
Compiling Higher-Order Languages into Fully Tail-RecursivePortable CMarc Feeley James S. Miller Guillermo J. Rozas Jason A. WilsonAugust 18, 1997Note: This paper was written in 1993 and has not been modi�ed since then. It is therefore out of sync with thecurrent implementations of Gambit and MIT-Scheme.AbstractTwo independently developed implementations of Scheme have been extended to compileinto portable C code that implements full tail-recursion. Like other compilers for higher-orderlanguages that implement full tail-recursion, measurements of these systems indicate a perfor-mance degradation of a factor between two and three compared to the native code emitted bythe same compilers. We describe the details of the compilation technique for a non-staticallytyped language (Scheme) and show that the performance di�culty arises largely from the costof C function calls. In theory, these expensive calls can be eliminated. In practice, however,they are required to avoid excessively long compilation times by modern C compilers, and tosupport separate compilation.1 IntroductionTwo independently-developed Scheme systems (MIT Scheme[7] and Gambit[4]) have been ex-tended to produce portable C output code. The projects were undertaken completely independentlywith di�erent design goals, yet have ultimately resorted to the same mechanisms. In both cases we�nd that the performance of our C code is between a factor of two and three slower than the nativecode generators for our compilers. In addition, recent work on compiling SML[12, 20] has yieldedsimilar performance results, despite the fact that the SML compiler uses static typing informationto overcome the overhead of encoding data type information at runtime. We �nd this coincidenceto be compelling evidence that the observations are intrinsic to the problems of translating higher-order code into tail-recursive C. We describe a series of measurements which help illuminate thesource of this di�culty.To our knowledge, there is no generally accepted de�nition of \fully tail-recursive." For clarity,we adopt the de�nition from the Scheme standard[9]:In a tail-recursive implementation, iterative processes can be expressed by means ofprocedure calls. (The process described by a program is iterative if and only if the orderof its space growth is constant, aside from that used for the values of the program'svariables.)Note that, under this de�nition, merely compiling appropriate self-calls as jumps is not su�cientto achieve full tail-recursion. Instead, we syntactically divide all sub-expression positions in thesource language into two classes: tail (or reduction) position and subproblem position. In the simpleexpression (if predicate consequent alternative), the predicate is a subproblem position, while1

both consequent and alternative are in reduction positions. This syntactic notion can be easilyextended to arbitrarily nested sub-expressions. Operationally, if we think in terms of a simpleframed stack model for the control state of a program, procedure calls appearing in subproblemposition must initiate a new frame by saving a return address before jumping to the destination;those appearing in tail position must remove their frame from the stack and then jump to thedestination.2 Compilation IssuesThere have been compilers capable of converting a source language with higher-order proceduresand requiring a tail-recursive implementation into another language lacking both of these featuressince at least 1976[15, 16]. Because of its ubiquity, the language C has become a popular targetlanguage for these compilers[13, 20, 1, 14, 19]. But there are di�culties that arise from the choiceof C as a target language:1. Fully tail-recursive languages (e.g. Scheme, ML, and Dylan[3]) consider procedure call tobe \goto statements that happen to pass arguments,"[16] while C implementations are freeto treat procedure call and goto completely separately. Worse yet, C implementations areencouraged to do so by restrictions on labels: they may be used only in a goto statement, andthe statement must appear within the lexical scope of the label itself. Thus transfer of controlvia goto is syntactically restricted by C to occur only within a single lexical block (and henceonly within a single procedure). Since our source languages require the ability to compute adestination address, the C label is not an adequate representation for our procedures. But,since our source languages also require fully tail-recursive behavior, the C procedure does notsu�ce either.2. Both SML and Scheme require a �rst-class procedure, call-with-current-continuation,which produces an object that (conceptually) saves the state of the continuation stack forlater use. This object is treated in the source language indistinguishably from any otherprocedure, so the compiler is unable in the general case to determine whether a procedurecall will result in the invocation of a primitive procedure, a procedure de�ned explicitly inthe source code, or the procedure produced by a call to call-with-current-continuation.3. The symmetry between procedure call and procedure return, which is highlighted by con-tinuation passing style (CPS) conversion, is exploited by the native code generators for theScheme compilers we are using. Thus, from the code generator's point of view, the destina-tion address of a procedure call may also be the location to which a function is expected toreturn its value.4. When compiling to a native machine language a procedure can always be represented as atagged pointer to machine instructions. For procedures with free references to non-trivialenclosing environments (i.e. closures) the compiler can sometimes arrange to place theseinstructions at a known distance from the captured environment. Free variable referencescan then be compiled to simple PC-relative addresses. This powerful technique cannot beused when compiling to C because there is no portable way to control the relative placementof the code and data areas.This particular di�culty arises, ultimately, only in dynamically typed languages (such asScheme, CommonLisp[17], and Dylan), where the compiler cannot in general decide when2

an object being manipulated is a procedure. In a statically typed language (e.g. ML) the com-piler can always represent a procedure as two words embedded into any data structure wherethe procedure can be included, since any procedure that may manipulate such data structurecan be specialized to handle the
attened representation. In practice, however, polymorphictypes introduce the same di�culty in order to avoid potentially explosive replication of code.5. While an assembler takes time and space roughly proportional to the size of the input code,modern C compilers, even without optimization, do not. Directly compiling an entire Schemesource �le into a single C procedure would permit simple cases of tail-recursion to be imple-mented using goto statements; but the resulting procedure is often too large for a C compilerto handle e�ectively. For example, the C compilation of a single (admittedly large) �le inthe MIT Scheme runtime system using this technique required over 120 megabytes of swapspace and took about �ve hours using a (roughly) 40 SPECint92 HPPA processor.3 Related WorkThere has been a good deal of work in compiling higher-order languages to C, starting with Bartlett'swork[1] on a compiler from Scheme to C in 1989 and including the more recent work on compilingHaskell[13], SML[20], and the Bigloo[14] and Hobbit[19] implementations of Scheme. This workcan generally be divided into two groups, based on the goals set for the work: Bartlett's compiler,Bigloo, and Hobbit are motivated primarily by a desire to interface from Scheme to code writtendirectly in C; our work, the Glasgow Haskell compiler, and SML work are motivated by a desire toeasily port the system to new computer systems. This di�erence in goals leads to a major di�erencein philosophy: the work in the �rst group has taken the requirement for tail-recursive behavior as adesirable feature, while the latter e�orts regard it as a mandatory part of the implementation. (Infact, the Hobbit compiler regards the requirement for higher-order procedures as a desideratum aswell.)Not surprisingly, then, the techniques used by the two groups are somewhat di�erent. Bartletthas concentrated primarily on the di�cult issue of garbage collection in a mixed memory manage-ment system. His system provides tail-recursive behavior within a single module (in simple cases),but all top-level procedures are generated to adhere to the C calling convention. This makes itquite easy for Scheme programs both to call external procedures written in C and to be calledback from external C procedures; but calling one of these procedures always requires space on theC runtime stack.The work on Haskell and SML are both closer to our own work. The mechanisms developedfor the SML-to-C translator described in [20] are similar to our own, although done in the contextof a statically typed language. It is hardly a surprise, then, that their C back-end is also roughly afactor of two slower than their native code generator.Perhaps the most interesting comparison is to the work on Haskell reported in [13]. Here thegoal was to gain portability and \get code that appears to be signi�cantly better than we couldgenerate using any hand-built code generator." The performance analysis given here leads us toconclude rather strongly to the contrary: in only 4 benchmarks out of 60 did we see any performanceimprovement when using C, and even then the best improvement was less than 20%. Furthermore,in examining the technique used in the Glasgow Haskell distribution (version 0.16) we foundthat the compiler generates distinctly non-portable code: it runs only with the gcc compiler, usesin-line assembly language, and embodies an assumption which is invalid on several architectures.
3

4 MechanismsBoth Gambit andMIT Scheme use a single stack to store return addresses and variable bindings.They divide the stack into frames, and satisfy the full tail-recursion requirement by maintaining asimple invariant: a frame persists on the stack only as long as it is in the lexical chain1 of an activeframe on the stack. The current (topmost) frame is active, as is any frame awaiting a value fromone of its subproblems.While most C implementations also use a stack for storing variables and return addresses, thereis no requirement that they maintain the tail-recursion invariant. Both Scheme systems choseto continue with their stack-based implementation of environments, and simply emulated all ofthe stack operations using a C array and pointer operations. The translation is straightforwardand most C compilers optimize this kind of array and pointer arithmetic. Once this decision hasbeen made, it is simple to implement call-with-current-continuation portably using any oneof several well-known techniques[2, 8].Both systems distribute the program's executable C code among a set of C procedures calledhost procedures. Each host procedure contains a set of control points: places in its code that canbe the target of a control transfer (i.e. procedure entry points and return points). A procedureobject is basically an encoding of a control point from which it is easy to �nd the correspondinghost procedure and the correct control point within that host procedure.The two systems use slightly di�erent encoding methods to support separate compilation (Fig-ure 1). They both generate, with each separately compiled module, a table of descriptors havingone entry per control point in the module. A non-closure procedure is represented as a taggedpointer to the descriptor for its entry point. Return addresses are represented in the same way (asif the program had been CPS-converted). In MIT Scheme, a globally unique index is assigned toeach control point in the program at program initialization time and the corresponding descriptoris set to this index. The indices for all the control points within a given host procedure are con-secutive. A table of all the control points in the program is also created (the global host table).Each entry contains a pointer to its host procedure and the starting index for that host procedure.In Gambit, a descriptor is simply a pointer to the corresponding host procedure. To enable theselection of the correct control point within a host procedure, a pointer to the descriptor of the�rst control point in host procedure \i" is kept in starti.As in Steele's Rabbit system[16], there is a driver loop (the dispatcher) which is responsiblefor transferring control between host procedures. The dispatcher maintains in pc (a C variablelocal to the host procedure) the control point to be jumped to. At each iteration of the loop,the corresponding host procedure is obtained from pc and called. Execution begins by setting uppc to a predetermined control point (the Scheme equivalent to a C main procedure) which startsexecution of the program.The dispatcher passes pc as an argument to host procedures to enable them to determine whichof their control points is the target of the control transfer. The details of this computation di�erbetween MIT Scheme and Gambit (see Figure 1). Any Scheme arguments or return valuesneeded at the control point are passed by a completely independent Scheme calling convention (acombination of values on the Scheme stack and C global variables serving as virtual registers). Inthe case of MIT Scheme, some free variables are accessed using compile-time known o�sets frompc. The execute caches and other structures described in [11] are also accessed in this way.Host procedures never call other host procedures directly. Instead, they return a value to the1Gambit uses a variation on lambda-lifting[10] to
atten the environment structure so that lexical chains areoften of depth one. MIT Scheme uses a combination of static analysis and runtime conditionals[6] to preserve theinvariant. 4

descr *pc;

 return pc;
}

 ...
 case 4: ...;

descr *host_procedure (pc)i

i

 {self=pc;pc=pc->code;goto jump;}

 }

{ jump: switch (pc-start)
 { case 0: ...;

host code var1 varN

host

...

 if (pc->host==host_procedure)i

closure object

descriptor table

adr2

adr1

starti

void dispatcher(){ descr *pc = initial_pc;while (1)pc = pc->host(pc);} Gambit

 ...
 case 4: ...;

i

 }

 { case 0: ...;

host

descr *pc; int start;
descr *host_procedure (pc, start)

start

123

123

123

123

123
 return pc;
}

adr1

descriptor table

123

124

125

126

127

adr2

123

124

125

126

127

global host table

varN...var1code

126

closure object

{ jump: switch (pc->index-start)

module’s free variables

...

index

indexvoid dispatcher(){ descr *pc = initial_pc;while (1){ host *h = &global_host_table[pc->index];pc = h->host(pc, h->start);}} MIT SchemeFigure 1: C procedures generated by Gambit and MIT Schemedispatcher: the new control point to jump to. It is the dispatcher's role to transfer control to theappropriate host procedure. Thus, a host procedure can be thought of as a way to encapsulatea number of Scheme control points; it receives as input the current control point and returns asoutput the next control point to be invoked. The code within the procedure manipulates explicitrepresentations (written in C, of course) for the registers and the stack that would have been presentin a native back-end.Host procedures start with a switch statement that branches to the correct control point (aC labeled statement) based on the pc argument. In general, the code branched to corresponds toa single basic block which terminates by loading the descriptor for a desired destination back intopc and jumping back to the switch statement. The switch has one entry for each control pointwithin the host, and the default action (which occurs when pc's host is not the current procedure)is to return pc to the dispatcher (but see below for the handling of closures in Gambit).Notice that this technique guarantees that the C stack never grows in size by more than aconstant amount, since Scheme code invokes code in other C procedures only after �rst returningfrom the current C procedure. This guarantees correct tail-recursive behavior, assuming that theScheme code was compiled into code that correctly handles the explicit Scheme stack. At thesame time, the cost of a C return, dispatch, and call is not trivial, as our measurements (below)indicate. Therefore one important optimization performed by both compilers is the detection ofjumps to known control points in the same host procedure. When these are discovered they areconverted into the corresponding C goto statements2. In all other cases, the compilers emit C codeto compute the destination procedure representation (as described above), store it into pc, andthen jump back to the switch using a goto.2This re
ects our current choice to have every Scheme compilation unit { a �le or a procedure depending oncompilation switches { generate exactly one host procedure; thus known destinations do not cross host procedureboundaries. 5

Closures are handled slightly di�erently in MIT Scheme and Gambit. In MIT Scheme, aclosure is not distinguished from a non-closure procedure by either the driver loop or the internaldispatch mechanism. A closure contains an entry index, distinct from its parent procedure, butincluded in the mapping mechanism used by the driver loop, which causes the internal dispatchmechanism to jump to the closure's code. In Gambit, a closure looks like a normal descriptor sothe dispatcher will transfer control to the correct host procedure. However, since pc does not pointwithin the descriptor table, the host's internal switch will fall through to the default case. Thecode placed there is a \closure handler" that will detect that pc corresponds to a closure and willproceed to transfer control to the closure's code pointer after having saved a pointer to the closurein self so that the closure's code can access the variables. Note that only host procedures whichcontain closure entry points need to include this closure handler. There is an interesting tradeo�here: theMIT Scheme mechanism makes the cost of calling a closure and a non-closure procedurethe same, but each requires a reference into the descriptor; the Gambit approach makes calling aclosure more expensive, but calling a non-closure procedure does not require a reference into thedescriptor. We have not measured the e�ect of this design decision in either case.Finally, both systems generate code to cache frequently accessed resources (such as pc, thestack pointer and the virtual registers) for the duration of a host procedure. These resources arelocated in global variables and it would be ine�cient if every access required a memory reference.Instead, the resources accessed within the host are copied into local variables on entry to the hostprocedure and (if modi�ed within the host) are copied back to memory on exit. Examination of theassembly code generated by the C compilers shows that these local variables are essentially alwaysallocated to machine registers (a \register" declaration is included to help out the C compiler).5 Performance MeasurementsThe goal of our performance measurements has been to determine two things: the relative per-formance of a native code generator and a C code generator; and the source of the performancedi�erences. The �rst is always a di�cult question for any large system, since it involves a very largenumber of components, each of which a�ects the overall performance in a largely unknown man-ner. Some of the components include the quality of the C compiler being used (including variousoptimization
ags), the cache performance of programs compiled one way versus another, and thearchitecture of the machine being measured. We report here only the simplest measurements, andwe have based them on the Gabriel benchmarks[5] initially written in CommonLisp and directlytranslated into Scheme. To this set of benchmarks we've added two large programs originallywritten in Scheme, conform and peval. Conform computes an uninteresting function, but it isthe only benchmark that makes heavy use of higher-order procedures; peval is a simple partialevaluator. Figure 2 summarizes the results of these experiments.We now turn our attention to the reasons for these performance di�erences. We begin with thehypothesis that there are three dominant components to the performance di�erence (for a givencomputer, operating system, C compiler, and Scheme system): the cost of a Scheme procedurecall or return; the cost of arithmetic over
ow checking; and di�erences in the optimization strategyfor the Scheme and C compilers.Since all of the benchmark programs use arithmetic on small integers, the performance numbersin Figure 2 were generated using Scheme compiler
ags that suppressed the type dispatch andover
ow checking that would normally be present. We performed a direct comparison, using MITScheme on the HPPA, and found the cost of the type dispatch and over
ow checking to be 7% onboth the native and C code generators. This can be compared to the �gures of an average of 2%and a maximum of 8% in [18]. It is therefore not surprising that the overall measured performance6

Gambit MIT Scheme68K 68K Alpha HPPABoyer 2.30 2.62 2.25 2.10Browse 2.91 1.90 1.34 1.82Conform 2.68 3.20 2.74 2.63Cpstak 1.13 0.95 1.03 0.57Ctak 2.21 1.17 1.09 0.86Dderiv 4.15 4.10 3.02 3.99Deriv 3.85 3.61 2.89 3.79Destructive 1.11 1.43 1.00 0.79Div 1.00 1.91 1.71 1.33Peval 2.58 4.27 4.02 5.16Puzzle 1.14 1.95 1.69 0.97Tak 2.08 2.42 1.72 1.45Takl 1.31 2.35 2.38 1.67Traverse 1.76 2.31 1.63 1.51Triangle 1.42 2.13 1.57 1.14Arithmetic Mean 2.11 2.42 2.01 1.98Geometric Mean 1.91 2.23 1.85 1.64Figure 2: Ratio of C to Native compiled speeddi�erence between the C and the native back-ends is not a�ected by this particular optimization(less than 2% in our measurements).To isolate the remaining two performance components, we developed a simple performancemodel that divided all procedure calls and returns into three distinct categories: those in which thedestination was known at compile time, those in which the destination is not known but turns out(at run time) to be within the same host procedure, and those that cross procedure boundaries.We used the test programs shown in Figure 3 to measure the cost of each of these. These werecompiled to suppress the use of generic arithmetic, and so that each top-level Scheme proceduregenerated a single host procedure. The loops were then run 10 million times, compiled either directto native code or to C code. The results are shown in Figure 4.These measurements provide a good deal of insight into the performance of the C back-end. Inthe native back-ends, the cost of a procedure call (including the execution of a trivial body) toan unknown address never costs more than :49:163 � 3:01 times (Gambit on the 68K) the cost of acall to a known address. Such a di�erence is noticeable, to be sure, but will be less important formore realistic programs with larger procedure bodies. By contrast, in the C back-end on Alpha thisfactor grows to :144:023 � 6:3 for calls within the same host procedure, but goes up to an astoundingfactor of :833:023 � 36:2 for calls to other host procedures. This large factor motivates an attempt tokeep as many procedure calls as possible within the same host procedure.MIT Scheme and Gambit provide two di�erent compilation modes to control the numberof cross procedure calls: per-procedure compilation in which every top-level Scheme procedurebecomes a separate host procedure and block compilation in which the entire Scheme source �lebecomes a single host procedure. The numbers shown in Figure 2 are those from block compilation,and constitute a best-case performance of the benchmarks given the standard source code. Figure 5shows the mean performance �gures from Figure 2 along with two other compilation techniques.Full per-procedure compilation, basically a worst case analysis, has the entire runtime system as wellas the benchmark code compiled in per-procedure mode. Thus, all procedure calls to unknown ad-dresses cross host procedure boundaries. Complete benchmark compilation modi�es the benchmark7

(let () (define (proc1 n)(if (> n 0)(define (proc1 n) (loop1 (- n 1))(if (> n 0) n))(proc2 (- n 1))n)) (define (proc2 n)(if (> n 0)(define (proc2 n) (loop2 (- n 1))(if (> n 0) n))(proc1 (- n 1))n)) ; All calls within a single procedure(set! loop1 proc1); All calls to known addresses (show-time (lambda () (proc1 #e1e7)))(show-time (lambda () (proc1 #e1e7)))) ; All calls cross procedure boundary(set! loop1 proc2) (set! loop2 proc1)(show-time (lambda () (proc1 #e1e7)))Note: These are slightly simpli�ed. The actual programs are more elaborate in order to defeat certain Schemecompiler optimizations. Figure 3: Exploring the costs of procedure call
MIT Scheme68K Alpha HPPADestination C Native � C Native � C Native �Known 1.23 0.774 0.161 0.145 0.323 0.284Within procedure 1.55 0.856 0.327 0.211 0.140� 0.050 0.509 0.366 0.186Across procedures 5.10 0.854 3.87 0.881 0.140� 0.721 2.221 0.364 1.90Gambit68K AlphaDestination C Native � C Native �Known 0.163 0.163 0.023Within procedure 1.10 0.490 0.936 0.144Across procedures 4.29 0.490 4.13 0.833Numbers are in microseconds per iteration, based on 10 million iterations of the loop.*: We believe these small, unexpected performance improvements result from a shift in the instruction streamallowing for dual issuing in the unknown destination case but not in the known address case.Figure 4: Measured cost of procedure call

8

programs to include the source code for any procedures they require that are normally supplied bythe runtime system. These self-contained benchmark programs are then block compiled. In thissituation, all procedure calls are guaranteed to be within the same host procedure.Gambit MIT SchemeCompilation Technique 68K 68K Alpha HPPAFull per-procedure 2.97 (2.50) 2.73 (2.42) 1.98 (1.80) 2.35 (1.87)Block compilation 2.11 (1.91) 2.42 (2.23) 2.01 (1.85) 1.98 (1.64)Complete benchmark 1.73 (1.63)� 2.00 (1.90)� 1.98 (1.88)� 1.34 (1.27)*: Because of their size, the benchmarks conform and peval could not be compiled with optimization by the Ccompiler. They are not included in this calculation.Arithmetic (geometric) mean of C codenative code over the entire set of benchmarks shown in Figure 2.See the text for a description of the compilation techniques.Figure 5: Performance variation by compilation techniqueThe information in Figure 5 tells us operationally the performance impact of each compilationtechnique. There remains the interesting question, however, of whether the overall performanceshown there can be predicted solely on the basis of the cost of procedure calls, or whether thethird performance component, optimization by the C compiler, has any noticeable e�ect on thesenumbers. This last question is extremely hard to answer, but we can begin to address it by usingthe information in Figure 4 along with some careful analysis of the code for the benchmarks usedfor that �gure. We are interested in estimating how much of the performance di�erence shownin Figure 2 can be attributed solely to the di�erence in procedure call e�ciency. This is done byusing the measurements in Figure 4 to estimate the cost of each kind of procedure call, counting thenumber of each kind of call that occurs in a given benchmark, and comparing estimated performanceto measured performance: Est(C) = T ime(native) + Nint � �int + Next � �ext + Nknown � �known,here the � function is the estimated additional cost of a call to an unknown address within (int)or across (ext) host procedures or to a known address in the C code compared to the native code,and the N function is the count of the number of occurrences of each kind of jump.Careful examination of the assembly code generated by both the native and C back-end for thesimple loop with all known addresses used in Figure 4 revealed that �known was precisely 0, withall of the di�erence coming from factors unrelated to the actual jump instruction. Given this, weare able to directly calculate �int and �ext: �int = timeint � timeknown, where time� is the time inmicroseconds derived from the appropriate entry in Figure 4 (similarly for �ext). These values areshown in the column labeled � in Figure 4.To calculate the values of Nint and Next (the value of Nknown being irrelevant since �known is0), we changed the compiler to force all unknown procedure calls to appear to be external to thecurrent host procedure, and we modi�ed the driver loop to count all external calls. These twochanges allow us to count the number of calls to unknown addresses and subdivide these betweenthose internal and external to the host procedure. Notice that the values of N� are determined bythe compiler we use and are una�ected by the architecture, while the �� values are determined byboth the architecture and the compiler.Given this information, it was a direct (if time-consuming) task to estimate the performance ofthe C back-end for any given benchmark under any compiler on any architecture. The predictions,however, were consistently lower than the measured values; typically about a factor of two lowerthan measurement. After some consideration we concluded that it was possible that the loops9

shown in Figure 4 were too simple: the C compiler was able to optimize them in ways that werenot possible with the larger benchmarks (for example, they contain few control points and the Ccompiler on several machines converts switch statements with a small number of cases into moree�cient \jump chains"; they also use fewer registers so the call and return spills fewer than istypical of the benchmark procedures). MIT Scheme68K Alpha HPPA�int = 1:31 �int = 0:211 �int = 0:316�ext = 4:42 �ext = 0:755 �ext = 1:77Nint Next Meas. Meas:Est: Meas. Meas:Est: Meas. Meas:Est:Boyer 2533209 303052 11000 1.25 1850 1.32 2840 1.11Browse 95591 45604 1080 1.33 338 1.12 385 1.29Conform 4008909 474115 15000 1.63 3560 1.81 4670 1.45Cpstak 47710 2 502 0.829 113 0.947 247 0.534Ctak 63612 190829 19400 1.12 5210 1.05 9490 0.829Dderiv 210003 200002 1940 1.64 466 1.75 746 1.74Deriv 150003 160002 1560 1.53 363 1.67 611 1.73Destructive 10975 2 358 1.37 72 0.972 171 0.772Div 244805 2 892 1.22 189 1.23 291 0.976Peval 295658 481355 4050 1.62 929 2.17 1520 1.93Puzzle 40696 10224 3110 1.9 723 1.66 1140 0.947Tak 1113162 2 2820 1.18 499 0.908 896 0.882Takl 647985 2 1590 1.09 270 1.17 487 0.965Traverse 13153074 202 34900 1.17 7220 1.00 11100 0.937Triangle 11608244 3102 49800 1.48 9620 1.16 17000 0.888Arithmetic Mean 9870 1.36 2090 1.33 3440 1.13Geometric Mean 3530 1.33 768 1.28 1280 1.07All numbers are rounded to three signi�cant �gures. Measured times are in milliseconds. Thevalues of �, in microseconds per call, were computed from a lambda-lifted version of destructiveas described in the text. Figure 6: Estimated vs Measured PerformanceTo improve our performance prediction, we chose one of the smaller benchmark programs(destructive) and rewrote it in a fully lambda-lifted version. We then compiled this procedureand ran it to derive a new set of values for the �s. These values of � are shown in Figure 6,along with the values of Nint and Next for each benchmark, our performance prediction for thebenchmark, and the actual timing.Overall, our predictions are in very close accord with measurement, although there are indi-vidual anomalies. This leads us to conclude that almost all of the performance di�erence betweenour native compilers and our C back-end can be accounted for by the overhead required by theuse of C's procedure call mechanism to implement tail-recursive behavior. Where our predictionsdi�er from measurement, we generally underestimate the performance of the programs, indicatingthat the translation to C is causing even more performance problems than those introduced byprocedure calls alone. Since all of our benchmark results (except as indicated in Figure 5) wereperformed with the maximum level of optimization permitted by our C compilers, it follows thatthis optimization is simply unable to overcome this single intrinsic cost: C is simply not a goodlanguage for implementing tail-recursion in any but the smallest example programs.10

6 ConclusionsThe system structure described by Steele for his implementation of Scheme almost twenty yearsago continues to be a viable technique for compiling a higher-order language to a �rst-order languageand preserving fully tail-recursive semantics: there is an outer driver loop that dispatches to a setof procedures, each representing some set of control points, and these in turn return another controlpoint to be dispatched. This basic mechanism is used by our systems, by the SML to C compilerfrom CMU, and by the Glasgow Haskell compiler. In all cases where the performance of thissystem can be compared to the performance of a native compiler, the C-based system performs atless than half the speed of the native system.The basic di�culty with the structure is that the cost of a C procedure call, return, and dispatchcan be as much as a factor of 36 times slower than a call implemented with a goto instruction.Since C compilers can accomodate only moderately sized input procedures even the best compilerproduces code that must cross the C procedure boundary at runtime; and the more often thisoccurs, the worse the performance. This problem is exacerbated by the need to compile the largeruntime library for languages like Scheme and SML separately from user code. Thus every callby the user to a runtime utility that cannot be open coded at compile time will involve the highoverhead of a cross-procedure jump.While we have not been able to make detailed measurements of all the parameters involved in theperformance di�erences, it is clear that the di�erences are real and are not likely to be overshadowedby any additional improvements in the technology of C compilers. The problems are fundamentalto the language design of C when the goal is a tail-recursive implementation. The trade-o� is clear:lose a factor of two (or more), or invest the labor to make a native code implementation. Given thecurrent technology, it is relatively easy to make a portable code generator (for example, by usinga rule-base RTL similar to that in gcc) and amortize the implementation cost across a number ofback-ends.References[1] Joel Bartlett. Scheme->C a portable Scheme-to-C compiler. Technical report, Digital Equip-ment Corp. Western Research Lab., 1989.[2] William Clinger, Anne Hartheimer, and Eric Ost. Implementation strategies for continuations.In Proc. ACM Symp. LISP and Functional Progr., pages 124{131, 1988.[3] Apple Computer. Dylantm An Object-Oriented Dynamic Language. Apple Computer, Inc.,Cupertino, CA, 1992.[4] Marc Feeley and James S. Miller. A parallel virtual machine for e�cient Scheme compilation.In Proc. ACM Symp. LISP and Functional Progr., June 1990.[5] Richard P. Gabriel. Performance and Evaluation of LISP Systems. MIT Press, 1985.[6] Chris Hanson. E�cient stack allocation for tail-recursive languages. In Conference on Lispand Functional Programming, Nice, France, June 1990. ACM.[7] Chris Hanson et al. MIT Scheme reference manual. Technical Report 1281, Mass. Inst. ofTechnology, Arti�cial Intelligence Laboratory, Cambridge, MA, January 1991.[8] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the presence of�rst-class continuations. In Proc. ACM Prog. Lang. Design and Impl., pages 66{77, 1990.11

[9] IEEE Std 1178-1990. IEEE Standard for the Scheme Programming Language. Institute ofElectrical and Electronic Engineers, Inc., New York, NY, 1991.[10] Simon L. Peyton Jones. The Implementation of Functional Programming Languages. Interna-tional Series in Computer Science. Prentice-Hall, New York, 1987.[11] James Miller and Guillermo Rozas. Free variables and �rst-class environments. Journal ofLisp and Symbolic Computation, 1991.[12] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. MIT Press,Cambridge, Massachusetts, 1990.[13] Simon L Peyton-Jones, Cordy Hall, Kevin Hammond, Will Partain, and Phil Wadler. Theglasgow haskell compiler: a technical overview. In Proc. UK Joint Framework for InformationTechnology, 1992.[14] Manuel Serrano. Bigloo user's manual version 1.4. INRIA{Rocquencourt, August 1993.[15] Guy Lewis Steele Jr. Debunking the `expensive procedure call' myth. AI Memo 443, Mass.Inst. of Technology, Arti�cial Intelligence Laboratory, Cambridge, MA, October 1977.[16] Guy Lewis Steele Jr. Rabbit: A compiler for Scheme. Master's thesis, Mass. Inst. of Technol-ogy, 1978.[17] Guy Lewis Steele Jr. Common LISP The Language. Digital Press, second edition, 1990.[18] P. Steenkiste and J. Hennessy. Tags and type checking in lisp: Hardware and software ap-proaches. In 2nd Int. Conf. Architectural Support for Programming Languages and OperatingSystems (ASPLOS II), pages 50{59, October 1987.[19] Tanel Tammet. Documentation for Hobbit version 2. Department of Computer Sciences,Chalmers University of Technology, 1993.[20] David Tarditi, Anunrag Acharya, and Peter Lee. No assembly required: Compiling standardML to C. Technical report, School of Computer Science, Carnegie Mellon University, November1990. CMU-CS-90-187.

12

