yet capable of producing separatelycompilable modules. As a result, it can currently only beused for compiling rather small Scheme programs.6 Future PlansOur next major goal is to create a back end for a stockMIMD parallel machine. We have made several early pro-totype versions and are encouraged by the results. Gam-bit's control and data 
ow analysis appear to be su�cientlygeneral to allow us to explore a number of mechanisms forreducing the cost of the touch and future operations thatdominate the performance of our own and other parallelScheme systems[8][9][13].As part of this work, we plan to complete our work on theGambit C back end. This involves the implementation of aseparate compilation facility that has already been designed.Measurements on the single module system indicate that theperformance is about half that of the native code producedby Gambit, and we consider the advantage of having a singleback end that supports a number of hosts to outweigh thisperformance degradation. The separate compilation design,however, has a number of areas in which performance maydegrade and we plan to examine these in detail.Finally, some very preliminary results indicate that itmay be interesting to consider compiling imperative lan-guages such as C and Pascal into PVM. We are particu-larly interested in combining a C to PVM compiler with thePVM to C back end. An early experiment indicated thatPVM's optimization of procedure calls generated C codewhich, when compiled by a C compiler, outperformed theequivalent hand-coded C program compiled by that com-piler! We plan to see whether this holds up under closerinvestigation.7 AcknowledgementsThe authors would like to thank the other Scheme imple-mentors who have helped us understand both their own sys-tems and Gambit: David Kranz, Chris Hanson, Bill Rozas,Joel Bartlett, and Will Clinger. Bert Halstead also con-tributed useful ideas and comments with respect to the par-allel implementation of Gambit. We are especially gratefulto Chris Hanson and Bill Rozas of the MIT Scheme Teamfor their help in comparing the code from various compilersas well as their help in our e�orts to port CScheme to theMIPS. Their e�orts allowed us to gather the performance�gures included in Figure 5.References[1] Harold Abelson, Gerald Jay Sussman, and Julie Suss-man. Structure and Interpretation of Computer Pro-grams. MIT Press, 1985.[2] Joel Bartlett. Scheme->C a portable Scheme-to-Ccompiler. Technical Report 89/1, Digital EquipmentCorp. Western Research Lab., 1989.
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A Performance Measurements and Code ComparisonA detailed analysis and explanation of Gambit's performanceis beyond the scope of this paper. This appendix providesa brief sketch of our performance results and compares thecode generated by Gambit to that of MIT's Liar compilerand T's Orbit compiler. Figure 5 shows the results of run-ning Clinger's version of the Gabriel benchmark programs[6].For the most part the �gures need no explanation. The fol-lowing points may help the reader to better interpret them:Motorola MC68000Gambit Orbit Liar ccboyer 4.74 �2.09 �1.96browse 1.04 �1.65 �6.12cpstak .56 �1.93 �1.57dderiv 2.29 �2.04 �1.99deriv 2.10 �1.76 �1.82destruct .65 �1.49 �3.71div-iter .41 �2.29 �1.39div-rec .58 �2.14 �1.57puzzle 3.51 �1.39 �3.59 � .61tak .14 �1.30 �3.15 �1.71takl 1.18 �1.53 �1.86 �1.80traverse 32.01 � .80 �1.68triangle 67.83 � .89 �1.96 � .83MIPS R2000Gambit Orbit Liar cc scctak .06 �1.17 �2.83 �1.17 �2.00takl .28 �1.14 �2.75 �1.79 �2.36triangle 15.41 �1.02 �2.60 � .85 �1.77Note: Timings for Gambit are absolute, in seconds. Allothers times are relative to Gambit.Figure 5: Performance Comparison1. The measurements for the MC68000 family were takenon a Hewlett-Packard 9000/340 system with a 16MhzMC68020 CPU, 16 megabytes of memory, and a lo-cal disk. The measurements are based on the HP/UXtime functions which deliver an estimate of user CPUtime in units of 20 milliseconds. System time andtime for garbage collection (if any) are not includedin these numbers. All measurements were taken in full(multi-user) operating mode, but with only a singleuser logged in.2. The measurements for the MIPS R2000 CPU weretaken on a Digital Equipment Corporation DECsta-tion 3100 with 16 megabytes of memory and medium-speed local disks, running under a preliminary releaseof the CMU Mach 2.1 operating system. Again, mea-surements are based on the Mach timing functions,omit system and garbage collection time, and weretaken under multi-user conditions.3. The column labeled \scc" contains timings from JoelBartlett's Scheme to C compiler [2] of August 25, 1989.

The column labeled \cc" contains measurements forsome of the benchmarks that were hand coded in Cand compiled (with the {O switch for optimization)using the vendor-supplied C compiler, \cc."4. All of the benchmarks are executed �ve times and themean is reported. In our experience, the measuredtimes are repeatable to within a few percent.5. All benchmarks were run as supplied by Clinger butwith two di�erences. On all systems, a (compiler-dependent) declaration was supplied that caused arith-metic to be performed in �xnum mode (exact integerswith no over
ow detection) only. In addition, eachbenchmark was compiled both as written and enclosedin a let expression to allow each compiler to take ad-vantage of any 
ow analysis it performs. The best tim-ings for a given compiler are recorded here. We areunable to �nd a consistent pattern to explain whichform of the program will perform better for a givencompiler.6. A number of procedures are used routinely by thebenchmarks and their performance can dominate theperformance of the entire benchmark. This is particu-larly noticeable in the case of the get and put opera-tions in the Boyer benchmark. In order to compensatefor this we wrote specialized version of the proceduressymbol->string, gensym, get and put. While the de-tails of the code are system dependent (since they re-quire non-standard procedures) the algorithms usedare the same on all systems.We now turn to a more detailed look at the actual codeproduced by the three compilers. Figure 6 shows the resultsof compiling (for the MC68000) the following Scheme pro-gram by Gambit (version 1.3), Orbit (version 3.1), and Liar(Beta release of 7.0):(define (reverse-map f l)(define (loop l x)(if (pair? l)(loop (cdr l) (cons (f (car l)) x))'()))(loop l '()))The code in Figure 6 has been slightly modi�ed for presenta-tion purposes. We have converted the instruction sequencesfrom each system's private assembler notation into \stan-dard" Motorola syntax. In addition, the code from all threecompilers actually includes interspersed words used by thegarbage collector and interrupt handlers. These have beenremoved to make the code easier to read. They do not a�ectperformance, since they are not executed in the usual case.We do not pretend to have undertaken a detailed studyof the code from these three compilers. However, from ex-amination of a number of programs and after discussionswith several of the implementors (David Kranz for Orbit,Chris Hanson and Guillermo Rozas for Liar) we can supplythe following observations that account for a large part ofthe di�erences in output code. These comments apply toGambit used with the MC68000 and MIPS back ends:Object RepresentationGambit use the three low bits of a data item for thetype tag, with 0 representing �xnums and other type



Liar; reverse map is entry point; on entry:; 4(sp)=F, (sp)=L, 8(sp)=CONT (return adr)reverse map:cmp.l (a6),a5 ; interrupt checkbge interruptclr.l -(a7) ; ARG2 <-- ()move.l 8(a7),-(a7) ; ARG1 <-- Lbra loop 5loop 5:cmp.l (a6),a5 ; interrupt checkbge interruptmove.l (a7),d0 ; (pair? L)bfextu d0f0:6g,d1cmp.b #1,d1beq label 14move.l 4(a7),8(a6) ; RESULT <-- Xlea 16(a7),a7 ; deallocate frameand.l d7,(a7) ; returnrtslabel 14:pea continuation 2 ; setup CONTor.b #-0x60,(a7)and.l d7,d0 ; ARG1 <-- (car L)move.l d0,a0move.l (a0),-(a7)move.l 16(a7),-(a7) ; jump to Fjmp 0x68(a6) ; with 1 argcontinuation 2:cmp.l (a6),a5 ; interrupt checkbge interruptmove.l a5,d0 ; ARG2 <--or.l #0x4000000,d0 ; (cons RESULT X)move.l 8(a6),(a5)+move.l 4(a7),(a5)+move.l d0,4(a7)move.l (a7),d0 ; ARG1 <-- (cdr L)and.l d7,d0move.l d0,a0move.l 4(a0),(a7)bra loop 5 ; jump to LOOP
Orbit; D15 is entry point; on entry:; a1=F, a2=L, (sp)=CONT (return adr)D15:move.l a1,-(sp) ; save Fmove.l #65649,-(sp)move.l a2,a1 ; ARG1 <-- Lmove.l d7,a2 ; ARG2 <-- ()bra LOOP 12 ; jump to LOOPC 27:move.l a2,a1 ; RESULT <-- Xlea 8(sp),sp ; deallocate framemoveq #-2,d5 ; return with 1 argmove.l (sp),a5jmp (a5)C 38:cmp.l d7,a1 ; (null? L)bne C 15bra C 27C 15:move.l a2,-(sp) ; save Xmove.l a1,-(sp) ; save Lpea D20 ; setup CONTmove.l 1(a1),a1 ; ARG1 <-- (car L)move.l 16(sp),a0 ; jump to Fmoveq #2,d5 ; with 1 argjmp *21(d7)D20:jsr *9(d7) ; TEMP <--move.l a1,1(a4) ; (cons RESULT X)move.l 8(sp),-3(a4)move.l 4(sp),a0 ; ARG1 <-- (cdr L)move.l -3(a0),a1move.l a4,a2 ; ARG2 <-- TEMPlea 12(sp),sp ; deallocate frameLOOP 12:move.l a1,d6 ; (list? L)and.b #3,d6cmp.b #3,d6bne C 27bra C 38
Gambit; L1 is entry point; on entry:; d1=F, d2=L, a0=CONT (return adr)L1:beq L8 ; arg count = 2 ?jsr 20(a6) ; arity errorL8:move.l d6,d3 ; X <-- ()btst d2,d7 ; (pair? L)bne L6bra L5 ; jump to LOOPL7:move.l d1,-(a3) ; ARG3 <--move.l a3,d1 ; (cons RESULT X)move.l (sp)+,-(a3)move.l d1,d3move.l (sp)+,a1 ; ARG2 <-- (cdr L)move.l -(a1),d1move.l d1,d2move.l (sp)+,d1 ; ARG1 <-- Fmove.l (sp)+,a0 ; restore CONTcmp.l 64(a5),a3 ; heap overflow?bcc L9jsr 32(a6) ; heap overflowL9:btst d2,d7 ; (pair? L)bne L6L5:move.l a0,-(sp) ; save CONTmove.l d1,-(sp) ; save Fmove.l d2,-(sp) ; save Lmove.l d3,-(sp) ; save Xmove.l d2,a1 ; ARG1 <-- (car L)move.l (a1),d1lea L7,a0 ; setup CONTmove.l 8(sp),a1 ; jump to Fmoveq #-1,d0 ; with 1 argjmp (a1)L6:move.l d3,d1 ; RESULT <-- Xjmp (a0) ; return

Figure6:CodeComparison



tags chosen to optimize references to the car and cdrof pairs and direct jumps to procedures. Orbit uses thetwo low bits for the type tag, and also chooses 0 for�xnums. Liar uses the top six bits for a type tag, with0 representing #F. Orbit and Liar use a single object torepresent the empty list and #F. Gambit distinguishesbetween these two objects and only #F counts as false.Free Pointer AlignmentGambit keeps the free pointer octa-byte aligned at alltimes, potentially wasting space when large numbersof small objects are created. Orbit and Liar maintainonly quad-byte alignment.ConsingGambit performs consing by in-line code expansion,as does Liar. Orbit performs this with a call to anexternal procedure in order to allow GC checking tobe done when the allocation occurs.GC DetectionGambit detects the need for garbage collection by per-forming a test at the end of any basic block in whichallocation occurs. Orbit places this test in the codethat performs the allocation itself, while Liar tests atboth the entry to a procedure and the entry to everycontinuation point. Gambit's garbage collector is notyet fully functional on all of the back ends. The codeand measurements re
ect the full cost of detecting theneed for GC, but none of the benchmarks actually in-voked the garbage collector.Interrupt TestingGambit does not test for interrupts, since it assumesa stand-alone environment rather than a program de-velopment environment. This will be changed for theparallel implementations in order to allow timer in-terrupts to produce a fair scheduler. Liar combinesthe garbage collection and interrupt check into a sin-gle short code sequence executed at the start of everyprocedure and continuation. We do not know how thisis handled in Orbit.\Unknown" Procedure CallWhen calling a procedure that can't be identi�ed atcompile time, Gambit loads 3 arguments, the continu-ation and the argument count into registers (the stackis used to hold the other arguments if there are any).Any procedure that may be called in this manner willbegin with a procedure label and the code will comparethe number of arguments passed with the number ofparameters expected and will move the arguments ortrap as appropriate. Liar passes the arguments and thecontinuation on the stack. It uses an elaborate mech-anism that distinguishes calls to procedures named byvariables at the top level of a compilation unit fromother procedure calls, and the interpreter supplies anumber of trampolines that are used to combine a link-time arity test with runtime argument motion. An ex-planation of one part of this mechanism can be foundin [16]. Orbit passes the arguments in registers andthe continuation on the stack. A mechanism similarto, but somewhat simpler than, that of Liar is used forarity checking.T CompatibilityOrbit is actually the compiler for a distinct language,

T, that is closely related to Scheme. All of the bench-marks were run in Scheme compatibility mode, whoseperformance cost is not clearly understood. We rewrotetak and takl in T and compared the actual code andfound no di�erences between the native T version andthe Scheme compatibility mode version.There was one very noticeable cost in the T implemen-tation that is not shared by Gambit or Liar. This isthe coding of the primitive procedure pair?. Orbit'stwo bit type tags do not distinguish pairs from theempty list (so as to optimize T's list? operation).Thus pair? is expensive with Orbit when comparedto the other compilers.B PVM Usage StatisticsThe MC68000 back end allows programs to be compiled ina way that gathers measurements of dynamic usage of eachof the PVM instructions and the types of operands used.This information can be used for performance analysis, andhas been used to allow us to choose what parts of the actualimplementation of PVM deserve careful optimization. Themechanism is both simple and very e�cient: as each basicblock is constructed, the front end counts the number ofeach kind of PVM instruction and operand class used in thebasic block. The back end creates a counter for each basicblock and generates code to increment that counter whenthe block is entered at runtime. At the end of a run, thesecounters are used to recreate the statistics.The resulting code runs 30 to 40% slower than unmea-sured code, allowing sizable programs to be measured andanalyzed. See Figure 7 for a synopsis of the dynamic mea-surements taken from running Gabriel's[6] version of theBoyer-Moore theorem prover benchmark.Operand Usage Frequencyreg stk obj lbl glob mem66.4% 24.4% 4.5% 4.0% 0.4% 0.0%Instruction Usage FrequencyCOPY LABEL APPLY COND JUMP MAKE CLOSURES42.9% 20.4% 16.1% 11.9% 8.5% 0.0%Detailed Instruction BreakdownLABEL APPLY CONDsimple: 61.2% car: 45.0% pair?: 38.8%continuation: 28.1% cdr: 25.4% null?: 28.9%procedure: 10.5% cons: 11.1% eq?: 13.0%Figure 7: Dynamic Measurements for Boyer BenchmarkIn gathering these measurements, we used a version ofBoyer that is enclosed in a let expression. This accounts for



the lack of global variable references. The procedures putand get (which dominate the performance of the bench-mark) were implemented using assq.There are only a few comments to be made on these re-sults. First, label operands can appear either directly in aJUMP instruction or as a source operand to another instruc-tion (for example, it may be stored into a local variable forlater use). In this benchmark, labels appeared almost ex-clusively (99.9% of the time) in this latter context. Theprimary use of direct jumps is to branch around other armsof a conditional when the conditional isn't in the tail posi-tion of an expression. Most conditionals in Boyer appear intail position; we don't know how common this is in generalScheme code.The breakdown of the label code is interesting, since itshows the dynamic execution frequency of the various typesof label. Recall that simple labels and continuations actuallygenerate no code, so there is no runtime associated with theiruse. A procedure label, however, requires an arity checkand may require moving values from argument locations toparameter locations.The APPLY instruction is used by the front end to requestopen coding of a primitive that the back end supports. Fig-ure 7 shows the breakdown by primitive procedure of theseoperations that occur when Boyer runs. The table showsonly those open coded primitives that account for more than10% of the run time, although the actual statistics containnumbers for all primitives. In fact, a good deal of detail hasbeen omitted from all of these tables to make the presenta-tion more tractable.COND is used for all conditionals. In the case of Boyer,80.7% of the predicates encountered were open coded ver-sions of pair?, null?, or eq?. Of the remaining 19.3% ofthe predicates, 18.8% are not open coded and the remainingopen coded predicates occur under 0.1% of the time.


