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Using Multilisp for Solving Constraint SatisfactionProblems: an Application to Nucleic Acid 3DStructure DeterminationMARC FEELEY feeley@iro.umontreal.caMARCEL TURCOTTE turcotte@iro.umontreal.caGUY LAPALME lapalme@iro.umontreal.caD�epartement d'informatique et de recherche op�erationnelle, Universit�e de Montr�eal, Montr�eal(Qu�ebec) Canada, H3C 3J7Abstract. This paper describes and evaluates a parallel program for determining the three-dimensional structure of nucleic acids. A parallel constraint satisfaction algorithm is used tosearch a discrete space of shapes. Using two realistic data sets, we compare a previous sequentialversion of the program written in Miranda to the new sequential and parallel versions writtenin C, Scheme, and Multilisp, and explain how these new versions were designed to attain goodabsolute performance. Critical issues were the performance of 
oating-point operations, garbagecollection, load balancing, and contention for shared data. We found that speedup was dependenton the data set. For the �rst data set, nearly linear speedup was observed for up to 64 processorswhereas for the second the speedup was limited to a factor of 16.Keywords: Parallel Computation, Symbolic Computation, Multilisp, Constraint Satisfaction,Functional Programming, Applications1. Introduction

Note: this paper is slightly older than the version published inLASC (only the formatting has changed).

The work described here is part of an ongoing project on the determination of thethree-dimensional structure of nucleic acids. Interest in nucleic acids has been fueledby the recent discovery of their catalytic activity. The detailed knowledge of thestructure of nucleic acids is considered a crucial prerequisite to the comprehensionand eventual manipulation of their function.For a very large number of nucleic acids, the sequence of nucleotides (the chemicalcomposition) is known but not the three-dimensional shape. This is due in partto the great progress in sequencing techniques and, in a related way, to megasequencing projects, such as the Human Genome Project [8]. There is thus a greatneed for sequence analysis tools that infer shape from sequence data.Most successful approaches to the structure determination problem rely on ho-mology and computer graphics modeling. These techniques are motivated by theobservation that natural selection has produced families of molecules in which thesequence of nucleotides has diverged widely, but the three-dimensional structureand the function have remained the same. The methods use nucleic acids of knownstructure from which pieces are extracted that have good sequence homology withregions of the target sequence. With the help of molecular display programs theglobal structure is manually constructed from these pieces. However, structure has



232 M. FEELEY, M. TURCOTTE, AND G. LAPALMEbeen determined for few nucleic acids and thus this approach is limited. A reviewof RNA modeling techniques is presented in [9].Our approach combines symbolic and numerical computation, as depicted in �g. 1.A \symbolic generation" step takes experimental and theoretical data as input andgenerates a preliminary pool of structures using the Constraint Satisfaction Prob-lem (CSP) algorithm described in this paper. A \numerical" step processes thispool of structures using commercially available energy minimization and moleculardynamic packages. This two step approach has the virtue of reducing the size of thesearch space explored by the energy minimization method. The precision lost inthe symbolic generation model is recovered in the numerical step. In this paper wediscuss the symbolic generation step. Details of the numerical step can be found in[11]. A sequential version of the system, called MC-SYM for \Macromolecular Con-formation by SYMbolic generation" [13], is in use in over 30 sites around the world,including several academic research centers and two pharmaceutical companies.
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Σ +Σ +Figure 1. Flow of information and processes.The next section introduces some background theory, and following sections ex-plain the details of our method.2. Background Theory: Nucleic Acid StructureThere are two types of nucleic acids (see [15] for a review); one is deoxyribonucleicacid (DNA), which carries the genetic information, and the other is ribonucleic acid(RNA) which serves as an intermediary in the protein synthesis but also may havecatalytic properties.The nucleic acids are chains of smaller molecules, the nucleotides (�g. 2). Thereare four types of nucleotides, A, C, G, and T for DNA and A, C, G, and U forRNA. The chains range from small nuclear RNAs, called snRNAs of less than 30nucleotides, to large ribosomal RNAs, containing over 3000 nucleotides. The se-quence of nucleotides is called the primary structure. The second level of organiza-tion, the secondary structure, arises from the well known fact that nucleotide basescan interact (base-pairing) and form double-helical domains. Finally, bases fromsingle-stranded regions can interact in space and further fold the molecule; this de-�nes the relative placement of double-helical domains and the exact 3D coordinatesof all atoms, the tertiary structure.
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Figure 2. The picture to the right shows thefour types of ribonucleotides; from top to bottomA,C,G and U. \: : : nucleotides contain a phos-phate group linked to a �ve-carbon-atom sugargroup, which, in turn, is joined to a 
at aro-matic molecule that can be either a double-ringedpurine or a single-ringed pyrimidine. Since theycontain the sugar deoxyribose, the nucleotidesof DNA are called deoxy-ribonucleotides, whilethose of RNA, which contain the sugar ribose,are known as ribonucleotides" [16].
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Stem−Loop(b) secondary structure (c) tertiary structureFigure 3. The three levels of organization of nucleic acids. Figure (a) shows the linear sequenceof nucleotides. Figure (b) shows the two-dimensional folding of the molecule: it shows the juxta-position in space of distant nucleotides in the sequence (solid lines represent regular base-pairingswhile dotted lines show long-range tertiary interactions). Figure (c) shows the tertiary structure.The point of this complicated �gure is not the details, but only to show that the tertiary structureis the actual 3D structure, including the location of all atoms in the nucleic acid.



234 M. FEELEY, M. TURCOTTE, AND G. LAPALMEThe only biologically active RNA class for which tertiary structure has been de-termined is that of the transfer RNA molecules (tRNA), which are involved in thetranscription of genetic code (DNA) to protein. The tRNA molecules are gener-ally 75 nucleotides long and are composed of around 2000 atoms. Because tRNAmolecules are the only nucleic acids of known structure they are also the bench-marks for modeling techniques and they will serve as examples in the remainder ofthe paper. Figure 3 shows the three levels of organization of the yeast PhenylalaninetRNA (entry number 1TRA of the Protein Data Bank [2]).Researchers have developed reliable methods for determining the primary struc-ture of proteins and nucleic acids. Those data are collected and made availableby research organizations such as the National Center for Biotechnology Informa-tion; the latest release (81.0, 15 February 1994) of the NCBI-GenBank Flat Filecontains roughly 170; 000; 000 bases from over 160; 000 reported sequences. On theother hand, determining the 3D structure by purely experimental means is stilla time consuming task. This explains why the January 1994 Protein Data Bankrelease contains only 2428 three-dimensional structures from proteins, DNAs andRNAs (less than 1% of the known sequences).Thus, one of the most important unsolved problems in molecular biology is stillthe structure determination problem: given a sequence of nucleotides, determinethe three-dimensional structure of the biologically active molecule. But it may notbe possible, at least in the short term, to solve this problem without additionalinformation.Additional information on the three-dimensional structure is provided by themethod of comparative sequence analysis and by enzymatic and chemical methods.Comparative sequence analysis is based on the observation that corresponding RNAmolecules from di�erent organisms adopt a similar set of base-pairings, i.e. themolecules have a common secondary structure. By comparing the nucleotide se-quences of RNA molecules it is possible to infer almost all secondary structureinteractions and some tertiary interactions (see Appendix A.1 for more detail).The use of speci�c enzymes, e.g. enzymes that cut single-stranded regions, andsequencing techniques provide additional information about the secondary structureof the molecule. Some chemical agents that are speci�c to the nucleotide bases canbe used to detect paired and non-paired nucleotides.Thus the structure determination problem can be reformulated as: given a se-quence of nucleotides and a set of secondary and tertiary interactions, predict thethree-dimensional structure of the molecule. The information from the comparativesequence analysis and the experimental data can easily be expressed in terms ofconstraints and thus have prompted us to encode the problem within the constraintsatisfaction problem paradigm.3. Constraint Satisfaction Problem AlgorithmsThe constraint satisfaction problem consists of �nding assignments of the variablesx1; : : : ; xn such that a set of constraints is satis�ed. Each variable is restricted



USING MULTILISP FOR SOLVING CONSTRAINT SATISFACTION PROBLEMS 235to a corresponding domain, i.e. xi 2 Di. A solution to the problem is a particu-lar assignment of variables that satis�es the constraints, and the result of a CSPalgorithm is the list of all possible solutions.The algorithm used here is based on the standard backtracking algorithm: \Inthis method, variables are instantiated sequentially. As soon as all the variablesrelevant to a constraint are instantiated, the validity of the constraint is checked. Ifa partial instantiation violates any of the constraints, backtracking is performed tothe most recently instantiated variable that still has alternatives available." [10].The resulting computation is tree-like. Each branch of a node at level i (i = 1at root) corresponds to an assignment of xi that does not violate the constraints.Because the constraints prune the tree in an arbitrary way there is no guaranteethat the tree is balanced. This becomes a concern when parallelizing the algorithmbecause it may cause poor load balancing.In our application, there is one variable per nucleotide in the input sequence. Thevariable speci�es the 3D position, orientation and conformation of the nucleotide.The conformation corresponds to the internal structure of the nucleotide, whichcan vary slightly depending on external factors. A problem with this formulationis that the domains are in�nite. They can be made discrete and �nite but theywould have to be very large to attain a useful precision. The strategy we haveadopted is to introduce problem-speci�c information to dynamically reduce thedegrees of freedom of the domains [12]. The motivation is that secondary andtertiary interactions between nucleotides physically restrict their relative placementin space. For instance, the placement of a nucleotide restricts the placement of thenext nucleotide in the sequence and any other nucleotide it interacts with. Thus,xi's domain is dependent on the other variables.It is convenient to express Di as a function of the partial instantiation of thevariables (i.e. the lower indexed variables x1; : : : ; xi�1). These domain generatingfunctions (DGFs) can therefore only express backward dependencies. In our imple-mentation, the DGF for Di is a function that receives via its single argument thecurrent assignment of x1; : : : ; xi�1 (as a list) and returns a list of the assignments tobe considered for xi. To help de�ne the DGF of each nucleotide we have de�ned afew parameterized DGFs that capture the more common forms of nucleotide inter-actions. These parameterized DGFs are the functions: reference, wc, wc-dumas,stacked3*, stacked5*, helix3*, helix5*, and P-O3*. The purpose of reference,for example, is to place the �rst nucleotide at some arbitrary starting point, whereaswc is for a \Watson-Crick" type pairing of bases. The parameters of these functionsare: the partial instantiation of variables, a label to name the nucleotide, the typeof nucleotide (and its possible conformations) and the label of the other nucleotidesinvolved in the interaction. See Appendix A.2 for a more detailed description ofthese functions and how the user prepares the input to the system. Figure A2 givesthe de�nition of the wc parameterized DGF.The core of the CSP algorithm is the search function shown in �g. 4 (for brevitywe only give the Scheme encoding of the algorithm). This function is called foreach node visited in the search tree. The argument partial-inst contains the



236 M. FEELEY, M. TURCOTTE, AND G. LAPALME1: (define (search partial-inst domains constraint?)2: (if (null? domains)3: (make-singleton-queue partial-inst)4: (let ((remaining-domains (cdr domains)))5:6: (define (try-assignments lst)7: (if (null? lst)8: (make-empty-queue)9: (let ((var (car lst)))10: (if (constraint? var partial-inst)11: (let* ((subsols112: (search13: (cons var partial-inst)14: remaining-domains15: constraint?))16: (subsols217: (try-assignments (cdr lst))))18: (append-queues subsols1 subsols2))19: (try-assignments (cdr lst))))))20:21: (try-assignments ((car domains) partial-inst)))))Figure 4. Scheme version of CSP algorithm.assignment of variables up to that point (in e�ect, the path to the node from theroot); domains is a list of the DGFs for the variables remaining to instantiate; andconstraint? is the function for checking the constraints. For each node visited,search generates the domain for the current variable by calling the next DGF withthe partial instantiation. Each possible assignment for the current variable is thenexplored by a recursive call to search and �nally the resulting solution lists areconcatenated. Queues are used to represent the list of solutions in order to have aconstant time concatenation operation.4. Program Development and ExperimentsThe project was carried out in three phases. First, the original Miranda implemen-tation of the system was translated into Scheme. The system was then parallelizedaccording to the Multilisp paradigm. Gambit [7] was chosen as the host Schemeimplementation because it features an optimizing native-code compiler and it e�-ciently supports the Multilisp language. In the last phase, the Scheme version wastranslated to C in order to evaluate the costs of using Scheme.The di�erent versions of the program were tested on two realistic problems takenfrom a previous paper [13]. The �rst problem is the anticodon loop-stem structurefrom 1TRA. The second is a model proposed by Dumas et al. [4] for the pseudo-knot structure. These two problems are relatively small when compared to otherstructures processed by MC-SYM (some structures take several days to solve on a



USING MULTILISP FOR SOLVING CONSTRAINT SATISFACTION PROBLEMS 237high-performance workstation). The need for a fast system is emphasized by theinteractive nature of the research process which typically requires that the samestructure be processed repeatedly with slightly di�erent parameters based on theresults of previous runs.Because we are primarily interested in the performance of the CSP algorithm, theprograms simply count the number of solutions rather than sending them to a �le.The list of solutions is nevertheless generated internally. Some vital statistics ofthese problems and the run time for the �nal sequential versions are given in �g. 5.Nb. of Nb. of Nb. of Nb. of Run time in secondsNucleo- Nodes Pruned Solu- Miranda Scheme CProblem tides Visited Branches tionsanticodon 17 1212 28621 179 17582 19.8 17.3pseudoknot 23 5597 32900 50 23307 44.6 34.7Figure 5. Results for sequential versions on the Apollo.The timings in �g. 5 correspond to process time on an Apollo DN3500 (25 Mhz68030 based) with 8 Mbytes of RAM running Domain/OS SR 10.3. The C versionof the program was compiled with the native C compiler (cc) with optimizationsenabled (-O). The Miranda execution was done with Miranda 2.015 [14] and aheap size of 3 Mbytes. The Scheme execution was done with Gambit 2.2 and aheap size of 3 Mbytes. This rather small heap size was the largest that avoidedpage faults on the Apollo. Gambit uses a simple stop-and-copy garbage collectorbased on Cheney's algorithm [3]. Consequently, each semispace is 1.5 Mbytes. TheMultilisp runs reported in Section 7 were done with Gambit 2.2 on a BBN Butter
yGP1000 shared-memory multiprocessor [1] running Mach 1000 release 2.5.2. Toavoid page faults, only 1 Mbytes of heap space was allocated per processor. Eachof the GP1000's processors is a 16 Mhz 68020 with 4 Mbytes of local memory.Local memory is partitioned through software into private and shared sections. Theprogram's code is copied to the private section of all processors and the heap of eachprocessor is in the shared section (and is thus accessible from any processor). Thecost for accessing a single word in remote memory is about 12 times larger than thecost for local memory. On the GP1000, a simple extension of the garbage collectionalgorithm makes it operate in parallel. As soon as some processor exhausts its freespace, all processors are interrupted to start a garbage collection. Each processortraces its stack and copies into its own heap the objects it can reach. Race conditionsare avoided by locking objects before they are copied. These locking operationsincrease the cost of garbage collection by a factor of roughly 1.5.The �nal C, Scheme, and Multilisp versions of the program and the data setsfor the anticodon and pseudoknot problems are available by anonymous FTP fromftp.merl.com:/pub/LASC/nucleic.tar.Z.



238 M. FEELEY, M. TURCOTTE, AND G. LAPALME5. Translation to SchemeThe translation from Miranda to Scheme took 5 man-days and was done in twosteps. The algorithm and overall structure of the Miranda program was preservedin the �rst step whereas in the second step we slightly modi�ed the algorithm.Even though Miranda supports lazy-evaluation the program did not really needit, so when translating to Scheme all functions were assumed to be strict (i.e. nodelay forms were introduced). The two programs are roughly the same size innumber of lines of code. Initially we expected the Scheme version to be longerbecause of Miranda's terse syntax, but the use of macros in the Scheme code allowedsubstantial savings.In addition, 5 man-days were spent optimizing the Scheme code. Originally theScheme version was about twice as fast as the Miranda version. Gambit's pro�lerwas helpful in �xing several sources of ine�ciency:� To our surprise, the program was spending a large proportion of its time in thebignum routines. This was traced to numerical type representation conversionsperformed by the generic arithmetic package. In particular, a relatively infre-quent comparison between an inexact real (
onum) and an exact integer causeda conversion of the 
onum argument to its exact representation (as a rational)in order to prevent the roundo� error that might have occurred had the exactinteger been converted to a 
onum. To avoid these costly conversions, numeri-cal constants that might be involved in an inexact operation were rewritten asinexact reals. This reduced the run time by an unexpectedly large factor of 12.� The run time was further reduced by 20% by inserting a declaration to removetype checks and open-code all simple primitives (e.g. cons, vector-ref but not+).� Since generic arithmetic was no longer necessary, numerical type declarationswere added to the program. For each numerical computation, the appropri-ate arithmetic operation was called (either 
onum or �xnum speci�c). Thisdecreased the run time by 33%.� A few critical functions were rewritten as macros, further decreasing the runtime by 5%.At this point, the Scheme program was about 50 times faster than the Mirandaversion. Part of this di�erence can be attributed to the fact that the code generatedby Miranda's compiler is interpreted. Another important factor is the overhead oflazy-evaluation. A closer examination of the Scheme program revealed three moreways of improving the program (these improvements were not carried over to theMiranda version):� We noticed that the program could be reformulated slightly to expose someinvariant computations on 3D transformation matrices, so the program was



USING MULTILISP FOR SOLVING CONSTRAINT SATISFACTION PROBLEMS 239rewritten to use precomputed matrices. This decreased the run time by a factorof 8.� At this point, roughly 19% of the time was spent in the garbage collector. Whentranslating the program we were careful to ensure that as little garbage as pos-sible would be generated. Garbage collections were still frequent due to theuse of a functional programming style (which demands that functions allocatethe result they return) and the extensive use of 
onums (which Gambit imple-ments with a 16 byte boxed representation containing a 64 bit 
oating-pointnumber). To reduce the number of garbage collections we changed Gambit'srepresentation of 
onums to a more compact 8 byte representation. Garbagecollection overhead went down to 11% of the total run time, which decreasedby 11%. In principle, the garbage collection overhead can be lowered arbitrarilyby increasing the heap size, but the limited amount of physical memory on thehost computers precluded this option.� Pro�ling the program showed that a substantial amount of time was spent intwo numerical functions: the product of two 3D transformation matrices andthe product of a 3D transformation matrix by a 3D vector. These were fairlyshort functions so we hand-coded them in assembler in such a way that theintermediate values were unboxed 
onums. Garbage collection overhead wentdown to 8% of the total run time, which decreased by 38%.The �nal version of the program runs roughly 500 and 900 times faster than theMiranda version for the pseudoknot and anticodon problems respectively.6. Translation to CThe Scheme program was translated to C to measure the performance loss due tothe choice of Scheme as the implementation language. The C version has the samestructure but memory allocation is done di�erently. Instead of having functionsdynamically allocate objects on the heap to return them to their caller, the spacefor the result is preallocated on the stack by the caller and a pointer passed to thefunction. The C version thus avoids heap allocation, garbage collection and theboxing of 
onums.The results from �g. 5 indicate that the Scheme version is a factor of about 1.15 to1.3 slower than the C version. However, when the programs are run on the GP1000,the Scheme version running on a single processor is slower than the C version bya factor of 1.75 to 2. This larger di�erence can be accounted for by the smallerheap size which increases the garbage collection overhead to 40% of the run time.This shows that the performance of the garbage collector plays an important rolein this application. It is reassuring that the Scheme code, with all the overheadsmentioned above, combined with a small amount of assembler code, is within afactor of 2 of the performance attainable with an optimizing C compiler.



240 M. FEELEY, M. TURCOTTE, AND G. LAPALME7. Translation to MultilispTranslation to Multilisp was straightforward. It took a few minutes to obtain aparallel version of the program from the Scheme version. This program performedreasonably well for small number of processors but an additional 5 man-days werespent tuning the program for maximal performance.Parallelization consisted of adding a single future form in search around therecursive call (line 12 in �g. 4) and a single call to touch around the reference tosubsols1 (line 18). Thus, with the exception of the root node, one task is createdper node visited in the search tree. This placement of future and touch expressesparallelism between the exploration of each branch of the current node. The call totouch forces synchronization of the task exploring a branch with the task associatedwith the current node. Consequently, the parallel execution is of the \fork-join"variety, and no parallelism is exported outside of search (i.e. when search returns,all the tasks it has spawned have terminated).This parallelization produces moderately coarse-grain tasks because of the rela-tively heavy computation required at each node. The average task size is 22 millisec-onds for the anticodon problem and 10 milliseconds for the pseudoknot problem.Consequently the overhead of parallelization is small; in fact the run time of theScheme and Multilisp versions is identical when run on a single processor with thesame garbage collection algorithm. Gambit uses lazy task creation (LTC) to imple-ment futures [6]. With LTC, future forms compile to a small number of machineinstructions and it is only when another processor needs work that a larger priceis paid to create and transfer a task. Thus, when the program is run on a singleprocessor, no tasks are created and the overhead is almost zero. However, an opti-mized implementation of the more traditional eager task creation would probablygive good results due to the moderate task granularity.In [5] we found that, on the GP1000, contention for shared data can be a seriousbottleneck when the number of processors is large. The GP1000 does not have co-herent caches or combining circuitry in the memory interconnect so all accesses to adatum get serialized by the hardware. To reduce contention, Gambit automaticallycopies the program's code and constants to all processors. However, dynamicallyallocated data is placed on the processor performing the allocation so it becomesa bottleneck when it is accessed by simultaneously executing tasks. The programwas modi�ed in a few places to reduce contention. This did not change the runtime on one processor but improved the run time for large number of processors.One modi�cation was to rewrite the database of nucleotide conformations, whichis heavily accessed, as a constant structure so that each processor would have alocal copy. Another modi�cation was in the way domains are described. Originallythe parameterized DGFs were curri�ed functions that returned DGFs. The DGFswere thus heap allocated closure objects which were a source of contention. Thecreation of these closure objects was avoided by lambda-lifting these functions byhand. Note however that some dynamically allocated shared structures still remain,namely, the list of DGFs, the partial instantiation, and the list of solutions.



USING MULTILISP FOR SOLVING CONSTRAINT SATISFACTION PROBLEMS 241Figure 6 gives the run times and speedup curves of the �nal program. Thespeedup curve for the anticodon problem is very good: slightly super-linear for upto 48 processors and then slightly below linear. The super-linear speedup can beexplained by the decreasing garbage collection overhead as the number of processorsincreases. Since each processor has its own heap, the total heap size on n processorsis n times larger than on one processor. However, Gambit maintains a few systemdata structures in the heap (e.g. symbol table and interpreter tables) so the freeheap space on n processors is actually slightly more than n times that available ona single processor. Thus, garbage collections become slightly less frequent as thenumber of processors increases. For example, the proportion of the run time spentin the garbage collector drops from 49% on one processor to 40% when 2 processorsare used and to 38% when 4 processors are used. The jumps in the speedup curveabove 24 processors are due to the discrete nature of the garbage collector. At 32processors and above, the program's run time is so short that the garbage collectorno longer gets called.The anticodon problem's degradation of performance for large number of pro-cessors is partly explained by the task spawning behavior at the beginning of theprogram's execution. Task spawning is directly dependent on the size of the do-mains and their ordering. The �rst task is spawned at .04 seconds and at .075seconds only 32 tasks have been created. Thus there will be a signi�cant amountof idle time at the beginning of the run, especially for any processor beyond the�rst 32. The e�ect of this idle time clearly becomes more important as the numberof processors is increased (as explained by Amdahl's law). The ordering of thedomains could be changed to spawn tasks sooner but this would have the detri-mental e�ect of duplicating the work that is currently done once, at the start ofthe computation.Speedup for the pseudoknot problem is not as great as for the anticodon prob-lem. The speedup is roughly linear below 16 processors but at 24 processors itbarely exceeds 16 and decreases slightly as more processors are used. At �rst wethought the less balanced search tree of the pseudoknot problem was causing anincrease in task creation costs and idle time. However, pro�ling the program showsthat these costs are fairly constant in the range of 16 to 64 processors. The realculprit is higher contention for the partial instantiation. Even though contentionoccurs in both problems it is more acute for the pseudoknot problem because thepartial instantiation is accessed 5 times more frequently and, due to the domainordering, the partial instantiation is mostly constructed on a single processor. Un-fortunately, this contention problem is hard to solve because Multilisp does notprovide constructs to control the placement of data and tasks.The dynamic load balancing method used in Gambit performed well for bothproblems, even at high number of processors. At 64 processors, the idle time is onaverage 18% and 3.5% of total run time for the anticodon and pseudoknot problemsrespectively. The potential imbalance in the search tree is one of the prime motiva-tions for adopting a programming system with �ne grain dynamic load balancing.The static partitioning methods used in several other parallel programming systems
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anticodon pseudoknotTime Speedup Nb. Time Speedup Nb.(secs) (T1=Tn) GCs (secs) (T1=Tn) GCsC 25.000 2.11 49.400 2.39Scheme 44.245 1.19 28 97.703 1.21 64Multilisp, n=1 52.810 1.00 28 118.024 1.00 642 22.967 2.30 13 54.318 2.17 314 10.822 4.88 6 27.647 4.27 158 5.480 9.64 3 14.874 7.93 816 2.681 19.70 1 8.778 13.45 524 2.174 24.29 1 7.156 16.49 432 1.154 45.76 0 7.204 16.38 340 1.149 45.96 0 7.325 16.11 248 1.035 51.02 0 7.409 15.93 256 .961 54.95 0 7.818 15.10 264 .902 58.55 0 8.074 14.62 2
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Figure 6. Timing results and speedup curves for anticodon and pseudoknot problems on theGP1000.



USING MULTILISP FOR SOLVING CONSTRAINT SATISFACTION PROBLEMS 243would lead to much more idle time when the search tree is not balanced, as is thecase for the pseudoknot problem.8. ConclusionsWe have explored the parallelization of a functional program for determining thethree-dimensional structure of nucleic acids. This is a \real-world" application thatcombines symbolic and numerical computation. The constraint satisfaction algo-rithm used in this application was relatively easy to parallelize using the Multilisplanguage. Nevertheless, it was necessary to tune the program in several ways toattain good performance on the GP1000 shared-memory multiprocessor. An im-portant aspect was to identify and reduce the contention on shared data structures.In one case contention was high enough to limit the program's speedup to a factorof 16. Modi�cations in the original sequential algorithm, especially with regardto 
oating-point operations and garbage collection, were extremely important toachieve good absolute performance.Our work demonstrates a practical symbolic application that can bene�t fromparallelism. On 64 processors, the Multilisp program is up to 27 times faster thana sequential version of the same program rewritten in C in an imperative style andcompiled with an optimizing compiler.AppendixA.1. Comparative Sequence AnalysisThere are positions of the secondary structure which are not conserved (or constant)among the nucleotide sequences of corresponding organisms. For such positions, wefrequently observe strong covariation with the nucleotide position that is paired toit; the covariation is such that it preserves the complementarity of the bases. Thediagram below shows the alignment of nucleotide sequences from di�erent organismsof the anticodon stem-loop region of tRNAs. The lines join the two nucleotides ofthe same base-pair. The underlined region is the anticodon. We also observe sucha pattern of covariation between nucleotides that are not located in a secondarystructure element; those nucleotides may be involved in the tertiary interactions(e.g. the pair G19:C56 �g. 3 (b)).
Saccharomyces cerevisiae ...CCAGACUGAAGAUCUGG...
Spiroplasma meliferum CCUGCCUUGCACGCAGG
Mycoplasma capricolum CCUCCCUGUCACGGAGG
Mycoplasma mycoides CACGGUUUUCAUCCGUG
Spiroplasma meliferum UUUGAUUGAAGCUCAAA
Streptomyces lividans ACGGCCUGCAAAGCCGU
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244 M. FEELEY, M. TURCOTTE, AND G. LAPALMEA.2. Input Preparation: Anticodon ProblemThis section explains how the user prepares the input to the system. As an exam-ple, we show the construction of a region of tRNA called the anticodon stem-loopthat comprises nucleotides 27 to 43. This construction starts from three piecesof information. First, through comparative sequence analysis, nucleotides 27 to31 are known to be base-paired to nucleotides 39 to 43 and form a double-helicaldomain. Second, nucleotides 34 to 38 are thought to be stacked on top of eachother. Third, successive nucleotides in the sequence must be connected by P �O30covalent bonds.The variable anticodon-domains is set to the list of DGFs (see �g. A1). The call(reference rC 27 partial-inst), where rC is a rigid nucleotide conformation forthe C ribonucleotide and 27 its label, will produce a list of one element, the singleallowable placement of the �rst nucleotide (an arbitrary reference point). The call(helix5* rC 28 27 partial-inst) looks for nucleotide 27 (the �rst nucleotide)in partial-inst and calculates the 3D transformation matrix that puts C28 inspace in such a way that it is connected to C27 and forms a regular A form helix.A similar computation is applied to nucleotides 29, 30, and 31. Then we break thelinear extension and jump to the opposite strand and generate a Watson-Crick typebase-pairing with the call (wc rU 39 31 partial-inst). The nucleotides 40, 41,42, and 43 are generated in the same manner as nucleotide 28. Up to now only thehelical region has been accounted for and each DGF has returned a domain with onevalue; thus, there is only one possible partial instantiation. We now begin the com-putation for the loop region (nucleotides 32 to 38) for which there is some freedomin the placement of nucleotides. The call (stacked3* rA 38 39 partial-inst)generates two possible placements for the rigid nucleotide A38 to be stacked undernucleotide 39. Similarly, nucleotides 37, 36, 35, and 34 are generated, since noconstraint has been involved the number of partial instantiations being explored is32 (25). The DGFs introduced so far took one rigid nucleotide conformation andput it in one or two orientations in space; the P-O3* function takes a set of rigidconformations and tries three di�erent placements for them (these rigid conforma-tions represent intra-nucleotide variations such as torsion angles). There are 30possible placements for nucleotide 32 and the same number for nucleotide 33. Thenumber of leaves considered is thus 28,800 although the constraint (which requiresthe oxygen atom number 30 of nucleotide 33 to be no farther than 3 angstr�oms fromthe phosphorus atom of nucleotide 34) causes only the 179 solutions to be visited.AcknowledgmentsWe wish to thank Michigan State University and Argonne National Laboratory forthe use of their Butter
y computer. This work was supported in part by grantsfrom the Natural Sciences and Engineering Research Council of Canada and theMedical Research Council of Canada.
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(define anticodon-domains(list(lambda (partial-inst) (reference rC 27 partial-inst))(lambda (partial-inst) (helix5* rC 28 27 partial-inst))(lambda (partial-inst) (helix5* rA 29 28 partial-inst))(lambda (partial-inst) (helix5* rG 30 29 partial-inst))(lambda (partial-inst) (helix5* rA 31 30 partial-inst))(lambda (partial-inst) (wc rU 39 31 partial-inst))(lambda (partial-inst) (helix5* rC 40 39 partial-inst))(lambda (partial-inst) (helix5* rU 41 40 partial-inst))(lambda (partial-inst) (helix5* rG 42 41 partial-inst))(lambda (partial-inst) (helix5* rG 43 42 partial-inst))(lambda (partial-inst) (stacked3* rA 38 39 partial-inst))(lambda (partial-inst) (stacked3* rG 37 38 partial-inst))(lambda (partial-inst) (stacked3* rA 36 37 partial-inst))(lambda (partial-inst) (stacked3* rA 35 36 partial-inst))(lambda (partial-inst) (stacked3* rG 34 35 partial-inst));<-. Distance(lambda (partial-inst) (P-O3* rCs 32 31 partial-inst)); | Constraint(lambda (partial-inst) (P-O3* rUs 33 32 partial-inst));<-' 3.0 Angstroms))(define (anticodon-constraint? v partial-inst)(if (= (var-id v) 33)(let ((p (atom-pos nuc-P (get-var 34 partial-inst))) ; P in nucleotide 34(o3* (atom-pos nuc-O3* v))) ; O3' in nucleotide 33(<= (pt-dist p o3*) 3.0)) ; check distance#t))Figure A1. Statement of the anticodon problem, including de�nition of the domains (and se-quence) and the constraints. The call (search '() anticodon-domains anticodon-constraint?)produces the list of all solutions.

(define (wc nuc i j partial-inst) ; for Watson-Crick pairing of nucleotides i and j(let* ((ref (get-var j partial-inst)) ; find variable j(tfo (dgf-base wc-tfo ref nuc))) ; compute placement of nucleotide i(list (make-var i tfo nuc)))) ; create singleton domain(define wc-tfo ; precomputed transformation matrix for Watson-Crick paired base'#(-1.0000 0.0028 -0.00190.0028 0.3468 -0.9379-0.0019 -0.9379 -0.3468-0.0080 6.0730 8.7208))Figure A2. The wc parameterized DGF.
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