
Generation of Fast Interpreters for Huffman Compressed
Bytecode

Mario Latendresse
Northrop Grumman IT/

Technology Advancement Group
FNMOC/U.S. Navy

7 Grace Hopper, Monterey, CA, USA

mario.latendresse.ca@metnet.navy.mil

Marc Feeley
Département d’informatique et

recherche opérationnelle
Université de Montréal

C.P. 6128, succ. centre-ville
Montréal, H3C 3J7, Canada

feeley@IRO.UMontreal.CA

ABSTRACT
Embedded systems often have severe memory constraints
requiring careful encoding of programs. For example, smart
cards have on the order of 1K of RAM, 16K of non-volatile
memory, and 24K of ROM. A virtual machine can be an
effective approach to obtain compact programs but instruc-
tions are commonly encoded using one byte for the opcode
and multiple bytes for the operands, which can be wasteful
and thus limit the size of programs runnable on embedded
systems. Our approach uses canonical Huffman codes to
generate compact opcodes with custom-sized operand fields
and with a virtual machine that directly executes this com-
pact code. We present techniques to automatically gener-
ate the new instruction formats and the decoder. In ef-
fect, this automatically creates both an instruction set for a
customized virtual machine and an implementation of that
machine. We demonstrate that, without prior decompres-
sion, fast decoding of these virtual compressed instructions
is feasible. Through experiments on Scheme and Java, we
demonstrate the speed of these decoders. Java benchmarks
show an average execution slowdown of 9%. Compression
factors highly depend on the original bytecode and the train-
ing sample, but typically vary from 30% to 60%.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages; D.3.4 [Program-
ming Languages]: Processors—Interpreters

Keywords
Code compression, canonical Huffman code, decoder, Java

1. INTRODUCTION
Embedded systems are resource-constrained devices re-

quiring careful attention to memory usage and power con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IVME’03, June 12, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-655-2/03/0006 ...$5.00.

sumption. To attain these goals, several researchers are tak-
ing the approach of reducing program size [5, 13, 12].

We focus on the context where code decompression can-
not be performed prior to the program’s execution. This
constraint is reasonable for embedded systems where a bulk
decompression of programs, or even parts of programs, be-
fore execution, might exceed the available RAM.

Some researchers [9, 10, 3] have stated the possibility of
using Huffman codes to compress bytecode, usually to con-
clude that this would, at the software level, increase decod-
ing time to an unacceptable level or need too much space
for table look-up.

Reducing space taken by operands is also important since
they usually account for a large part of the code size. In-
struction formats with small operand fields can further re-
duce size.

Our work shows that using canonical Huffman code for
opcodes, new customized instruction formats, replacement
of sequences of repetitive instructions by one opcode and no
byte boundary alignment can significantly reduce bytecode
size and still allow fast direct execution by an interpreter.

The primary focus of this paper is to show that there
are techniques to efficiently decode such compressed instruc-
tions.

For speed, canonical Huffman codes should not be de-
coded bit by bit; instead, blocks of k bits should be used.
Such an idea has been explored previously by Turpin and
Moffat [19]. We have extended their work to allow mul-
tiple k bits look-ups and generate decoders given a space
constraint.

In the next section, we give a general presentation of
the compression algorithm. In section 3 canonical Huffman
codes are presented along with a compact but slow decod-
ing method. Section 4 presents much faster but slightly less
compact decoders. Section 5 explains the C code’s structure
for all canonical decoders. Section 6 discusses how decoders
access memory for opcodes and operands. Experimental re-
sults showing that the approach is practical are presented
in section 7. Section 8 presents some of the related work.

2. THE COMPRESSION ALGORITHM
Figure 1 presents our general framework. The sample of

programs is bytecode encoded with an unmodified compiler.
An instruction set encoding to compactly represent the sam-
ple is then generated by a tool. This requires an analysis

32

Programs

(Sample)
⇓'

&
$
%

Analyze instructions;
Generate opcodes and encoding;

Construct decoder structure

⇓

Instruction
set

⇓
Decoder/

Interpreter

Figure 1: Creation of instruction set, its decoder
and interpreter.

of the instruction frequencies, the length of operands, etc.
of the sample. The decoder is generated given a space con-
straint parameter, along with the interpreter. The sizes of
the decoder and interpreter are taken into account to reduce
program sizes. This approach is transparent for the compiler
writer since the compression of programs can be done from
the original bytecode.

Our compression approach creates new instructions and
an encoding for them. These instructions are either macro-
instructions to replace a sequence of instructions, or a basic
instruction with a new format for the operands. We proceed
as follows to create them. From the sample of programs:

1. A dictionary of (possibly overlapping) repetitive se-
quences is built. We limit their number by their length
and a minimum of their occurrences in the sample.

2. A dictionary of formats to encode all basic instructions
using as few bits as possible is created. It includes the
original formats of the virtual machine to be able to
encode all possible programs.

3. A greedy algorithm repetitively selects either a new
format or a sequence of instructions, based on the
maximum space saving, until no space gain can be ob-
tained.

The greedy algorithm takes into account the opcode lengths,
the new formats, and the space of the decoder. Further de-
tails on the selection algorithm can be found in [15].

Henceforth, the following setting is used: the opcodes are
variable length canonical Huffman codes generated using the
static frequencies of the opcodes from a sample of programs;
and operands are uncompressed but of a length that is not
restricted to a multiple of eight bits. Thus, opcodes and
operands are not byte-aligned. The deplacements of branch-
ing instructions are in bits, but instructions following sub-
routine calls are byte-aligned—return addresses are in bytes.

3. HUFFMAN ENCODING OF OPCODES
We encode opcodes using canonical Huffman codes [24].

These are similar to Huffman codes built by the original
bottom up method of [11], but the numerical values of the
codes of a given length form a consecutive sequence. As will
be shown, they have a very compact representation of the
bijection between the codes and the encoded object.

Figure 2 shows such a canonical tree, where branches are
pushed to the right: it is an ascending tree, since it is pos-
sible to order the codes in increasing length and numerical
value.

�
�

�
�

@
@

@
@

s
s s0 1

�
�

�

@
@

@

s
s s0 1

�
�

�

A
A
A

s
s s0 1

�
�

@
@

ss s0 1�
�

A
A

ss s0 1

�
�

A
A

ss s0 1 �
�

A
A

ss s0 1

Figure 2: A canonical ascending Huffman tree.

Let lc be the length in bits of code c, v(c) its value, k ≥ lc
a constant, and V k(c) = v(c)2k−lc ; in other words, V k(c) is
the value of c left justified in a k bits processor register. Left
justification allows the creation of a very compact decoder
as presented in Section 3.1.

Let C = {ci} be a set of canonical Huffman codes, lmax

their maximum length and w a constant such that w ≥ lmax.
Define the vector basew[1 . . . lmax] such that basew[j] is the
smallest value V w(c) for all codes c such that lc = j. Define
the vector disp[1 . . . lmax] such that disp[j] is the number of
codes c for which lc < j. The index of code c of length lc is:

V w(c) − basew[lc]

2w−lc
+ disp[lc] (1)

If the length of c is known, its index is given by that equa-
tion. Given the index, a computed branch would jump to
the implementation of the virtual instruction.

To show examples of opcode frequencies, independently of
a specific instruction set and samples, assume the n proba-
bilities pi of a special case of Zipf’s law: pi = 1/(iHn), 1 ≤
i ≤ n, where Hn is the nth harmonic number

� n

j=1
(1/j).

Such probabilities model well the static frequency of instruc-
tions in programs. Table 1 presents vectors basew and disp
for the Zipf-200 opcodes partly listed in table 2. Their av-
erage length1 is 6.0267.

3.1 Very Compact but Slow Decoding
Assume that the beginning of an instruction is left justi-

fied in a variable rd. According to equation 1, decoding the
opcode can be reduced to finding its length which can be
done by a sequential search in base. Figure 3 shows a frag-
ment of C code for this slow but very compact decoder: Line
2 does the sequential search; the index of the code is calcu-
lated in crd by line 3 using 1; line 4 removes the opcode;
line 5 does the actual branching to the virtual instruction
implementation (using gcc’s computed goto).

This is a very compact decoder since its code is small
and the vectors base_w and disp only contain lmax elements
each. For Zipf-200 on a 32 bit processor, lmax = 10 and
w = 32, so the two vectors use a total of 80 bytes. Even for
Zipf-400, that is 400 opcodes, a mere eight more bytes are
needed.

But in general, this search is way too slow. The next sec-
tion shows a better approach flexible in space and in speed.

1The average length is
�

1≤i≤n
lci

pi where the opcode for

the probability pi is ci and its length is lci
.

33

1 i = lmax;

2 while (rd < base w[i]) i--;

3 crd = (rd-base w[i] >> w-i) + disp[i];

4 rd <<= i;

5 goto *adr[crd];

Figure 3: C code for a very compact, but slow, de-

coder for canonical ascending Huffman codes.

i disp basew

3 1 000·2w−3

4 2 0010·2w−4

5 5 01010·2w−5

6 9 011100·2w−6

7 16 1000110·2w−7

8 33 10101110·2w−8

9 65 110011100·2w−9

10 135 1110111110·2w−10

Table 1: The vectors base w (aka basew) and disp

(disp) for Zipf-200.

4. FAST DECODING
To increase speed, the linear search for the length of the

opcode must be eliminated. This is done by a table look-up
using the leftmost k bits of rd. The table contains branching
addresses at which either decoding continue or the virtual
instruction is emulated.

For the table look-up on k bits, three situations can arise:

1. The opcode is recognized.

2. The opcode is not recognized but its length is known.

3. The opcode is not recognized and its length is un-
known.

Case 1 is ideal, which occurs for all opcodes c where lc ≤ k.
A direct jump is done to the implementation of the virtual
instruction. In case 2, the length of the opcode is used
to compute its index by equation 1; then a jump to the
implementation of the virtual instruction is done. In case 3,
the next bits are used to continue decoding using another
look-up. Thus, the decoder has a tree structure where each
interior node is case 3, simply called type 3 nodes. In case 1
and 2 we have leaf nodes, simply called type 1 and 2 nodes.
Note that each type 3 node requires a vector of addresses of
its own, whereas type 2 nodes share the same vector.

In general, interior nodes do not use the same number
of k bits to do a table look-up. For a node ν of type 3,
kν is the number of bits used to do the table look-up. In
particular, kr denotes the number of bits used by the root r
of a decoder.

Each node requires some time to execute. The time spent
in a node of type i is denoted ti. Note that t1 = 0 because no
further decoding is needed for type 1 nodes. These timing
values do not have to correspond to any real unit of time,
but simply be relative to a known base value. For example,
they could be approximated by the number of host processor
cycles used at each node.

kr = 6���������ra
T1

000–100010

�rb
T2

?r111011
c

?r
T1

J
J

J
Ĵ
110011rd
?r

T1

HHHHHHHHj
101011r e

?r
T1

r

Tree � 1, � (� 1) = 563, � (� 1) = 15 � 93

kr = 8
�����ra

T1

000–11001101 HHHHj rb
T2

r

Tree � 2, � (� 2) = 1084, � (� 2) = 13 � 8

Figure 4: Two decoder trees D1 and D2 for Zipf-
200, generated using the parameters sa = 4, s2 = 30,
s3 = 25, t2 = 10, t3 = 7. We have kc = 4, kd = 3 and
ke = 2.

To evaluate the space taken by the decoder, three con-
stants are used: sa is the number of bytes of an address
(e.g. 4); s2 is the number of bytes used by the machine code
implementing a type 2 node and s3 is for a type 3 node. We
therefore take into account the space for look-up tables and
the code to implement the decoding.

Figure 4 presents two decoder trees D1 and D2 for Zipf-
200. Decoder D1 does, at the root, a table look-up using
6 bits, and has three internal nodes doing table look-ups
using 4, 3 and 2 bits; whereas decoder D2 does, at the root,
a table look-up using 8 bits and has one type 2 node. Note
that there are opcodes of up to 10 bits, but no table look-up
is done using that many bits. The total space for decoder
D1 is 563 bytes and for D2 it is 1084 bytes. The average
decoding time for D1 is 15.93 and for D2 it is 13.8.

In table 2 each opcode is shown along with the final node
of decoding by the two decoders and corresponding relative
time.

Given a space constraint, the basic parameters si and ti,
and the (static or dynamic) frequencies of the opcodes, we
generate the fastest decoder. A branch and bound algorithm
to do so is presented in [16]. It searches from the fastest to
the slowest decoders and when the space constraints are met,
it stops. (For all our experiments, it takes a few seconds to
find the fastest decoder.)

To construct the decoder structure, the algorithm is gen-
eral enough to accept static or dynamic (run-time) opcode
frequencies. Dynamic frequencies are harder to obtain as
they not only depend on the program samples but also on
the input data of those programs. It is up to the designer of
the virtual machine to assess the accurancy and relevance of
dynamic frequencies and use them when they greatly differ
from the static ones.

34

�
opcode Tree � 1 Tree � 2

ν Time ν Time
1 000 a 7 a 7
2 0010 a 7 a 7
3 0011 a 7 a 7
4 0100 a 7 a 7

.
15 100010 a 7 a 7
16 1000110 b 17 a 7
17 1000111 b 17 a 7

.
31 1010101 b 17 a 7
32 1010110 e 14 a 7
33 10101110 e 14 a 7
34 10101111 e 14 a 7
35 10110000 b 17 a 7

.
62 11001011 b 17 a 7
63 11001100 d 14 a 7
64 11001101 d 14 a 7
65 110011100 d 14 b 17
66 110011101 d 14 b 17
68 110011111 d 14 b 17
69 110100000 b 17 b 17

.
124 111010111 b 17 b 17
125 111011000 c 14 b 17
126 111011001 c 14 b 17
.
135 1110111110 c 14 b 17
136 1110111111 c 14 b 17
137 1111000000 b 17 b 17
138 1111000001 b 17 b 17
.
199 1111111110 b 17 b 17
200 1111111111 b 17 b 17

Table 2: Zipf-200 and timing for two decoders.

5. THE DECODER C CODE
Figure 5 shows the general structure of the C code for

canonical decoders. Decoding begins at label L_decode.
There is a label L_i for each case where more than one op-
code of length i is not directly recognized by a node of type
3. These are type 2 nodes. There is a label Lp prefix for
each node of type 3, where prefix corresponds to the prefix
of all codes for that node. For each virtual instruction mne
the label Imne is the entry point of its implementation.

Line 1 loads, if necessary, some additional bytes in rd.
The exact C code for this depends on the form of memory
access used as discussed in Section 6. The incoming bits
are justified in the high part of rd and nb_rd is adjusted to
contain the number of bits in it. It always loads a multiple
of eight bits, since the program counter points to a byte in
memory, but rd does not necessarily contain a multiple of
eight valid bits. Figure 6 presents a simple and inefficient
portable implementation for line 1, for w = 32. Section 6
presents better portable techniques.

Line 2 is the root of a decoder where the first look-up is
done; line 3 jumps to a type 2 or 3 node, or to the emula-
tion of a virtual instruction. w− kr is a constant. At line 5,
the term base(Ct2)i + disp(Ct2)i is a constant: base(Ct2)i

is the ith value of basew/2w−i but where basew is defined
using only the codes Ct2, that is all codes treated by type
2 nodes. Using this subset of C might very well decrease
the length of vector adr_inst. To be more precise, all ad-
dresses of virtual instructions in adr_ are not duplicated in
adr_inst. They also do not appear in any vectors adr prefix
for type 3 nodes. The vector disp(Ct2) is the corresponding
vector of base(Ct2). Line 5 necessarily jumps to a virtual

L decode:

1 {Transfer bytes from program to rd

such that it has at least lmax bits,

and increase nb rd accordingly. }

2 crd = rd >> w − kr;

3 goto *adr [crd];

L i : /* opcodes of length i (type 2) */

4 crd = rd >> w − i;

5 goto *adr inst[crd - base(Ct2)i + disp(Ct2)i];

Lp prefix: /* sub-decoder (type 3) */

6 crd = rd >> w − lprefix − kprefix;

7 goto *adr prefix[crd-v(prefix)2
kprefix];

Imne:/* C code for mne (type 1) */

8 { If mne has parameters, transfer them to pi}

/* eliminate opcode and parameters */

9 rd <<= lopcode+lparm;

10 nb rd -= lopcode+lparm;

11 { C code to emulate mne }

12 goto L decode;

Figure 5: General C code of canonical decoders.

#define BYTE(i) (unsigned int)prgm[pc+i]

rd |= (BYTE(0) << 24 | BYTE(1) << 16

| BYTE(2)<< 8 | BYTE(3)) >> nb_rd;

pc += (32-nb_rd) >> 3;

nb_rd += (32-nb_rd) & ~7;

Figure 6: A simple technique for line 1 of Figure 5.

instruction. In line 6, the term w − lprefix − kprefix is a con-
stant, lprefix being the length of the prefix and kprefix the
number of bits decoded by this node. So the shifting rd >>

w − lprefix − kprefix leaves in crd not only the kprefix bits to
decode but also the previous lprefix bits. Line 7 applies the

proper adjustment using the term v(prefix)2
kprefix , which

is the extra value left in rd before this node. This avoids
shifting some bits out of rd until the end of decoding.

At line 8, decoding is complete and this is the emulation
of the virtual instruction mne. If mne has some parameters,
they are obtained here. This may use up all bits in rd or just
part of them; it may also access memory. In most cases, bits
should transit through rd. What lines 9 and 10 say, which
is done differently depending on memory access forms (see
Section 6), is that rd should contain the following bits and
nb_rd should be maintained accordingly.

Finally, line 12 returns to the beginning of the decoding
cycle. Again, this depends on the form of memory access as
presented in section 6. It could return to a point in the block
of line 1 where it loads a specific number of bytes according
to the number of bits consumed by mne.

6. PREFETCHING OF CODE
One important part of the decoder C code was left un-

specified, namely line 1, which loads bytes from memory
into rd. We investigated several portable ways, three of
which are reported in this section.

35

Getting opcodes and operands from memory into rd can
be time consuming since multiple byte loads and bit ma-
nipulation operations are possibly needed. We have ex-
plored three different techniques to access memory. The
first one, form-a, is simple, but shows major slowdowns on
many benchmarks. The other two, form-b and form-c, show
competitive speed; form-c being often faster than form-b
but using more space. Our algorithm to generate decoders
provides the option of using one of these three forms. Bench-
marks in section 7 show their relative merits. For all forms,
enough bits are in rd, at the root of the decoder, to decode
one opcode without accessing memory.

6.1 Simple form (Form-a)
This version uses the number of bits in rd to load the

minimum number of bytes necessary to maintain between
w − 7 and w bits in rd at line 2. This can simply be done
using a case analysis based on the value of nb_rd, reading
from memory the required bytes, shifting them to the left,
and merging them to rd. The number of bytes to read is
b(w − nb rd)/8c and the number of bits to shift is (w −
nb rd) mod 8.

This technique loads in rd as many bytes as possible. The
advantages is a reduced number of merging operations and
faster access to operands since they are most often hauled
in before decoding the opcode. The other advantage is a
smaller interpreter, since it reduces the number of instruc-
tions accessing operands in memory. The disadvantage is a
slow operation at every cycle to verify and load the correct
number of bytes.

6.2 Several-roots form (Form-b)
In this form, as in the previous form-a, there are between

w − 7 and w bits in rd at the beginning of the decoding.
But instead of one entry point with complex verification of
the number of bytes to load, there are several entry points
to the root of the decoder each one loading either x or x+1
bytes. The decision between case x and x + 1 is faster than
the general case of form-a.

It is faster, since each virtual instruction knows the num-
ber of bits extracted from rd (at lines 9 and 10), it knows ap-
proximately the number of bytes to load after its emulation.
Indeed, suppose that a virtual instruction uses b ≤ w − 7
bits, including its opcode. At the entry of its implementa-
tion there are between w and w − 7 bits in rd, therefore
there are, after its emulation, between w − b and w − b − 7
bits remaining in rd. So, there are between d(b− 1)/8e and
1 + d(b− 1)/8e bytes to load in rd. If b is a constant, which
is quite a common case in practice, it is possible to jump to
the proper root rx without any test. If b is not a constant,
that is a variable length instruction, the virtual instruction
implementation has to calculate the number of bits left in rd
anyway. In the case where b > w−7, the virtual instruction
itself has to load bytes from memory, thus also knows, after
its emulation, the exact number of bytes to load. Note that
no dynamic test is done to verify between the two cases, if b
is a constant. It is hardcoded in the implementation of the
interpreter.

In some way, the proper number of bytes to load falls back
to each virtual instruction which simply branches to one of
the roots that does one integer relational test between a
constant and nb_rd. The disadvantage of this method is a
slightly bigger decoder.

6.3 Conditional form (Form-c)
In this form, there is a verification of the number of bits

in rd at the root of the decoder. Memory is accessed, at the
root, if and only if nb_rd is under lmax, the longest opcode.
This ensures that the decoder does not access memory while
decoding an opcode. If it is under lmax, as many bytes
from memory as possible are merged to rd. For example, if
lmax = 14, w = 32, and nb_rd= 6, three bytes are loaded
and merged to rd. This means that access to memory is
delayed as much as possible.

The advantage of this method is a reduced number of
merging operations to rd. The disadvantage is a larger in-
terpreter, since if the virtual instruction uses more than lmax

bits, it is necessary to verify if there are enough bits in rd

to access the operands. This case occurs less frequently in
form-b for which there are w − 7 bits in rd after decoding
the opcode (assuming lmax < w − 7).

The disadvantage is that more virtual instruction imple-
mentations have to access memory for their operands.

7. EXPERIMENTAL RESULTS
In order to evaluate our approach, we applied it to the

Java Virtual Machine (JVM) on ten benchmarks [1] and
the entire JDK 1.0.2 library; to the Scheme language on
seven benchmarks and the R4RS library; and to six synthetic
benchmarks to demonstrate the worst case scenarios.

For all benchmarks two processors are used: a 600MHz
Pentium III and a 200MHz Sparc Ultra-1 with respectively
32KB and 1MB level 1 cache. All C programs were compiled
using gcc version 2.8.1 for SunOS and version 2.91.66 for
Linux with the same optimizing parameter, namely -O3.

7.1 Java benchmarks
We use the Java Virtual Machine to demonstrate our ap-

proach on a widely available bytecode using Harissa [20].
Most virtual instructions’ implementation are unchanged
but branching instructions must be modified to branch on
non-byte boundaries. Harissa uses a C switch statement
to decode bytecoded instructions. All cases of this switch
are transformed into C macro-instructions and are used by
the canonical decoder to implement each instruction in the
JVM machine for compressed code. The switch is removed
and replaced by a decoder automatically generated from our
tool.

Table 3 presents the timing results and the compression
factors of bytecodes for the BYTEmark Java benchmarks [1].
These are moderate size benchmarks suited to evaluate the
speed of JVM implementations. The compression factor
is the length of compressed code divided by the uncom-
pressed code (bytecode). It takes into account the com-
pression of opcodes, the compact operands, and the use of
macro-instructions.

The training set is the classes.zip from JDK 1.0.2, con-
taining over 400 class files. The resulting shortest opcode
has three bits and the longest opcodes have twelve bits.
Forty of the existing instructions were duplicated but with
shorter parameter fields resulting in a 241 instructions JVM
machine. This extension was done automatically by our tool
to generate virtual instruction sets from a sample of pro-
grams [15]. The sole choices of macro-instructions and pa-
rameter lengths were done to better compress the classes and
not for speed. All class files for the BYTEmark benchmarks,
including all libraries in classes.zip, are compressed based

36

Benchmark Absolute Time Relative Time Compression Size of

Uncompressed Compressed Factor of JVM code

Pentium SPARC Pentium SPARC JVM Code in bytes�����
=7

�����
=10

�����
=7

�����
=10

NumericSort 2.75 3.99 1.11 1.05 1.21 1.03 56.4% 773

StringSort 7.68 10.35 1.08 1.02 1.20 1.03 56.5% 1541

BitfieldOps 5.11 6.21 1.42 1.32 1.43 1.27 65.8% 833

FPemulation 3.82 5.29 1.25 1.17 1.31 1.15 67.0% 3724

Fourier 1.83 2.24 1.30 1.24 1.44 1.24 64.7% 640

Assignment 1.49 2.42 1.02 0.97 1.22 1.02 60.1% 1634

IDEAencryption 5.40 6.46 1.44 1.33 1.38 1.09 64.2% 1800

Huffman 2.50 3.98 1.11 1.09 1.23 1.09 60.7% 1395

NeuralNet 27.8 46.64 1.03 0.99 1.13 1.03 51.6% 7467

LUdecomposition 3.29 4.60 1.09 1.03 1.16 0.98 59.2% 1602

Average 1.18 1.12 1.27 1.09 58.8%

Table 3: Relative speed and compression factors of Java benchmarks with modified Harissa JVM.

Relative time Pentium Relative time SPARC��� �
=6

��� �
=7

��� �
=8

��� �
=9

��� �
=10

��� �
=6

��� �
=7

��� �
=8

��� �
=9

��� �
=10

fib 0.88 0.85 0.82 0.85 0.85 0.80 0.72 0.71 0.85 0.66

tak 1.34 1.30 1.28 1.29 1.29 1.07 1.00 1.00 1.11 0.88

earley 0.96 0.93 0.90 0.90 0.90 1.00 0.94 0.93 0.94 0.82

conform 1.12 1.10 1.08 1.06 1.01 1.08 1.06 1.01 0.97 0.95

mm 1.36 1.31 1.28 1.30 1.29 1.24 1.14 1.18 1.11 1.04

destruct 1.10 1.05 1.02 1.04 1.04 0.94 0.88 0.87 0.85 0.79

qsort 0.90 0.89 0.87 0.87 0.87 0.73 0.68 0.70 0.67 0.60

Table 4: Relative execution time of compressed Scheme programs, using form-c on Pentium and SPARC.

on the new Huffman opcodes, the new formats, and the
macro-instructions. For classes.zip, a 60.9% compression
factor is obtained and an overall average of 58.8% for the
benchmarks.

We use memory access form-c with two decoders having
the following structures: 1) kr = 7, five nodes of type 2,
namely L8−12, and three nodes of type 3, all directly below
the root; 2) kr = 10, two nodes of type 2, namely L10−11 ,
and one node of type 3.

The worst speed results are the Fourier and Bitfieldops
benchmarks. This is due to the frequent execution of in-
structions having long opcodes and small granularities. Some
of them are floating-point virtual instructions, not statically
frequent in classes.zip. They also do not access object
fields as frequently as the other benchmarks. Since the
getfield and putfield instructions have a moderate gran-
ularity, they increase execution time compared to decoding.
On the other hand Assignment, StringSort, NeuralNet, Nu-
mericSort, and LUdecomposition show a small slowdown.

The benchmarks Assignment, StringSort, and NeuralNet
have a large number of virtual method calls as well as field
accesses. As mentioned, field accesses hide decoding over-
head, and this is also true for method invocation, be it static
or virtual. They show little slowdown for the SPARC with
a good performance for the Pentium.

Half of the benchmarks have a 40% reduction in size with
a negligible slowdown (≤ 3%).

Bytecode Schemina gzip
Size Factor Factor

libScheme 32040 23% 16%
fib 169 18% 77%
tak 582 26% 37%
earley 26271 31% 19%
conform 28599 23% 17%
mm 2550 30% 29%
destruct 3371 22% 22%
qsort 5827 57% 45%

Figure 7: Compression factors for Scheme programs.

7.2 The Scheme language
Our approach has also been applied to the Scheme lan-

guage[15]. From a general stack machine called Machina our
tools create a new set of instructions called Schemina.

Table 7 compares the compression factors of our technique
with gzip. We only used it to compare compression per-
formances since gzip encoding cannot be executed without
prior decompression. gzip can have better performances for
two major reasons: it compresses disregarding basic block
boundaries, and it disallows non sequential decompression.

In several cases our approach is close or better than gzip

and we can still efficiently execute our compressed code.
Table 4 presents the relative execution time of the com-

37

Decoder Machine1 Machine2 Machine3

Pentium

a b c a b c a b c
kr = 4, L5, L6 1.81 1.76 1.52 2.19 1.64 1.48 1.38 1.07 0.96
kr = 5, L6 1.60 1.71 1.47 2.13 1.64 1.55 1.32 0.99 0.96
kr = 6 1.60 1.58 1.34 2.08 1.49 1.42 1.31 0.95 0.90

SPARC

a b c a b c a b c
kr = 4, L5, L6 2.77 1.61 1.52 2.04 1.60 1.39 1.09 0.99 0.97
kr = 5, L6 2.77 1.51 1.43 2.50 1.42 1.35 1.02 0.91 0.88
kr = 6 2.39 1.63 1.21 2.12 1.23 1.18 0.93 0.81 0.78

Decoder MachineP1 MachineP2 MachineP3

Pentium

a b c a b c a b c
kr = 4, L5, L6 1.80 1.62 1.47 1.57 1.55 1.38 1.37 1.22 1.18
kr = 5, L6 1.67 1.62 1.44 1.57 1.53 1.40 1.34 1.20 1.14
kr = 6 1.70 1.45 1.30 1.46 1.41 1.26 1.25 1.10 1.14

SPARC

a b c a b c a b c
kr = 4, L5, L6 2.06 1.59 1.55 1.91 1.51 1.44 1.70 1.41 1.35
kr = 5, L6 2.20 1.42 1.37 1.76 1.37 1.34 1.54 1.30 1.25
kr = 6 1.90 1.29 1.16 1.60 1.27 1.16 1.46 1.19 1.14

Table 5: Relative time to execute compressed programs, based on Zipf-20, for six virtual machines, three
memory access forms, and on two processors.

pressed Scheme programs. For several benchmarks there are
speedups since macro-instructions increase speed and many
of the new instructions have short opcodes and operands.

7.3 Synthetic benchmarks
The Java and Scheme benchmarks demonstrate the appli-

cability of the approach in a realistic setting. But it raises
the question of hidden overhead by the emulation of the vir-
tual instructions. Also, inlined macro-instructions increase
speed. Therefore, we also present synthetic benchmark tim-
ings, where the frequency of instructions, their granularity,
and their operand lengths are precisely defined; there are no
macro-instructions used for these. In other words, the syn-
thetic benchmarks more clearly show the overhead of Huff-
man decoding and non-byte alignment.

For the synthetic benchmarks, we use six virtual machines
of different granularities allowing better measurement of de-
coding overhead. They all have twenty instructions, without
parameter for the first three machines, but for the last three
machines, six instructions have a parameter of length 2, 2,
3, 4, 5 and 7 bits. The opcodes are encoded based on Zipf-20
probabilities.

In the first machine, all twenty virtual instructions add
one to a counter ci; in the second machine each instruction
does two additional integer operations; in the third one, each
instruction does two additional memory accesses to simulate
a stack. Machines 4 to 6 have parameters and do the same
work as machines 1 to 3 respectively, but six instructions
have parameters and add them to their own counter ci. We
use the same program for the six machines: it is a sequence
of the twenty instructions, from instruction 1 to 20, per-
forming 4 · 105 iterations; that is the last instruction does a
jump to the first instruction which stops the execution when
counter c1 reaches this value. The opcodes are compressed

based on the Zipf-20 probabilities which have an average
length of 3.6 bits. Three decoders are applied on all six
machines executed on two host processors.

An interpreter was used to decode the uncompressed pro-
grams. These programs are bytecoded, one byte for each
opcode and, if applicable, two bytes by operand. The de-
coding is a computed branch, indexed by the opcode, to the
virtual instruction implementation. It loads its operands,
emulates and jumps back to the beginning of the decoding
cycle.

Table 5 presents the timing results for compressed pro-
grams, relative to the uncompressed ones. The simple mem-
ory access form-a is disappointing but form-b and form-c are
good. The two forms are close in performance even though
form-c is often the better. Since form-b generates more com-
pact interpreters there is an informed compromise to make.

From this experiment we can conclude that even with vir-
tual instructions doing almost no work, as in machine 1, and
with a small decoder, the decoding is around a 50% over-
head (as in form-c used with a kr = 4 decoder). This is an
extreme artificial setting aimed to demonstrate the worst
case performance. On the other hand, if we have instruc-
tions with no parameter and enough granularity, a speedup
can be observed.

7.4 Summary of the experiments
In conclusion, for Java, the average compression factor

is around 60% for 400 classes of the JDK 1.0.2 and the
ten benchmarks. For half the benchmarks, the slowdown
is hardly noticeable. This shows the practicality of the ap-
proach. The synthetic benchmarks show more explicitly the
overhead of decoding our compressed bytecode, demonstrat-
ing that even a speedup can be achieved in some cases with-
out macro-instructions. The Scheme results show that start-

38

ing from a very general machine, our compression creates
efficient and compact instructions. They also show that we
can come close to gzip compression performance and still
efficiently decode the compressed instructions.

8. RELATED WORK
Decoding of Huffman encoded instructions has also been

studied at the hardware level by several researchers [14, 17,
2]. They usually decompress between the memory and the
instruction cache. They do not use fast decoding methods
applicable at the software level.

Ernst et al. [8] compress native code, using macro-instructions
and fixing parameters, by generating a tailored VM from the
intermediate form emitted by a C compiler. It is similar to
Proebsting’s [21] work. Their technique is competitive with
gzip on native code. But it is not reported if the compression
obtained is due to the use of the VM or the compression of
the virtual program. Moreover, no timing of the execution
of compressed programs is reported.

Cooper and McIntosh [5] reduce program size by replacing
particular repetitive sequences of instructions with a branch.
The code saving is on average 5%. Cooper et al. [6] searches,
using a genetic algorithm technique, a combination of com-
pilation techniques to reduce code size. These works differ
from ours since they are done on native code and no Huff-
man encoding and argument compacting are applied.

Pugh [22] applies several techniques to compress Java class
files. This work differs from ours since decompression must
be performed before execution.

The work of Rayside et al. [23] also applies to class files,
but these techniques does not apply to the bytecode itself.

Hoogerbrugge et al. [10] uses a similar strategy of the
Thumb and MIPS16 processors [25, 13] to compress some
parts of the program. But instead of applying compression
on the binary executable, they automatically generate a tai-
lored virtual machine for the intermediate form of the C
program. When the intermediate form is translated into a
virtual program, frequent sequences of virtual instructions
are replaced by one opcode. This particular technique gives
a 30% reduction in size compare to the virtual program. Our
work is complementary by further reducing the size of the
virtual programs using compressed virtual instructions.

Lucco [18] applies compression to x86 native code using
a dictionary technique to keep track of repeated short se-
quences of instructions. At least one decompression must
be performed before the execution of a basic block, requir-
ing a buffer space to keep the decompressed copy. Our work
differs as we apply it to the context of virtual machines and
directly decode compressed instructions.

Clausen et al. [4] compresses bytecode by replacing repet-
itive sequences of JVM instructions by macro-instructions.
They obtain an average of 85% compression factor with a
slowdown from 19% to 27%.

The work of Evans and Fraser [9] has an identical goal
as ours: direct execution of compressed bytecode. Their
technique avoids variable length instructions contrary to our
technique. They do not report any execution times.

Debray and Evans [7] use canonical Huffman code on bi-
nary executables, but using the slow decoding technique as
in sub-section 3.1. They avoid compression on frequently
executed parts of the code to obtain reasonable execution
speed.

9. SUMMARY
This work has shown that decoding canonical Huffman en-

coded opcodes, at the software level, in the context of virtual
instructions, can be done efficiently. The speed of decoding
increases with the size of the decoder. A general structure
of compact decoders has been shown effective, permitting a
gradual compromise between speed of decoding and space
constraints.

Huffman decoding is not the only difficulty for quickly in-
terpreting compressed virtual instructions, memory access
for variable length bit fields is also important. Two prefetch-
ing techniques were shown to achieve good results.

The efficiency of the decoders have been demonstrated on
simple synthetic benchmarks, on the Scheme language, and
on Java benchmarks showing an average slowdown ranging
from 2% to 27% depending on the processor and the size of
the decoders. Actually, half of the Java benchmarks have a
40% reduction in size with a negligible slowdown (≤ 3%).

10. REFERENCES
[1] Java BYTEmark benchmarks: source code and results.

http://www.igd.fhg.de/~zach/benchmarks, 1999.

[2] M. Benes, S. M. Nowick, and A. Wolfe. A fast
asynchronous Huffman decoder for compressed-code
embedded processors. In Proc. International
Symposium on Advanced Research in Asynchronous
Circuits and Systems, Sept. 1998.

[3] J. P. Bennet and G. C. Smith. The need for reduced
byte stream instruction sets. The Computer Journal,
32:370–373, 1989.

[4] L. R. Clausen, U. P. Schultz, C. Consel, and
G. Muller. Java bytecode compression for low-end
embedded systems. ACM Transactions on
Programming Languages and Systems, 22(3):471–489,
2000.

[5] K. D. Cooper and N. McIntosh. Enhanced code
compression for embedded RISC processors. In Proc.
Conf. on Programming Languages Design and
Implementation, 1999.

[6] K. D. Cooper, P. J. Schielke, and D. Subramanian.
Optimizing for reduced code space using genetic
algorithms. ACM SIGPLAN Notices, 34(7):1–9, July
1999.

[7] S. Debray and W. S. Evans. Profile-Guided code
compression. In SIGPLAN Conference on
Programming Language Design and Implementation,
2002.

[8] J. Ernst, C. W. Fraser, W. Evans, S. Lucco, and T. A.
Proebsting. Code compression. In Proc. Conf. on
Programming Languages Design and Implementation,
pages 358–365, June 1997.

[9] W. S. Evans and C. W. Fraser. Bytecode compression
via profiled grammar rewriting. In SIGPLAN
Conference on Programming Language Design and
Implementation, pages 148–155, 2001.

[10] J. Hoogerbrugge, L. Augusteijn, J. Trum, and
R. van de Wiel. A code compression system based on
pipelined interpreters. Software - Practice and
Experience, 29(11):1005–1023, Sept. 1999.

[11] D. A. Huffman. A method for the construction of
minimum redundancy codes. In Proc. IRE, volume 40,
pages 1098–1101, Sept. 1952.

39

[12] T. Kemp, R. Montoye, J. Harper, J. Palmer, and
D. Auerbach. A decompression core for PowerPC.
IBM Journal of Research and Development, 42(6),
Nov. 1998.

[13] K. Kissell. MIPS16: High-density MIPS for the
Embedded Market. Silicon Graphics MIPS Group,
1997.

[14] M. Kozuch and A. Wolfe. Compression of embedded
system programs. In Proc. Int’l Conf. on Computer
Design, pages 270–277, 1994.

[15] M. Latendresse. Automatic generation of compact
programs and virtual machines for Scheme. In
M. Felleisen, editor, Proceedings of the Workshop on
Scheme and Functional Programming, Sept. 2000.
Available at
www.iro.umontreal.ca/~latendre/publications/.

[16] M. Latendresse and M. Feeley. Fast and compact
decoding of Huffman encoded virtual instructions.
Technical Report DIRO-1219, University of Montreal,
Nov. 2002. Available at
www.iro.umontreal.ca/~latendre/publications/.

[17] H. Lekatsas and W. Wolf. Code compression for
embedded systems. In Proc. ACM/IEEE Design
Automation Conference, 1998.

[18] S. Lucco. Split-stream dictionary program
compression. In Proceedings of the ACM SIGPLAN
’00 Conference on Programming Language Design and
Implementation, pages 27–34, Vancouver, British
Columbia, June 18–21, 2000.

[19] A. Moffat and A. Turpin. On the implementation of
minimum redundancy prefix codes. IEEE Transactions
on Communications, 45(10):1200–1207, Oct. 1997.

[20] G. Muller, B. Moura, F. Bellard, and C. Consel.
Harissa: A flexible and efficient Java environment
mixing bytecode and compiled code. In Proceedings of
the 3rd Conference on Object-Oriented Technologies
and Systems, pages 1–20, Berkeley, June 16–20 1997.
Usenix Association.

[21] T. A. Proebsting. Optimizing a ANSI C interpreter
with superoperators. In Proc. Symp. on Principles of
Programming Languages, pages 322–332, 1995.

[22] W. Pugh. Compressing Java class files. In Proc. Conf.
on Programming Languages Design and
Implementation, pages 247–258, 1999.

[23] D. Rayside, E. Mamas, and E. Hons. Compact java
binaries for embedded systems. In Cascon, pages 1–14,
Nov. 1999.

[24] E. S. Schwartz and B. Kallick. Generating a canonical
prefix encoding. Communications of the ACM,
7(3):166–169, Mar. 1964.

[25] J. L. Turley. Thumb squeezes ARM code size.
Microprocessor Report, 9(4), Mar. 1995.

40

