
A Compating Inremental Colletor and its Performane in a ProdutionQuality CompilerMartin Larose and Mar Feeleyflarosem,feeleyg�iro.umontreal.aD�epartement d'informatique et reherhe op�erationnelleUniversit�e de Montr�ealAbstratWe present a new near-real-time ompating olletor andits implementation in a prodution quality Sheme om-piler (Gambit-C). Our goal is to use this system as a basefor an implementation of Erlang for writing soft real-timeteleommuniation appliations. We start with a desrip-tion of Gambit-C's memory organisation and its blokingolletor. The design and integration of the inrementalolletor within Gambit-C are then explained. Finally wemeasure the performane of the inremental olletor andompare it to the original bloking olletor. We found thatthe overhead of the inremental olletor is high (a fatorof 1.3 to 8.1, with a median of 2.24) but nevertheless theolletion pauses are ompatible with typial soft real-timerequirements (we get an average pause of 3.25 milliseondsand a maximum pause of 18 milliseonds on a 133Mhz DECAlpha 21064).1 Introdution

This is a revised version of the paper publishedin: Proeedings of the ACM SIGPLAN 1998International Symposium on Memory Management.The results have been updated after we fixed abug in the measurement software whih slightlyundervalued the pause time.

Garbage olletion (GC) frees the programmer from the te-dious and error-prone task of memory management, thusmaking the programming language higher-level. On unipro-essors the work of the olletor is interleaved with that ofthe main program (the mutator). If eah parel of GC is toolong, the olletor may adversely interfere with the exeu-tion of the mutator whih beomes unresponsive while theolletor is working. This problem is espeially importantin real-time appliations (e.g. animations, real-time simula-tions and reative systems) where the mutator is expetedto progress at a steady rate.Inremental olletors aim to diminish the disruptivenessof GC by spreading out the GC work into more uniformlydistributed parels of smaller and bounded size. Beause in-remental GC requires extra oordination between mutatorand olletor and higher onservatism, it is more expensivethan bloking GC (where all of the dead objets are re-laimed every time the olletor is run). There is a widespae of tradeo�s between GC overhead and preditabilityin the design of an inremental olletor but unfortunatelyit is hard to pik the best tradeo�s for a given appliation

beause there have been few experimental studies on whihto base a deision. We have designed a near-real-time inre-mental ompating olletor and implemented it in a pro-dution quality Sheme ompiler. This paper reports onthe various tradeo�s we made and the performane of theolletor on a wide range of benhmarks.2 ContextThe work reported in this paper is part of a larger e�ortto implement a ompiler for Erlang [AVWW96℄, a on-urrent mostly funtional programming language for real-time teleommuniation appliations developed at Eris-son. Our ompiler, alled Etos [FL98℄, �rst ompiles Erlangto Sheme and then uses the Gambit-C Sheme ompiler[FM90, FMRW97℄ to ompile the result into C. This ap-proah is reasonable and eÆient beause Sheme and Er-lang share many similarities (e.g. use of funtional style,dynami typing, data types).The teleommuniation appliations targeted here arenot hard real-time appliations; it is permissible for an ap-pliation to be unresponsive for short periods of time (say10-50 milliseonds) as long as this is infrequent. An applia-tion will not fail if it is unresponsive for longer than this, itsquality of servie will simply degrade (for example onnet-ing a telephone all to a destination must seem to be loseto instantaneous to the human aller but if it takes a fewseonds all it will ause is a small amount of frustration).The average pause should be in the range 2-5 milliseondsand at least 50% of the run time should be spent exeut-ing the mutator (assuming the ode is reasonably eÆient,i.e. generated by an optimizing ompiler). These onstraintsare suÆient to write in Erlang the ontrol software of anATM swith (suh as the AXD301 [AXD98℄ whih aims toproess eah transation within 7 milliseonds).To improve responsiveness we designed an inrementalompating olletor for Gambit-C to replae the blokingolletor in the standard distribution. Given the applia-tion domain and use of a funtional programming style,we antiipated high alloation rates. Our inremental ol-letor is a re�nement of Dub�e's olletor [Dub96, DFS96℄,an inremental olletor developed for a small footprintinterpreter-based Sheme implementation for embedded 8bit ontrollers.

3 Gambit-C's Bloking ColletorGambit-C was designed to be a very portable ompiler (theode generated stiks to ANSI-C and uses few OS spei�features) and to allow Sheme and C ode to be mixed inone appliation (Sheme objets an be aessed and allo-ated from C ode and ontrol an jump from C to Shemearbitrarily). The ompiler uses an RTL-style virtual ma-hine ode (GVM [FM90℄) as an intermediate representationand then translates eah virtual instrution into the orre-sponding C ode (the onept of virtual mahine registersis important here beause they are roots of the olletor).For portability, the Sheme heap (whih ontains all the re-laimable Sheme objets) is alloated from the C heap byusing the mallo C library routine.3.1 The Stak-CaheIn order to properly handle tail-alls (see [FMRW97℄ fordetails) and to provide eÆient �rst-lass ontinuations,Gambit-C alloates ontinuation frames in a 36 Kbyte stak-ahe whih is separate from the C stak. When a deepreursion auses an overow of the stak-ahe, the on-tinuation frames it ontains are transfered to the Shemeheap thus allowing the reursion to ontinue. A ontin-uation frame is opied from the heap bak to the stak-ahe when the stak-ahe is emptied after a funtionreturn. When a ontinuation is aptured with a all toall-with-urrent-ontinuation the base of the stak-ahe is temporarily moved up so that any return to one ofthe aptured ontinuation frames will ause it to be opiedto the top of the stak-ahe. This tehnique is basially thesame as [HDB90℄ but of a �ner granularity.3.2 Memory PartitioningThere are three alloation lasses for Sheme objets:1. Movable: the objet may be moved by the olletor2. Still: the objet is never moved3. Permanent: the objet is never moved or relaimedThe allure of still objets is that C ode an easily manip-ulate them without worrying about their address suddenlybeoming invalid after the olletor is run (a onservativeGC approah suh as [BW88℄ is not an aeptable solutionbeause it is not portable). Still objets have a refereneount �eld whih indiates how many referenes from the\C world" exist to this objet (to prevent the olletorfrom relaiming them if they are not reahable from the\Sheme world"). Permanent objets are useful for programonstants (whih are nonmutable) and symbols (inludingdynamially reated ones). Most objets dynamially allo-ated by Sheme ode are movable objets. Movable ob-jets are alloated eÆiently by inrementing a free pointer.Within a basi blok, alloations of movable objets are o-alesed and a single heap limit hek is performed. Mostonstant-size alloation primitives (ons, list and vetorbut not make-vetor) are inlined by the ompiler. The om-piler also keeps oating point numbers in an unboxed statewithin eah basi blok, whih greatly redues the need foralloating onums (boxed oating point numbers) on someoating-point intensive programs [HFA+96℄.

Gambit-C allows the Sheme heap to grow and shrink dy-namially as the program's needs hange. For this reason,we opted not to implement the Sheme heap as one largeblok beause this would ause severe fragmentation giventhat C ode also alloates objets in the C heap. Instead,a olletion of �xed size (512 Kbytes) nonontiguous se-tions is used to hold movable objets. Eah movable objetsetion is divided into equal size from-spae and to-spae.Still objets are alloated diretly o� of the C heap usingmallo. Large objets (> 16 Kbytes) are always alloatedas still objets to avoid fragmenting the movable objet se-tions. Permanent objets are alloated statially if they areprogram onstants or on the C heap if they are symbols.
movable object sections

still objects

from to from to

free
pointer

limit
pointer

C heap

Figure 1: Alloation of movable and still objets in the Cheap.Figure 1 shows how the C heap is partitionned. When analloation of a movable objet pushes the free pointer pastthe limit pointer, the free pointer is advaned to the nextmovable objet setion if one is free otherwise the olletor isrun. Note that there is a \fudge" spae (16 Kbytes) betweenthe limit pointer and the end of the from-spae. This is toaomodate the runtime library whih sometimes needs toblindly alloate a bounded number of movable objets with-out heking the limit pointer until all objets are alloated.The stak-ahe also has a fudge spae (20 Kbytes).3.3 Objet RepresentationFigure 2 shows how movable objets are represented. Ob-jets are aligned on a 4 byte boundary exept for onumswhih are aligned on an 8 byte boundary. The two lowerbits of a pointer are used to enode a primary type infor-mation: 00 for �xnums (small exat integers), 10 for otherimmediates (haraters, booleans, empty-list, et.), 11 forpairs, 01 for other memory alloated objets. The body ofall memory alloated objets is pre�xed with a single wordheader whih ontains the following �elds: 24 bits for lengthof body in bytes, 5 bits for seondary type information (pair,vetor, string, et.), 3 bits for an alloation lass tag (per-manent, still, movable-but-not-forwarded, and movable-and-forwarded whih ounts for 2 tags beause in this ase theheader ontains the forwarding pointer). Still objets pre�xthe header with extra �elds to aomodate the olletor (areferene ount and 2 links as explained below).
24 5 3

e
p
yt lass

length in bytes
c

header body (aligned on 4 or 8 byte boundary)Figure 2: Movable objet representation.

3.4 The Bloking ColletorGambit-C's bloking olletor ombines the stop-and-opytehnique (for movable objets) and the mark-and-sweeptehnique (for still objets). Permanent objets are notsanned by the olletor beause they do not need to berelaimed and an only ontain referenes to permanent ob-jets.Still objets are plaed on a linked list when alloated.This list is used at the start of the olletion to mark all thestill objets whih have a nonzero referene ount, and at theend of the olletion to relaim all unmarked still objets (bya all to the free C library routine). A list of all markedbut not yet sanned still objets is also maintained by theolletor (this explains why still objets have 2 link �elds).The movable objets are handled by a Cheney-style opy-ing algorithm [Che70℄ whih overwrites the header with theforwarding pointer. Control alternates between the stop-and-opy and mark-and-sweep algorithms until the list of allmarked but not yet sanned still objets is empty and thereare no remaining movable objets that have been opied toto-spae but have not yet been sanned.The roots used by the olletor are:� the nonzero referene ount still objets,� the Sheme global variables,� the virtual mahine registers,� the top part of the stak-ahe (i.e. the on-tinuation frames in the urrent ontinuationthat have not been aptured by a all toall-with-urrent-ontinuation)At the end of the olletion, the Sheme heap is resizedby alloating or relaiming some movable objet setions.The default poliy urrently used is to make the heap twiethe size of the spae oupied by live objets (for movableobjets the spae oupied is multiplied by two beause thereis spae needed for the atual objet and its opy). The useran on�gure the resizing ratio, as well as the minimum andmaximum heap size, when the program is launhed.4 Integrating the Colletor Into Gambit-CIn replaing Gambit-C's bloking olletor with Dub�e's ol-letor [DFS96℄ we had two goals: adapt the olletor to aprodution quality ompiler and measure the performaneof the olletor in a realisti setting. This setion desribeshow Dub�e's olletor was modi�ed.Dub�e's olletor is a mark-and-ompat olletor whihompats by sliding objets (the ordering of objets in mem-ory is preserved). Dub�e's entral idea is the use of a non-movable handle whih points to a movable part. Thus areferene to a Sheme objet is enoded as a tagged pointerto a one word handle whih ontains a pointer to the body ofthe movable objet. Beause of this indiretion it is possibleto avoid an \update" pass to update all objet referenes tothe new loation of the objets. This operation is a problemin a real-time setting beause the number of referenes toupdate for a given objet is not bounded and therefore annot be done atomially. However, an overhead is added tothe mutator for every aess to the objet. The overhead wemeasured is reported in Setion 5.Beause Gambit-C handles interrupts through polling[Fee93℄ and that polling points and heap limit heks an

only our at the end of basi-blos, it is possible to main-tain diret pointers to the movable part of objets temporar-ily (for the duration of a basi-blo). This allows the indi-retion ost to be amortized over multiple aesses to thesame objet, even in a multi-threaded ontext. However,the Gambit-C ompiler does not urrently exploit this pos-sibility.4.1 Memory PartitioningDub�e's olletor assumes a �xed size heap and that all ob-jets are movable. This simpli�es the memory partitioningbeause eah memory setion an be prealloated. Gambit-C however allows the Sheme heap to grow and shrink ondemand so a di�erent approah is needed.The memory partitioning is only slightly di�erent fromthe bloking olletor. The three alloation lasses are main-tained and the movable objet setions are the same size.Beause ompation is done by sliding objets, the ompletesize of eah movable objet setion is used for alloation, notjust half.The alloation limit pointer is handled di�erently. In-stead of pointing lose to the end of the urrent movable ob-jet setion, it initially points a onstant amount (G words)further than the alloation pointer. The mutator passes on-trol to the olletor when the alloation pointer rosses thislimit. When the olletor is done, it sets the limit pointerto G plus the alloation pointer, unless there isn't enoughspae in the urrent movable objet setion in whih asethe next setion is used. The value of G an be adjustedto ontrol the granularity (and thus overhead) of the on-text swithes between mutator and olletor and also theolletor pause time (whih is roughly proportional to G asexplained below). A setting of G = 4096 words o�ers a goodompromise between pause time and overhead, and is usedin our experiments.Handles are nonmovable and are thus alloated outsidethe movable objet setions in handle setions. Eah handlesetion ontains the (worst-ase) number of handles neededfor the objets in one movable objet setion, i.e. 1/3 thesize of a movable objet setion. When a handle setionis alloated o� the C heap the handles in that setion arelinked together and added to the free handle list. This listshrinks and grows with the alloation and dealloation of themovable objets. Handle setions are never freed sine theyare not tied diretly to a spei� movable objet setion butindividually to movable objets. So there will be N handlesetions if the maximum number of movable setions in thepast exeution is N . The Sheme heap size aounts for thehandle setions.4.2 The Marked Objet ListDub�e's olletor uses a main heap (whih is one ontiguoussetion) for two purposes. Objets are alloated at one endand a marking stak is maintained at the other end. Thisstak holds pointers to all the objets that have been markedbut not yet sanned. Marking an objet adds it to the stakand sanning an objet removes it from the top of the stak.The spae for one pointer is reserved on the stak on everyalloation (by inrementing the marking stak limit whihseparates the area reserved for objets from the area reservedfor the marking stak).We have implemented the marking stak by linking allobjets that have been marked but not yet sanned into the

\marking list". This required adding a �eld (the mark �eld)to movable objets whih is also used to enode the olor ofthe objet. When the olletor has not yet determined thatan objet is reahable its mark �eld is set to 0 (white). Afterbeing marked, the mark �eld ontains the address of the nextobjet in the marking list or a speial end of list marker(gray). Finally, when the objet is sanned, it is detahedfrom the marking list and its �eld is set to -1 (blak). Notethat still objets already have a mark �eld, so an extra �eldis not needed for them. The mark �eld is also used forhandling objet mutation (details below).4.3 New Objet RepresentationIn order to aess objets in the same way regardless of theiralloation lass, all objets are represented uniformly witha handle. For permanent objets a spae for the handle isreserved before the header as in Figure 3. There is no needfor a mark �eld.
header

aligned bodyreference
object

handleFigure 3: Permanent objet representationFor still objets several �elds ome before the header asshown in Figure 4: the mark �eld whih links still objets,the handle, a referene ount, a link to the next still objet,and a length (whih is only needed for memory aount-ing purposes and beause Gambit-C supports operations toshrink the size of an objet whih is useful for implementingbignums and string ports).
header

aligned body

count
reference

reference
object

handle marklength linkFigure 4: Still objet representationThe alloation of a movable objet requires an alloationof a nonmovable handle from the free handle list and analloation of the movable part in the urrent movable objetsetion. Note that there is always enough handles for all themovable setions, so it is not neessary to hek exhaustionof the free handle list. As shown in Figure 5, the movablepart has two more �elds than for the bloking olletor:� Bak pointer: points bak to the orresponding han-dle. Needed in the ompating phase of the olletorto update or free the handle.� Mark: this links gray objets, as explained above.The representation of movable objets may seem spaeineÆient but it ompares advantageously to the blokingolletor whih has a hidden fator of two for the spae re-served in to-spae. For a n word body, the representationfor the bloking olletor is more spae eÆient for n < 2(whih is rare) and less spae eÆient for n > 2. For the fre-quent ase of pairs (n = 2), the representations are equallyspae eÆient.

header

aligned body

handle

object
reference

in movable object sectionin handle section

pointer
back

markFigure 5: Movable objet representationNote that this objet representation allows testing theolor of any lass of objet by reading the �eld just beforethe header. In the ase of a permanent objet, the olor willappear gray beause the handle is neither 0 or -1.4.4 The ColletorThe olletor is alled on two types of events, when the allo-ation limit is reahed and when the stak-ahe overows.The olletor an be in one of 4 states orrespondingto eah phase of the olletion (mark roots, marking, pre-ompation, ompation). A olletion yle begins whenthe olletor enters the mark roots phase. The time allottedto the olletor for the next parel of olletion is kept in aglobal variable of the olletor alled the word bank (detailsbelow). When this time is up, ontrol returns to the mutatorand the next time the olletor is alled it will resume in thesame phase.1. Mark roots phase. This phase is performed atomi-ally (even though it doesn't need to be). It initializessome global variables of the olletor and marks theroots. The roots are the same as the bloking olletor,exept for the stak-ahe. We observed that even forbig appliations the time needed for marking the rootsis small enough not to exeed our real-time onstraints.This is due to a limited number of global variables (theSheme runtime library whih is present in all applia-tions ontains 1500 global variables and the Gambit-Compiler, our largest Sheme benhmark at 20000 lines,adds another 1500 variables to that).2. Marking phase. In this phase, the still objet andmovable objet marking lists are sanned.3. Pre-ompation phase. This phase is performedatomially. Eah time it is entered the roots andthe stak-ahe are sanned again beause the muta-tor might have stored referenes to white objets intothem while the olletor was in the marking phase. Theuse of a �xed size stak-ahe bounds the amount ofwork to be done (on our test mahine this phase takesup to 3 milliseonds for the ompiler benhmark, androughly 1 milliseond for the other benhmarks). Ifthis marks new objets the olletor goes bak to themarking phase, otherwise the olletor will:(a) free the unmarked still objets,(b) save a opy of the movable objet alloationpointer suh that all movable objets alloatedbetween now and the end of the ompation phasewill be onsidered blak regardless of their mark�eld (movable objets are always alloated with 0(white) in the mark �eld)

4. Compation phase. The last phase ompats theheap. A opying pointer and a sanning pointer are setto the base of the �rst movable objet setion. Eahobjet in the movable objet setions is proessed inturn using the sanning pointer. Unmarked objetsare olleted by transfering the orresponding handleto the free handle list. Marked objets are opied tothe address indiated by the opying pointer and theorresponding handle is updated.When the ompation ends, the alloation pointer isset to the value of the opying pointer and the heap isresized (all the movable objets retained are onsideredlive).If the olletor was alled due to a stak-ahe overow,a stak olletion routine is �rst alled. Every frame in thestak-ahe is opied to the Sheme heap, the word bank isupdated aording to the size of the frames, the stak-aheis emptied and the olletor is alled to ontinue normalproessing as explained above.4.5 Write BarrierWhen a referene to objet X is stored in objet Y , thesystem must ensure that the olletor will not neglet tomark X if Y ends up marked when the ompation phase isstarted (unless of ourse the referene to X in Y is overwrit-ten). This will not happen automatially if X is white andY is blak. We have experimented with two write barriersto handle this ase.1. Gray X. Here the white objet X is grayed by puttingit in the marking list. This is the original barrierproposed by Dub�e and is similar to Dijkstra's barrier[DLM+78℄.2. Gray Y . Here the blak objet Y is grayed by puttingit bak in the marking list. This is similar to Steele'sbarrier [Ste75℄. This is less onservative than graying X(i.e. X will possibly be relaimed if the referene toX inY is overwritten). We rejeted a more preise barriermethod that only grays the loation of the mutationusing a store list beause we want to keep a strit boundon heap size. This is a reasonable ompromise giventhat there are no mutation primitives in Erlang andSheme programs are often mostly funtional.The write barrier is only used on heap alloated objetsby the primitives: vetor-set!, set-ar!, set-dr! andell-set! (whih is used for assignments to loal variables).There is no barrier on the roots (the virtual registers, thestak-ahe and the global variables) whih are sanned inthe pre-ompation phase of the olletor. This eliminatesthe need for proteting Sheme's set! operation on globalvariables.The pseudoode for the vetor-set! primitive, inlud-ing a \gray X" write barrier, is shown in Figure 6 (the othermutation primitives are similar). The proedure gray(val)adds objet val to the head of the marking list.Long objets are sanned inrementally to bound olle-tor pauses. In the marking phase, the olletor sans longobjets in small segments and a pointer to the unsannedregion is saved when ontrol returns to the mutator. Con-sequently, when the \gray Y " barrier is used, mutation ofa still vetor objet must hek if the mutation is in the

vetor_set(vet, index, val):if memory_alloated(val) and g_phase!=ompationand blak(vet) and white(val) then gray(val)vet[index℄ = valFigure 6: Pseudoode for the vetor-set! primitive andwrite barrier.sanned region, in whih ase the olletor must resan itfrom the beginning in the next parel of olletion. This isnot a perfet solution in general beause the olletor ouldget stalled on marking vetor V if the mutator repeatedlymutates the beginning of V (this ould lead to the heapoverowing). Fortunately, in the ontext of an Erlang sys-tem this is not a problem beause we an write the runtimesystem in suh a way that mutations are always performedon small vetors.4.6 Pareling Out Colletion WorkThe following analysis applies to the \gray X" write barrierand to the \gray Y " write barrier with no mutation to longobjets. We will make use of the following de�nitions:� H is the size of the heap (in words).� Ri is the proportion of the heap oupied by objetsretained by the olletor at the end of olletion ylenumber i.� Wtotal is the total amount of work for one olletionyle in number of words to mark and to ompat.� W is the amount of work in a parel of olletion.� B is the value of the word bank.The marking phase will touh at most HRi words worthof objets and the ompating phase H words, so Wtotal �H(1 +Ri). This work is spread over the alloation of H(1�Ri�1) words by the mutator. So, if the olletor touhes Cwords per word alloated by the mutator, then the olletionyle will end before the mutator exhausts the free spae aslong as C � WtotalH(1�Ri�1) � 1+Ri1�Ri�1 .We use the setting C = 5+3L2(1�L) , where L is hosen atprogram launh and is an upper bound on the proportion ofthe heap oupied by live objets. Figure 7 gives a plot ofthis funtion.
0246810

1214161820
0 0.2 0.4 0.6 0.8 1

C
LFigure 7: Value of C as a funtion of L.

This setting of C ensures that the olletion yle willend before the mutator exhausts the free spae when Ri�1 �1+L2 . Moreover, it guarantees thatRi � 1+L2 . This is easy toprove by indution (see [DFS96℄ for a proof). An interestingorollary is that the olletor an stay idle at the start ofthe olletion yle until the mutator has alloated enoughobjets to make the heap oupied to 1+L2 . By staying idlein this way, the olletor will be less onservative and thusmore eÆient at relaiming garbage.The word bank is used in pareling the olletion work.At the start of olletion yle i, B is set to the negativevalue �H(1+L2 � Ri�1) so that the olletor will stay idleat the start of the olletion yle. When the heap limit isrossed and when the stak-ahe overows, the number ofwords alloated (still and movable objets) is added to B.Thus, in the typial ase (heap limit reahed) B inreasesin steps of G.If B is negative, the olletor returns immediately tothe mutator. Otherwise, the amount of olletion work isalulated based on B and C (i.e. W = BC), the olletorperforms W words worth of olletion, sets B to 0 and thenreturns to the mutator.5 ResultsTo measure the performane of our inremental olletor weused a set of 20 Sheme benhmarks. In all ases the pro-grams were ompiled with the Gambit-C 2.7 ompiler usingthe delarations whih gave the fastest exeution (inlining ofprimitives, �xnum or onum spei� arithmeti, no runtimetype heks). The short running programs were modi�edto repeat the omputation several times so that the totalexeution time would be at least 5 seonds.A �rst group of programs omes from the Gabriel benh-mark suite [Gab85℄. These programs are mostly kernelswhih stress spei� features of the system (�xnum arith-meti, alloation, traversal, mutation, reursion, iteration).Some of these benhmarks don't perform any alloation sowe ignored them (tak, takl, triangle, and the traversalphase of traverse). The seond group onsists of oating-point intensive programs: fibfp, sumfp, mbrot, fft, andsimplex. The third group ontains larger appliations whihmix various types of symboli proessing, inluding lots of al-loations, objet mutations and traversal of data-strutures:onform (type heker, 700 lines), peval (partial evalua-tor, 800 lines), earley (parser, 800 lines), maze (onstruta maze, 900 lines), and ompiler (Gambit-C Sheme om-piler, 20000 lines).All benhmarks were run on an unloaded 160Mbyte133Mhz DEC Alpha 21064 running Digital UNIX V4.0.CPU time statistis were measured with the C library rou-tine getrusage whih has a 1 milliseond resolution. Weonsidered using the gettimeofday routine to measure timedown to the miroseond but sine it measures real-timesome of the short duration statistis measured (suh as themaximum olletor pause) are too easily perturbed by OSontext swithes over whih we have no ontrol. Eah benh-mark was run one. All times are given in seonds.To redue the importane of di�erenes in the memorypartitioning of the di�erent olletors, all programs wererun with a �xed-size heap of 12Mbytes. This also avoidedunexpetedly long olletor pauses when resizing the heap (itseems that alls to mallo/free for large bloks sometimestakes over 10 milliseonds!).

5.1 Overhead of Inremental ColletionOur �rst goal is to measure the total overhead of using an in-remental olletor rather than a bloking olletor in a pro-dution quality ompiler suh as Gambit-C. Also, we wishto �nd the overhead assoiated with performing the olle-tion inrementally. For this purpose the programs were runwith three di�erent olletors:1. S&C: this is the bloking olletor in the standardGambit-C distribution.2. M&C: this is our olletor when run as a blokingolletor (i.e. the olletion is done ompletely whenthe heap is full and there is no write barrier). A stak-ahe overow auses a full olletion (whih is what isdone by S&C).3. M&C R-T: this is the full inremental olletor de-sribed in this paper, using a value of L = 50%.The results are reported in Figure 8. The �rst olumngives the alloation rate of the program in Mbytes per seondwhen run with S&C. The seond olumn gives the exeutiontime in seonds for S&C. The exeution time for the otherolletors is expressed relative to the time for S&C so thatthe overhead with respet to S&C stands out more learly.The M&C R-T olletor was run with eah type of writebarrier. Note that the results are ordered aording to theoverhead of M&C R-T with the \gray X" barrier.Allo S&C M&C M&C R-TMB/se gray X gray Yboyer 3.14 16.46 .91 .92 .96puzzle .92 21.88 1.20 1.30 1.41ompiler .91 49.99 1.19 1.31 2.52fft 12.58 5.05 1.53 1.56 1.58traverse 5.61 10.93 1.37 1.67 2.01browse 3.95 33.36 1.25 1.73 2.46peval 5.86 35.40 1.52 1.81 3.16onform 2.88 25.52 1.29 1.85 2.60simplex 15.34 10.91 1.70 2.10 2.32earley 8.42 36.13 1.87 2.24 3.02pstak 46.94 13.95 2.41 2.44 2.46maze 16.18 11.58 1.65 2.46 2.53destru 19.35 15.29 2.11 2.78 3.70deriv 27.43 32.69 2.50 2.92 4.08fibfp 47.05 11.80 2.43 2.94 2.96dderiv 22.76 39.39 2.04 2.98 4.17mbrot 60.20 13.03 2.87 3.62 3.64divre 54.92 16.66 3.15 3.83 3.77sumfp 71.12 85.82 3.21 4.24 4.26diviter 123.03 7.44 6.51 8.09 8.04Figure 8: Exeution time with eah olletor (S&C in se-onds and others relative to S&C).For the M&C olletor the overhead inludes: alloationof handles, indiretion ost when aessing a memory allo-ated objet and di�erene in olletion algorithms. If weignore boyer, the overheads range from 1.19 to 6.51, witha median of 1.7. We an see that the overhead is roughlyorrelated to the alloation rate. This is reasonable beauseobjet alloation is signi�antly more expensive than the

simple pointer inrement performed for S&C and all ob-jets alloated inluding dead ones need to be proessed inthe ompation phase. The highest overhead is for diviterwhih spends most of its time in a tight loop performing 3 a-esses to pairs and 1 alloation of a pair whih is soon dead.An anomaly exists for boyer whih is slowest of all whenusing S&C beause the mutator and olletor are in synh(the pro�le of live objets is like a sawtooth, going from50Kbytes to 1400Kbytes, and with a 12Mbyte heap S&Calways ollets at moments of peak live objets whereas theother olletors do it at uniformly distributed levels, whihis more eÆient).When the alloation rate is low the overhead dependsmore on the handle indiretion ost and the di�erene inolletion algorithms. It is interesting to see that a omplexappliation like ompiler has a low overhead of 1.19. Weattribute this to the fat that its modular design auses a lotof time to be spent in proedure alls and returns betweenmodules (whih is una�eted by the olletor but is ratherslow in Gambit-C due to the tail-all support), that it wasdesigned to minimize the reation of garbage and that itperforms I/O.The M&C R-T olletor with \gray X" barrier has over-heads in the range 1.3 to 8.09, with a median of 2.24. Theoverheads follow the same trend as the bloking M&C olle-tor, and are a median fator of 1.21 higher with a maximumof 1.5 times higher for maze. So the transition from M&Cto M&C R-T has a lower overhead than the transition fromS&C to M&C (in other words most of the overhead of our in-remental olletor is not in the \inrementality" but ratherin the use of a ompating olletor with handles).If we only onsider the benhmarks whih perform muta-tions on objets, the \gray X" barrier is always faster thanthe \gray Y " barrier, by a median fator of 1.35 and a max-imum of 1.9 times faster for ompiler. Our explanation isthat the \gray Y " barrier may ause objets to be markedmultiple times and this extra ost outweighs the bene�t oflower onservatism.5.2 Colletion PausesAnother important aspet to measure is the duration of thepauses of the inremental olletor. The average pause isof ourse interesting but given the ontext of soft real-timeappliations, it is also important to know what is the maxi-mum pause and also the perentage of total exeution timespent in the olletor (%GC). Figure 9 gives these measure-ments ordered aording to %GC when using the \gray X"barrier.The average pause is in the range 2.42 to 4.37 millise-onds, with a median of 3.25 milliseonds. The maximumpause is in the range 6 to 18 milliseonds, with a median of8 milliseonds. The %GC is in the range 4% to 57%, witha median of 22%. These measurements are ompatible withour real-time onstraints.The programs with the highest %GC are those whihhave high alloation rates and few live objets (the top 3are oating point intensive programs whih stritly alloateonums). In this situation the olletor will spend a largefration of its time ompating blak objets that are in fatgarbage. So for most objets alloated there are two asso-iated ompations needed (beause during the ompationphase objets are alloated blak).Finally, Figure 10 shows the distribution of pause times.The X axis gives pause time in seonds and the extent of

Avg Max %GCompiler .00437 .012 4puzzle .00242 .010 4onform .00325 .010 5peval .00299 .008 8browse .00319 .010 10boyer .00364 .009 12trav1 .00397 .014 15simplex .00336 .008 20destru .00319 .007 21earley .00394 .012 22dderiv .00321 .007 24fft .00370 .008 24deriv .00318 .007 29maze .00371 .018 35pstak .00266 .006 40divre .00323 .007 45diviter .00323 .007 48fibfp .00370 .008 52mbrot .00375 .007 55sumfp .00385 .007 57Figure 9: Average and maximum olletor pause in seondsand perent of time spent in olletor.the X axis indiates the maximum olletor pause. As anbe seen, the distribution is ompat around the average andthere are no distant outliers.5.3 DisussionAt �rst glane the overhead of the inremental olletorseems too high for pratial use. However this overheadmust be put in perspetive. Erlang programs ompiled withEtos and Gambit-C 2.7 with the S&C olletor are roughly15 times faster than with the JAM 4.4.1 byteode imple-mentation of Erlang [FL98℄. Even if a program using theinremental olletor is slowed down by a fator of 2.24 om-pared to the S&C olletor, the program is still over 6 timesfaster than when using JAM.Of ourse the overhead and pause time that is tolera-ble depends on the appliation. However, it is reassuringthat the measurements we have made on our olletor �tvery losely with the requirements of soft real-time teleom-muniation appliations (2-5 milliseond average pause and10-50 milliseond maximum pause). Note also that our testmahine (133Mhz DEC Alpha 21064) is more than 5 yearsold at this writing and that muh faster miroproessors arereadily available. When exeuted on a now urrent 500MhzDEC Alpha 21164A the ompiler benhmark ran 6.7 timesfaster and the olletor was about 3.5 times faster (olle-tion pauses were 1 milliseond on average with a maximumpause of 3 milliseonds).6 Future Work and ConlusionBeause of the way the word bank is handled, the olle-tor only starts olleting after the mutator has alloated afair amount (i.e. until the word bank beomes positive). Itwould be interesting to investigate if by starting the olletorearlier we ould redue the olletion overhead and lengthof pauses (it isn't lear that this is good beause the olle-tor will be more onservative, retaining some objets that

boyer
.000 .005

.00364

55%
browse

.000 .005 .010

.00319

74%
ompiler

.000 .005 .010

.00437

39%
onform

.000 .005 .010

.00325

72%

pstak
.000 .005

.00266

43%
dderiv

.000 .005

.00321

70%
deriv

.000 .005

.00318

71%
destru

.000 .005

.00319

74%

diviter
.000 .005

.00323

71%
divre

.000 .005

.00323

72%
earley

.000 .005 .010

.00394

39%
fft

.000 .005

.0037

45%

fibfp
.000 .005

.0037

50%

maze
.000 .005 .010 .015

.00371

53%
mbrot

.000 .005

.00375

52%
peval

.000 .005

.00299

65%

puzzle
.000 .005 .010

.00242

43%

simplex
.000 .005

.00336

59%

sumfp
.000 .005

.00385

60%
traverse

.000 .005 .010

.00397

47%

Figure 10: Distribution of olletor pauses.

would have died). A dynami alulation of L also seemsneessary, sine it would allow the olletor to adapt to thebehavior of the appliation.There is also a need for testing the olletor with softreal-time Erlang appliations. This will have to wait untilEtos is omplete and robust.One Dub�e's olletor is fully integrated into Gambit-C, we plan to integrate other near real-time olletors (inpartiular [NO93℄ whih seems well suited to our ontext)and ompare their performane.As our experimental results show, the inremental ol-letor is able to meet the maximum and average pause timeonstraints needed by teleommuniation appliations. Theoverhead of the inremental olletor with respet to a blok-ing olletor is rather high (a fator of 1.3 to 8.1) but, giventhat we are working in the ontext of an optimizing ompiler,the ompute power left for the mutator ompares favorablywith a byteode implementation of Erlang.AknowledgementsThis work was supported in part by grants from ErissonTeleom Ab, the Natural Sienes and Engineering ResearhCounil of Canada and the Fonds pour la formation deherheurs et l'aide �a la reherhe.Referenes[AVWW96℄ J. L. Armstrong, S. R. Virding, C. Wikstr�om,and M. C. Williams. Conurrent Programmingin Erlang. Prentie Hall, seond edition, 1996.[AXD98℄ AXD 301 High-performane ATM swithingsystem. Erisson Teleom AB, 1998.[BW88℄ Hans-Juergen Boehm and Mark Weiser.Garbage olletion in an unooperative envi-ronment. Software Pratie and Experiene,18(9):807{820, 1988.[Che70℄ C. J. Cheney. A non-reursive list ompat-ing algorithm. Communiations of the ACM,13(11):677{8, November 1970.[DFS96℄ Danny Dub�e, Mar Feeley, and Manuel Ser-rano. Un GC temps r�eel semi-ompatant.In Guy Lapalme and Christian Queinne, edi-tors, Journ�ees Franophones des Langages Ap-pliatifs, volume 7, pages 165{181, Val-Morin,Qu�ebe, Janvier 1996. INRIA.[DLM+78℄ Edsgar W. Dijkstra, Leslie Lamport, A. J. Mar-tin, C. S. Sholten, and E. F. M. Ste�ens.On-the-y garbage olletion: An exerise inooperation. Communiations of the ACM,21(11):965{975, November 1978.[Dub96℄ Danny Dub�e. Un syst�eme de programmationSheme pour miro-ontrôleur. Master's thesis,D�epartement d'Informatique et de ReherheOp�erationnelle, Universit�e de Montr�eal, April1996.[Fee93℄ Mar Feeley. Polling eÆiently on stok hard-ware. In Proeedings of the Funtional Pro-gramming and Computer Arhiteture, pages179{187, Copenhagen, June 1993.

[FL98℄ Mar Feeley and Martin Larose. Compiling Er-lang to Sheme. In Proeedings of the 1998 Pro-gramming Languages, Implementations, Logisand Programs Conferene, September 1998.[FM90℄ Mar Feeley and James S. Miller. A parallel vir-tual mahine for eÆient Sheme ompilation.In Conferene Reord of the 1990 ACM Sym-posium on Lisp and Funtional Programming,pages 119{130, Nie, Frane, June 1990. ACMPress.[FMRW97℄ M. Feeley, J. Miller, G. Rozas, and J. Wil-son. Compiling Higher-Order Languages intoFully Tail-Reursive Portable C. TehnialReport 1078, D�epartement d'Informatique etde Reherhe Op�erationnelle, Universit�e deMontr�eal, Août 1997.[Gab85℄ Rihard P. Gabriel. Performane and Evalua-tion of Lisp Systems. MIT Press Series in Com-puter Siene. MIT Press, Cambridge, MA,1985.[HDB90℄ R. Hieb, R. K. Dybvig, and C. Bruggeman.Representing ontrol in the presene of �rst-lass ontinuations. ACM SIGPLAN Noties,25(6):66{77, 1990.[HFA+96℄ Pieter H. Hartel, Mar Feeley, Martin Alt,Lennart Augustsson, Peter Baumann, Mar-el Beemster, Emmanuel Chailloux, Chris-tine H. Flood, Wolfgang Grieskamp, JohnH. G. van Groningen, Kevin Hammond,Bogumi lHausman, Melody Y. Ivory, RihardJones, Peter Lee, Xavier Leroy, Rafael Lins,Sandra Loosemore, Niklas R�ojemo, ManuelSerrano, Jean-Pierre Talpin, Jon Thakray,Stephen Thomas, Pierre Weis, and Peter Went-worth. Benhmarking implementations of fun-tional languages with "pseudoknot", a oat-intensive benhmark. Journal of FuntionalProgramming, 6(4), 1996.[NO93℄ Sott Nettles and James O'Toole. Real-timerepliation garbage olletion. In Proeedingsof the 1993 SIGPLAN Conferene on Program-ming Language Design and Implementation.Published in SIGPLAN Noties, volume 28,pages 217{226, Albuquerque, New Mexio,June 1993. ACM Press.[Ste75℄ Guy L. Steele, Jr. Multiproessing ompatify-ing garbage olletion. Communiations of theACM, 18(9):495{508, September 1975.

