
Unpublished workshop paper for RESoLVE13 - March 16, 2013 - Houston, Texas

Harnessing Performance for Flexibility in Instrumenting
a Virtual Machine for JavaScript through Metacircularity

Erick Lavoie Bruno Dufour Marc Feeley
Université de Montréal

{lavoeric, dufour, feeley}@iro.umontreal.ca

Abstract
The limited reflexion features of the JavaScript (JS) language [5] on
object operations and function calls has forced researchers, on tasks
requiring run-time instrumentation, either to laboriously instrument
production VMs or come up with ad hoc source-to-source transla-
tion schemes for each problem at hand. This paper shows that, by
systematizing the second approach, it is possible to provide a dy-
namic run-time instrumentation of the object operations and func-
tion calls by running a metacircular VM on top of a performance-
oriented JIT VM, without having to modify its source code. Our
implementation, Photon, achieves a performance 2x slower than
a state-of-the-art interpreter and 50x slower than a state-of-the art
JIT implementation. The combination of simplicity of usage and
efficiency of our system renders obsolete the necessity of instru-
menting production VMs for instrumentation tasks that require
interpreter-level performance and solves the core technical issues
behind many source-to-source translation schemes.

1. Introduction
Run-time instrumentation of JavaScript is currently used for widely
different purposes. Notable examples are automatic benchmark ex-
traction from web applications [9], empirical data gathering about
the dynamic behavior of Web applications [8] and access permis-
sion contracts enforcement [4]. All these examples require instru-
mentation of object operations, such as property accesses, updates
and deletion. They also require instrumentation of all function calls
made to global functions, object methods, or function references,
either directly or indirectly through their call or apply method.

The standard semantics of JavaScript has no reflexion feature
that completely covers those use cases. Object-method and global-
function calls can be wrapped in closures to provide pre- and
post-call instrumentation, providing a partial solution. However,
direct calls to function references and object operations cannot be
intercepted. To work around this limitation, two main approaches
are used.

In the first approach, a production VM, usually written in C++,
is instrumented to provide hooks on selected operations. It is in-
creasingly complex on modern JS VMs because those VMs are
optimized for performance. The resulting instrumented VM then

[Copyright notice will appear here once ’preprint’ option is removed.]

becomes a burden to maintain up-to-date with its evolving counter-
part.

In the second approach, an ad hoc source-to-source translator
and run-time library are written for the problem at hand and the
system is expected to run on top of a production VM. Depending
on implementation choices, it can be more or less complicated to
guarantee that instrumented objects cooperate well with the rest of
the system. Moreover, the performance of the resulting system can
be abysmal if care is not taken in implementing the instrumentation.

In this paper, we present Photon, a framework following the
second approach that aims for usage simplicity, dynamism, and ef-
ficiency. It achieves simplicity by reifying object operations and
function calls as methods on root objects. It allows their instrumen-
tation at run time by replacing the function that implements their
behavior. A single primitive operation, message-sending, is used
as the focal point of implementation and optimization by mapping
all reified operations to it. It allows dynamic instrumentation and
specialization of run-time operations to information available at its
call site and the current instrumentation state of the VM. Its special-
ized behavior is also reified as a method, called __memoize__, to
provide an efficient way to implement uninstrumented operations
and allow instrumentations to specialize their behavior at the call
site of targeted operations. The optimization techniques presented
in this paper allow Photon to achieve interpreter-level performance,
around twice slower than the SpiderMonkey interpreter. We argue
that it makes our approach efficient enough to replace instrumen-
tations that were previously targeted at interpreters on production
VMs.

Basing our design on the second approach allows us to take ad-
vantage of the availability of optimizations performed by the host
VM. Our source-to-source translation is implemented by staging it
before all eval calls, effectively providing a JIT-compiler. More-
over, we argue that viewing the second approach as implementing
a metacircular VM provides both vocabulary to think about the or-
ganization of the system and inspiration from the existing litera-
ture for optimization techniques. We therefore refer to Photon as a
metacircular VM for JavaScript.

This paper contains two original contributions: (1) an object
representation exploiting the underlying VM’s inline caches and
dynamic object model to provide efficient virtualized operations
and (2) the unification of the reified object operations and func-
tion calls around a single message-sending primitive that allows
dynamic redefinition of their behavior and call-site specializa-
tion while preserving compatibility with the current version of
JavaScript.

We present in turn, an overview of the components of the sys-
tem, the object representation, the message-sending semantics, a
compilation example and a preliminary performance evaluation.

1 2013/3/9

Instrumentation

High-Performance Virtual Machine with a JIT Compiler

Source-to-Source JIT Compiler

Message Sending

Object Representation

Component

Application

Fast Global
Function Calls

Control-flow,
Primitives,

etc.

Function Calls, Object Ops

Litteral Object
Creation

Instrumented
Object Ops and
Function Calls

Native Objects

Data
Structures

Inline Caching and
Specialization of Method Calls

Caching and
Specialization Specialization

Control-flow,
Primitives,

etc.

Object Ops

Dynamically Redefinable
Function Calls and Object Ops

Full JavaScript Support provides

implements

uses

Object Ops,
Function Calls

Legend

Containers
Native Objects

Figure 1. Components of Photon virtual machine and the features they provide, implement and use

2. Architecture
In a conventional JS setting, we can view an application as running
over a host high-performance VM. The metacircular VM approach
adds another layer between the two, allowing instrumentations to
target the middle layer instead of the host VM. Figure 1 explicits
the vertical interaction between layers by naming components and
detailing which features are implemented using features of com-
ponents below it as well as the feature they provide to the layer
above. Note that the diagram represents a structural view of com-
ponent interactions and not the execution model of the application.
For example, after JIT compilation, the application code directly
runs over the host VM, albeit in a different form, although it is
shown as being over the source-to-source JIT compiler. Note that
no meaning is associated to horizontal proximity.

We first present each component, in a bottom-up fashion, in
terms of the abstractions they provide and the key features of their
implementation. We then provide a simple example, in a top-down
fashion, of a reified object operation and how each component
implements its behavior.

2.1 Bottom-Up Overview
The object representation is the implementation of JS objects (in-
cluding functions) from the point of view of the Photon VM. For ef-
ficiency, it uses native objects as property containers. The native ob-
jects are proxied with a second native object to allow encapsulating
invariants of the implementation in proxy methods. It has the ben-
efit of simplifying the implementation of instrumentations because
it abstracts implementation details required for performance. It also
allows object-specific instrumentation information to be stored on
a proxy without risk of interference with the application proper-
ties. Object representation operations can be specialized to certain
classes of objects for performance, such as indexed property ac-
cesses on arrays.

The message-sending layer builds on top of the object repre-
sentation to provide dynamically redefinable object operations and

function calls. This extra level of indirection allows specialization
of those operations at their call site, depending of the call site data
available, such as argument types and values, as well as the in-
strumentation state of the VM. It allows dynamic optimization of
uninstrumented and instrumented operations. By presenting spe-
cialized operations as global functions, it allows the underlying VM
to further specialize their behavior and even inline the operations
in-place when possible. The invariants implied by the implemen-
tation of the message-sending layer are encapsulated in the object
representation operations.

The source-to-source compiler translates the original JavaScript
code to use the run-time environment of Photon. Non-reified ele-
ments, such as control-flow operations, primitive values and prim-
itive operations are preserved. Object operations and function calls
are translated to message sends and become dynamically redefin-
able. Literal object creation is translated to use the object represen-
tation. The source-to-source compiler is written in JavaScript and
is therefore available at run-time. By staging it in front of every call
to eval, it effectively provides a JIT compiler to Photon.

An instrumentation can redefine the behavior of object opera-
tions and function calls by replacing the corresponding method on
a root object with an instrumented version using the object repre-
sentation operations. The ability to completely replace a method
provides maximum flexibility to instrumentation writers compared
to being limited to a specific event before and after an operation.
An instrumentation is written at the same level as the VM, which
means that it has access directly to the execution environment of
the VM and can use native objects as data structures.

2.2 Top-Down Example
To provide a more concrete example, suppose an application at
some point performs an access to a property p on an o object the
following way:

o.p;

2 2013/3/9

Conceptually, this will be translated by the source-to-source
compiler to an equivalent message send:
send(o, "__get__", "p");

In practice, for performance reasons, the call site for a message
send has a unique name prefixed with codeCache followed by a
unique numerical identifier. This identifier contains a global func-
tion whose body corresponds to the specialized operation. In this
particular case, after its first call, it will be specialized to the get
operations on a proxy object:
function codeCache0(rcv, msg, x0) {

return rcv.get(x0);
}

codeCache0(o, "__get__", "p");

If the __get__ method was subsequently redefined by an instru-
mentation at run-time, all message-send call sites for the __get__
message would be reverted to the base case of a message send. Now
if an instrumentation that would count all property accesses defined
an instrumented version of the __get__ method with a closure with
a __memoize__ function property, after the first call, the optimized
version of the code cache would be:
var counter = 0; // Added by the instrumentation

function codeCache0(rcv, msg, x0) {
counter++;
return rcv.get(x0);

}

codeCache0(o, "__get__", "p");

The core idea here is that the message sending layer allows
dynamic redefinition of optimized operations at every call site. In a
hot section of the code, if the host VM then inlines the codeCache0
global function and even the get method of the proxy object, most
of the overhead of the dynamism will be eliminated.

The next sections explain in more details how the object repre-
sentation and the message sending layer work.

3. Object Representation
Two insights led to the current design. First, on a well optimized
VM, the most efficient implementation of a given operation in a
metacircular implementation is frequently the exact same opera-
tion performed by the host VM. Second, method calls on JavaScript
VMs are usually really fast. Therefore, we should provide opera-
tions as method calls on objects whose internal representation is as
close as possible to the host object being implemented. It can be
achieved by structuring the object representation as proxies to na-
tive objects with a particular constraint, which we believe has never
been exploited before: the prototype chain of the proxies should
mirror the prototype chain of the native objects.

The core idea is to associate a proxy object to every object in
the system. In itself, this idea is not new. It has been advocated
by Bracha and Ungar almost 10 years ago to provide meta-level
facilities [3]. Proxy objects are also bound to appear in the next
version of JavaScript and are currently supported by some major
JS VMs. However to the best of our knowledge, it has never been
suggested that the prototype chain of proxy objects should follow
the prototype chain of proxied objects. As we will see, it opens the
possibility of specializing and optimizing the object representation
operations at runtime by attaching specialized methods at the ap-
propriate places on the proxy prototype chain.

3.1 Basic Representation
The first and simplest object type in JavaScript is the object. It has
properties and a prototype. A proxy object has a reference to the

native object to intercept every operation that goes to the object.
The prototype chain of proxies mirrors the object prototype chain.
A JavaScript implementation, with Object.prototype as the root
of all objects, is illustrated in Figure 2.

Object.prototype

parent's proxy parent

object's proxy object

Legend

prototype

proxied object

Figure 2. Basic object representation

An advantage of a representation like this one is that property
accesses can be implemented directly as a native property access to
the proxied object. It allows the host VM to do lookup caching. It
even works for reified root objects, in this example, by considering
Object.prototype the parent of all objects of the metacircular
VM.

However, it does not work well with native types that can be
created literally such as arrays, functions and regular expressions.
These would require their prototype to be changed to another object
at the creation site, ruining structural invariants assumed by the host
VM. For those objects, the original native prototype is maintained
and in cases where a lookup needs to be performed, it is done
explicitly through the proxy prototype chain. This is illustrated with
arrays in Figure 3.

Object.prototype

object's proxy object

array's proxy array

Legend

prototype

proxied object

Array.prototype

Figure 3. Special object representation

Given this structural representation for basic types, we can
now define all object operations as methods on proxy objects as
explained in Table 1. Given the current JavaScript de facto standard
of accessing the prototype object with the __proto__ name, if
proper care is not taken in the property access method, the proxied

3 2013/3/9

object will be returned instead of the expected proxy object of the
parent. 1

Table 1. Object representation operations examples and their in-
terface

Operation Interface Example
Property access get(name) o.get("p")
Property assignation set(name, value) o.set("p",42)
Property deletion delete(name) o.delete("p")
Object creation create() parent.create()
Call call(rcv, ..args) fun.call(global)
Prototype access getPrototype() o.getPrototype()

Although proxies mirror native objects in their prototype chain,
they do not mirror their properties. In fact, their properties can be
fixed for the whole execution if one assumes that the semantics
of object operations does not change. These facts allow proxies
to adapt to dynamic circumstances by adding specialized methods
at run time, which can be used for performance gains. We will
demonstrate how to exploit this fact, first to specialize operations
to a fixed number of arguments and then to a constant argument
type or value. Those two specializations are independent and can
be combined for further performance gains. To avoid name clashing
and ease reading we adopt the convention that specialized methods
share the same prefix as basic methods with the type or value
information and or number of arguments following in the name.

3.2 Specialization on a Fixed Number of Arguments
The object representation design does not require a special call-
ing convention for functions. However, for maximum performance
gains in JavaScript, we would like to avoid using the call and
apply native methods. We can do it by globally rewriting every
function to explicitly pass the receiver object. This way, a special-
ized call operation can simply pass the references to the native func-
tion. An example implementation for a call operation specialized
for one argument in addition to its receiver could be:

var fun = FunctionProxy(function ($this, x) {
return x;

});

fun.call1 = function ($this, arg0) {
return this.proxiedObject($this, arg0);

};

// Also add a call1 method on all proxies
// that might be called as a method!

Specializing one proxy operation requires us to specialize all
objects for that particular operation to ensure that whatever re-
ceiver, function or object is called at a given site, a proper opera-
tion is supplied. Fortunately, the object-oriented nature of our cho-
sen representation makes it easy. Only root proxies need to have
an additional method and all other proxies will then implement the
specialized operation.

3.3 Type or Value Specialization
In the same way, we can specialize an operation for a known
value. For example, suppose we would like an optimized operation
that accesses a stable property name. A proper specialized method
could be written:

1 For this particular reason, we would advocate for implementations to
expose the prototype of an object through a method call instead of a
property. We could still preserve backward compatibility for literal object
definitions but once the object is created, the prototype should not be
accessible or modifiable through the __proto__ property.

var obj = root.create();

obj.set("foo", 42);

obj.get_foo = function () {
return this.proxiedObject.foo;

};

root.get_foo = function () {
return this.get("foo");

};

Notice that a method that falls back to the general case is
provided to the root object to add support to all other proxies. The
same idiom can be used for type specialization instead of value.

4. Message-Sending Semantics
The message-sending semantics builds on top of the object repre-
sentation to allow the behavior of object operations and function
calls to be dynamically redefined at their call site, which happens
if an instrumentation redefines the behavior of the corresponding
method. This two-level separation allows encapsulation of invari-
ants of the implementation inside the object representation meth-
ods to simplify the instrumentation code. It also allows an efficient
implementation of reified operations by allowing specialization of
their behavior to their call site.

The semantics of message sends is progressively introduced
with JavaScript code. First, its root in the method call semantics
is shown because it is sufficient to reify object operations. Then by
enriching it to add a causal connection between the function call’s
method and all call site’s behavior it becomes powerful enough to
reify function calls. Finally, an efficient implementation using in-
line caches is presented and the reification of its specialized be-
havior at a call site through a __memoize__ method is discussed.
This reification allows instrumentations to specialize their behav-
ior at the call site with the same mecanism used for specializing
uninstrumented standard operations.

Unless specified, the pseudo-code follows the standard JavaScript
semantics. We take advantage of the expressivity of the rest and
spread operators (e.g. ..args), bound to appear in the next re-
vision. For simplicity, primitive values, missing values and error
handling are omitted.

4.1 Reifying Object Operations
In its essence, a message send corresponds to the standard seman-
tics of a method call in JavaScript, which is a property access
through the prototype chain followed by a call:

function send(rcv, msg, ..args) {
var m = rcv.get(msg);
return m.call(rcv, ..args);

}

Given this semantics, the basic object operations of the language
can be reified as methods. Opened object operations, JavaScript
examples and their equivalent message sends are given in Table 2.

However, from the point of view of the user program, the call
operation is opaque and cannot be modified. The semantics of
JavaScript does not provide a means to intercept all calls. How-
ever, we can provide the capability of dynamically instrumenting
function calls by augmenting the semantics of the send operation.

4.2 Reifying the Function Calls
In JavaScript, the call method on every function reifies the calling
protocol and allows a program to call into a function at run time, as
if it was done through the direct mechanisms. The exact behavior
of a function call should be the same, whether it is called directly

4 2013/3/9

Table 2. Object model operations and examples of their equivalent
message sends

Object Model
Operation

Example Equivalent Message Send Ex-
ample

Property
access

o.p send(o,"__get__","p")

Property
assignation

o.p=42 send(o,"__set__","p",42)

Property
deletion

delete o.p send(o,"__delete__", "p")

Object litteral
creation

{p:42} send({p:42}, "__new__")

Creation with
constructor

new Fun() send(Fun, "__ctor__")

or indirectly. However, there is no causal connection between the
state of the call method and the behavior of function calls. In other
words, redefining the call method on Function.prototype does
not affect the behavior of call sites.

We can establish this causal relationship with a slight modifica-
tion of the send operation:

function send(rcv, msg, ..args) {
var m = rcv.get(msg);
var callFn = m.get("call");
return callFn.call(m, rcv, ..args);

}

This semantics allows all function calls to be instrumented,
simply by redefining the root function’s call method. This way,
all function calls can be intercepted, as long as they are mapped
to message sends. An explanation of each compile-time occurrence
of function calls as well as their equivalent message sends are given
in Table 3.

Table 3. Call types and their equivalent message sends
Call
Type

Explanation Equivalent Message
Send

Global Calling a function in
the global object. Ex:
foo()

Sending a message to
the global object. Ex:
send(global,"foo")

Local Calling a function in a
local variable. Ex: fn()

Sending the call mes-
sage to the function. Ex:
send(fn,"call")

Method Calling an object
method. Ex: obj.foo()

Sending a message
to the object. Ex:
send(obj,"foo")

apply
or call

Calling the call or
apply function method.
Ex: fn.call()

Sending the call or
apply message. Ex:
send(fn,"call")

4.3 Efficient Implementation
The core insight behind our implementation comes from seeing
global function calls both as an optimized calling mechanism and
as a dynamically specializable operation. They provide the same
ability as code patching in assembly. On the current version of V8,
when the number of expected arguments matches the number of
supplied arguments, inlining the function at its call site becomes
possible. If the global function is redefined at a later time, the call
site will be deoptimized transparently. It is a really powerful mech-
anism because much of the complexity of run-time specialization

is performed by the underlying host. We can simply piggyback on
those optimizations.

For example, given the aforementioned semantics of message
sending, sending the message msg to an object obj inside a foo
function can be written this way:

function foo(obj) {
send(obj, "msg"); // Equivalent to obj.msg();

}

The send function is a global function. We can replace it with
another global function that is guaranteed to be unique, so it can
be identified with the call site. In addition to the message to be
sent, we can pass it a unique identifier that will be used to find the
corresponding global function name, for later specialization of the
call site:

function initState(rcv, dataCache, ..args) {
...Update ("codeCache" + dataCache[0])
return send(rcv, dataCache[1], ..args);

}

var codeCache0 = initState;
var dataCache0 = [0, "msg"];

function foo(obj) {
codeCache0(obj, dataCache0);

}

The initState function follows the same calling convention
as the send function. Furthermore, dataCache0 is an array, which
means that the different states of the cache can use the array to store
additional information.

After an initial execution, the second time around, the cache
will hold an optimized version of the operation. Given this new
definition, the cache state might be equivalent to:

var codeCache0 = function (rcv, dataCache) {
return rcv.get("msg").call(rcv);

};
var dataCache0 = [0, "msg"];

function foo(obj) {
codeCache0(obj, dataCache0);

}

Apart from the indirection of the global function call, this exam-
ple is optimal with regard to the object representation definition we
have. If the underlying runtime chooses to inline the global func-
tion, the cost of the indirection will be effectively eliminated.

4.3.1 Memoized Methods
Memoization is usually associated with functional programming
and entails trading space-efficiency for time-efficiency by remem-
bering past return values of functions with no side-effect. By anal-
ogy, we will say that a memoized method is a method that performs
the same operation, albeit possibly more efficiently by exploiting
run-time information (e.g., types or argument count). This partic-
ular functionality became necessary when trying to efficiently im-
plement the JavaScript object operations in our system because they
are reified as methods.

The basic idea is to allow a method to inspect its arguments
and receiver to specialize itself for subsequent calls. The first call
is always performed by calling the original function while all sub-
sequent calls will be made to the memoized function. A function
call defines its memoization behavior by having a __memoize__
method.

There is an unfortunate interaction between memoization and
the reification of the call protocol. A further refinement specifies
that memoization can only occur if the call method of the func-
tion has not been redefined. Otherwise, the identity of the function

5 2013/3/9

passed to the call method would not be the same. To preserve iden-
tity while allowing memoization, the behavior of the cache can be
different depending on the state of the Function.prototype’s call
method. If its value is the default one, the identity of the function
is not important and memoization can be performed. Otherwise,
memoization will be ignored. This definition has the advantage that
one can temporarily redefine the calling method without penalty af-
ter the original method has been restored.

4.3.2 Cache States and Transitions
The last missing piece is the precise definition of the behaviors of
the inline caches and the conditions that trigger those behaviors.
We use a state-machine formalism to present the different behaviors
associated with inline caches and the triggers that are responsible
for the transitions between those behaviors. In our formalism, due
to the nature of synchronous message sends, a state transition
occurs before the event has been fully processed. However the
processing of the event is not influenced by it.

To simplify invariants tracking, we decided to always perform
lookups for method calls, i.e., method calls are always a get fol-
lowed by a call. This is a reasonable choice if the object represen-
tation can piggyback on the host optimizations. The other important
operation was to allow specialization of object operations, through
memoized methods. There are therefore two states in addition to
the initial state of the cache, as explained in Table 4.

Table 4. Cache states
Cache states Explanation
Initial State Perform the full send operation.
Regular method call Look up method, then call.
Memoized method call Method-specific behavior.

Transitions between states happen on message-send and object-
operation events. An insight was to realize that we could under-
approximate the tracking of invariants and conservatively invali-
date more caches than minimally required. As long as the opera-
tions triggering the invalidation of caches are infrequent, the per-
formance impact should be minimal. We therefore track method
values cached in memoized states by name without consideration
for the receiver object. If a method with the same name is updated
on any object, all caches with a given message name will be in-
validated. Also, if the call method on the Function.prototype
object or any method with the __memoize__ name is updated, all
caches will be invalidated. This way, we only need to track caches
associated with names. The upper bound on memory usage for
tracking information is proportional to the number of cache sites.

There is no state associated with a redefined call method. In
that particular case, all caches will stay in the initial state and a
full message send will be performed. Figure 4 summarizes those
elements in a state diagram. A more detailed explanation of every
event and transition conditions is given in Table 5 and Table 6.

5. Compilation Example
To illustrate how those different elements work together in practice,
consider following example:

(function () {
var o = {};
o.foo = function () { return this.bar; };
o.bar = 42;

for (var i = 0; i < 2; ++i) {
o.foo();

}
})();

Initial
state

Memoized
method call

Regular
method call

Call redefinition or
Any __memoize__ update

Send with
default call and

no __memoize__ method

Send with
default call and

__memoize__ method

Send with
redefined call

Bailout or
Method update or
Call redefinition or

Any __memoize__ update

Legend

Event
Transition
Condition

Figure 4. Cache States and Transitions

Table 5. Cache Events
Cache Events Explanation
Send A message is sent to a receiver object.

Call redefinition The call method on
Function.prototype is redefined.

Any memoized
redefinition

Any __memoize__ method is being rede-
fined.

Bailout A run-time invariant has been violated.

Method redefini-
tion

An object with a method with the same
name has its method being updated.

Table 6. Cache Transition Conditions
Cache Transition
Condition

Explanation

Default call Function.prototype call method
is the same as the initial one.

Redefined call Function.prototype call method
is different than the initial one.

No __memoize__
method

No method named __memoize__ has
been found on the method to be called.

__memoize__
method

A method named __memoize__ has
been found on the method to be called.

In this example, an anonymous function is called right after
being created to provide a lexical scope, which means that the o
and i variables are local to the function. In this scope, we create
an o empty object, which has the root object of the metacircular
VM for prototype. Then this object is extended with a foo method.
This method returns the bar property of the receiver object. We
then create and initialize the bar property of the o object. Finally,
we call the foo method two times to give it the chance to specialize
the call site, both of the foo call and the bar property access inside
the foo method.

In addition to what has been discussed previously, additional
details appear in the compilation result:

6 2013/3/9

• Type information in data caches: During compilation, known
types which directly correspond to abstract syntax tree nodes
are preserved. It allows the runtime to exploit stable informa-
tion. For example, in dataCache1, the "string" type allows
the runtime to know the property access is to a constant string
name.

• Root objects are different from the host root objects:
root.function, root.object and root.global virtualize
the object model’s root objects to avoid interference with the
host objects.

• Functions have an extra $closure parameter: This extra pa-
rameter is used to pass the proxy to the function to the code
or dataCache information for the implementation to send the
cache state to the cache function behavior.

The compiled code has been weaved with the original code in
comments for clarity:

(codeCache0 = initState);
(dataCache0 = [0, "__new__",[]]);
(codeCache1 = initState);
(dataCache1 = [1,"__get__",

["this","string"]]);
(codeCache2 = initState);
(dataCache2 = [2,"__new__",[]]);
(codeCache3 = initState);
(dataCache3 = [3,"__set__",

["get","string","icSend"]]);
(codeCache4 = initState);
(dataCache4 = [4,"__set__",

["get","string","number"]]);
(codeCache5 = initState);
(dataCache5 = [5,"foo",["get"]]);
(codeCache6 = initState);
(dataCache6 = [6,"__new__",[]]);
(codeCache7 = initState);
(dataCache7 = [7,"call",[]]);

// (function () {
(codeCache7((codeCache6(

root.function, dataCache6,
(new FunctionProxy(function ($this,$closure) {

var o = undefined;
var i = undefined;
// var o = {};
(o = (codeCache0(root.object, dataCache0,

(root.object.create())))
);
// o.foo = ...
(codeCache3(o, dataCache3, "foo",
// ... function () { return this.bar; };

(codeCache2(
root.function, dataCache2,
(new FunctionProxy(function (

$this,$closure) {
return (codeCache1(

$this, dataCache1, "bar")
);

}))))));
// o.bar = 42;
(codeCache4(o, dataCache4, "bar", 42));
// for ...
for ((i = 0); (i < 2); (i = (i + 1))) {

// o.foo();
(codeCache5(o, dataCache5));

}
}))

// })();
)), dataCache7, root.global));

After execution, the inline caches at codeCache1 and codeCache5
will be respectively in a memoized state and a method call state,
which correspond to the following behaviors:

codeCache1 = function ($this,dataCache,name) {
return $this.get(name);

}

codeCache5 = function($this,dataCache) {
return $this.get("foo").call0($this);

}

In the last case, we can see that the call method has been spe-
cialized for no arguments, exploiting optimization opportunities of-
fered by our object representation. This example therefore summa-
rizes the unification of object model operations to message sends,
their efficient implementation and a novel object representation that
can dynamically adapt itself to information available at runtime.

6. Performance
Our current results show that the baseline performance (without
instrumentation) is around twice as slow as the SpiderMonkey
interpreter on both the V8 and SunSpider benchmarks. The baseline
memory usage in most cases, is also around twice that of V8. A
basic instrumentation slows the system by an additional factor of
three but has almost no effect on memory usage, while the same
instrumentation optimized for speed can have negligible impact
both on run-time performance and memory usage compared to the
baseline.

6.1 Methodology
We compare three different systems:

• Photon running over V8 (V8’s full optimizations)
• V8 (full optimizations)
• SpiderMonkey interpreter (JIT disabled)

V8 was chosen to host Photon because preliminary tests showed
the system to be faster on it. The additional speed is attributed to
the ability of the runtime to perform function inlining and on-stack-
replacement, as well as to the presence of fast garbage collectors.
Other VMs are catching up on features and the current focus seems
to be on method-based Just-In-Time compilers so we anticipate that
in the near future they could probably be used interchangeably. We
compare Photon to V8 to quantify the performance cost incurred
by our approach. We finally compare to a popular state-of-the-art
interpreter, SpiderMonkey, to argue that our approach can be used
wherever a manual instrumentation of that interpreter could have
been performed.

To assess performance, we use the V8 benchmark suites, since
it is one of the de facto standards to compare JS VM performance.
We used the original methodology of the benchmark suite to make
our results comparable to other published results for other systems.
All benchmarks were run unmodified.

We focus on two metrics, running time and the maximum heap
size to respectively measure run-time performance and memory us-
age. Running time is measured using the score given by the bench-
mark suite. Higher scores mean a faster system (less execution
time). Memory usage is used to estimate the overhead of Photon
compared to V8, but no attempt was made to evaluate the memory
usage of the SunSpider interpreter.

We present results in two different groups, the baseline per-
formance and the instrumented performance. The baseline perfor-
mance is used to measure the minimal overhead of the approach
since it determines its viability, regardless of other characteristics.
The instrumented performance is used to measure the impact of

7 2013/3/9

instrumentation on the baseline performance. It is common knowl-
edge that instrumenting an interpreter has little impact over its over-
all performance (this was verified by Richards et al. when they
instrumented JavaScriptCore [8]). However, our approach is more
sensitive to instrumentation. We therefore quantify its impact.

The chosen instrumentation counts the number of occurrence at
run time of property accesses, assignments and deletions. The orig-
inal operation is inlined in the replacement method instead of being
called. We chose this particular instrumentation because it is sim-
ple, it covers important object model operations and it was actually
used to gather information about JS (it can be used to reproduce the
object read, write or delete proportion figure from [8]).

All results were obtained on a MacBook Pro running OS X ver-
sion 10.7.5 with a 2.2 GHz Intel Core i7 processor and 8 GB of
1333 MHz DDR3 Ram. We used V8 revision 12808 and Spider-
Monkey version 1.8.5+ 2011-04-16. The results are intended to
give an order of performance for the approach. Therefore, it was
not deemed necessary to provide confidence intervals and means
of multiple runs, given that the test harness already run the bench-
marks multiple times. Although some variations between runs were
noticed, they were sufficiently stable to not affect our arguments.

For conciseness, abbreviations are used in tables. They are listed
in order of appearance:

• Pn: Photon
• SM: SpiderMonkey
• V8: V8
• Pn-spl: Photon with our simple instrumentation
• Pn-fast: Photon with an equivalent instrumentation optimized

for speed

6.2 Baseline Performance
6.2.1 Running Times
Table 7 shows the baseline performance for V8 benchmarks. The
results indicate that Photon obtains an overall score within a factor
of 2 of the SpiderMonkey interpreter. On three out of the eight
benchmarks Photon is faster and in two cases by almost of factor
of two. In other cases, the SpiderMonkey interpreter is between 2
and 3.5 times faster, except for the Splay benchmark where it is 13
times faster.

This last case seems to be a pathological case for the basic op-
timizations performed on property access, assignation and update.
As shown later, for this particular benchmark, the instrumented ver-
sion of Photon is three times faster than the non-instrumented ver-
sion. This can be explained by the fact that the instrumented version
removes the optimizations attempted. However, removing the same
optimizations for all benchmarks gives an overall score 30% infe-
rior with some benchmarks almost four times slower, except for
Splay.

Table 7. Baseline performance on V8 benchmarks
Benchmark Pn SM V8 V8/Pn SM/Pn
Crypto 529.0 348.0 17025.0 32.2 0.7
DeltaBlue 82.8 249.0 19306.0 233.2 3.0
EarleyBoyer 738.0 808.0 34170.0 46.3 1.1
NavierStokes 908.0 564.0 20947.0 23.1 0.6
RayTrace 156.0 560.0 19442.0 124.6 3.6
RegExp 441.0 781.0 3902.0 8.8 1.8
Richards 120.0 219.0 14149.0 117.9 1.8
Splay 118.0 1508.0 5850.0 49.6 12.8
V8 Score 270.0 524.0 14002.0 51.9 1.9

6.2.2 Memory Usage
The heap size is measured from garbage collection traces. Memory
usage in Table 8 is acceptable, given that every run-time object has
an associated proxy with most cases using less than a factor of two
in memory and a worst case of around 6.5. The high memory usage
in the EarlyBoyer case can be explained by the memory overhead
of every inline cache site having an associated array.

Table 8. Baseline memory usage (in MB) on V8 benchmarks
Benchmark Pn V8 Pn/V8
Crypto 56.0 20.0 2.8
DeltaBlue 33.0 20.0 1.6
EarleyBoyer 128.0 20.0 6.4
NavierStokes 29.0 19.0 1.5
RayTrace 35.0 20.0 1.8
RegExp 54.0 22.0 2.5
Richards 28.0 18.0 1.6
Splay 84.0 97.0 0.9

6.3 Instrumented Performance
Two versions of the object operations instrumentation are ana-
lyzed. The simple version does not exploit the memoization proto-
col and corresponds to the straight-forward implementation: incre-
menting a counter and calling the corresponding object representa-
tion method. The fast version inlines the instrumentation operation
inside the optimized version of object operations for speed.

The first version is intended to measure the performance that
can be expected from a quickly developed instrumentation while
the second one is intended to measure the performance impact
of the instrumentation operations alone. This is therefore a low-
barrier high-ceiling example and illustrates the flexibility that can
be gained when the choice of aiming for performance is left to users
of the system.

Table 9 shows the impact of instrumentation on the baseline
performance. The fast version has negligible impact with some
results slightly faster, mostly due to natural variation of results.
However, the simple version can be as much as 18 times slower
on some benchmarks.

Table 9. Instrumented performance on V8 benchmarks
Benchmark Pn Pn-spl Pn-fast Pn/Pn-spl Pn/Pn-fast
Crypto 529.0 41.4 566.0 12.8 0.9
DeltaBlue 82.8 36.2 103.0 2.3 0.8
EarleyBoyer 738.0 162.0 767.0 4.6 1.0
NavierStokes 908.0 51.4 871.0 17.7 1.0
RayTrace 156.0 85.1 158.0 1.8 1.0
RegExp 441.0 324.0 476.0 1.4 0.9
Richards 120.0 30.5 113.0 3.9 1.1
Splay 118.0 453.0 117.0 0.3 1.0
V8 Score 270.0 91.2 281.0 3.0 1.0

Table 10 shows the memory overhead, compared to the baseline
memory overhead. For most benchmarks, this is negligible. How-
ever for the Splay benchmark a ratio of 1.7 is observed, that is the
simple instrumentation uses 1.7 times the memory of the baseline
version. Although we have not uncovered the specific cause yet,
we speculate that it comes from V8 duplicating methods to facili-
tate specialization.

6.4 Interpretation
Our current optimizations lack stability across benchmark results.
A better predictor of whether to optimize or not would give more
even results, especially for the Splay benchmark. We believe this

8 2013/3/9

Table 10. Instrumented memory usage (in MB) on V8 benchmarks
Benchmark Pn Pn-spl Pn-fast Pn-spl/Pn Pn-fast/Pn
Crypto 56.0 55.0 56.0 1.0 1.0
DeltaBlue 33.0 32.0 32.0 1.0 1.0
EarleyBoyer 128.0 103.0 128.0 0.8 1.0
NavierStokes 29.0 29.0 32.0 1.0 1.1
RayTrace 35.0 34.0 35.0 1.0 1.0
RegExp 54.0 54.0 54.0 1.0 1.0
Richards 28.0 28.0 28.0 1.0 1.0
Splay 84.0 139.0 88.0 1.7 1.0

can be done within the framework presented. Furthermore, the
memory overhead seems acceptable for instrumentation tasks given
our multi-gigabytes of RAM in today’s machines. Instrumentation
can have a negligible impact both on performance and memory us-
age, as long as the instrumented operations are optimized enough.
Otherwise, the choice of trading performance of a faster develop-
ment time can still be made with an impact on performance that can
be reasonable in most cases.

7. Related Work
Although there are existing systems for JavaScript targeting JavaScript
as their runtime, such as Google Caja to enforce security invari-
ants [1], Google Traceur to support the next version of JavaScript
on existing VMs [2] and JSBench to record execution traces for
automatic benchmark generation [9], we believe our combination
of simplicity, flexibility and efficiency as well as the focus on in-
strumentation is unique.

The initial inspiration for optimizing sends with global func-
tions that change during execution was drawn from the lazy func-
tion definition pattern as explained by Peter Michaux [6]. In this
pattern, after the initial setup performed by a function, a new func-
tion without the initialization code can replace the original function
to provide an efficient operation. We believe this is the first time this
pattern is used as an inline cache in the literature.

The particular choice of message-sending as a foundation was
motivated by its successful application in Smalltalk and Self to
achieve a dynamic, open and fast implementation. The initial work
on unifying an object model around a message-sending primitive
came from the Open, Extensible Object Models from Piumarta and
Warth [7].

In choosing the systems to compare, we eliminated a few cur-
rent alternatives. We assume that when faced with the task of in-
strumenting production code to obtain run-time data, manually in-
strumenting a JIT-compiler would be deemed too complex to be
cost-effective in terms of development time. At the time of writ-
ing, JavaScriptCore’s low-level interpreter became available and re-
placed the original interpreter that was instrumented by Richards et
al. [8] in WebKit. We argue that the only real instrumentation alter-
native right now would be SpiderMonkey’s interpreter because the
JavaScriptCore low-level interpreter is implemented in an assembly
dialect to obtain performance gains.2 As this new interpreter ma-
tures, we speculate that its complexity will increase, negating most
of the simplicity usually attributed to interpreters. Finally, we do
not show performance results for Narcissus, Mozilla’s JavaScript
in JavaScript interpreter, because the latest version would not run
either the SunSpider or V8 benchmarks.

2 In our tests on the V8 benchmarks, the JavaScriptCore low-level inter-
preter was roughly three times faster than SpiderMonkey’s interpreter. How
much of those speed gains would remain in presence of instrumentation is
unknown.

8. Limitations
Accessing the __proto__ property leaks the internal represen-
tation. This can be solved at a substantial performance cost by
testing every property access. Alternatively, it can be mitigated
with no run-time penalty by detecting, at compile-time, accesses
to the __proto__ property and calling the object representation
getProtype method instead. However, the possibility of dynam-
ically generating the __proto__ name render it unsound. It is yet
to be seen if this actually happens in practice.

Meta-methods can conflict with application methods if they
have the same name. This limitation will be solved in the next
version of the standard, when unforgeable names will be available
in user space. Until then, we can rely on rarely used names to
minimize possible conflicts with existing code.

Setting the __proto__ property throws an exception. This
might be fixed by invalidating all caches should the prototype of an
object change. A more sophisticated mechanism could be devised
if the operation is frequent.

Operations on null or undefined might throw a different ex-
ception because they might be used as base objects for an object
representation method. The exception will say that the object repre-
sentation is missing instead of the property. This problem only hap-
pens for incorrect programs because otherwise an exception would
still interrupt it. We choose not to handle this case.

Functions passed to the standard library are wrapped to remove
the extra arguments introduced by our compilation strategy. How-
ever, when called by the standard library methods, a direct call is
made. Should the need to intercept those calls arise, the wrappers
could perform a message send instead of a direct call.

A major limitation of this approach is that all dynamically
evaluated code needs to be intercepted in order to be translated
and maintain invariants of the system. It is non-trivial in a browser
setting.

9. Conclusion and Future Work
We demonstrated how object operations and function calls could
be reified by basing them on a single message-sending primitive,
with a performance similar to a state-of-the-art interpreter. Novel
and efficient object representation and message-send implementa-
tions were devised. These were shown to be key to a metacircular
approach to instrumenting JS VMs.

The design of the current system has focused on flexibility;
some additional performance gains could be obtained with known
optimizations. For example, no property-access specialization is
currently performed.

The cost of various aspects of the design should also be deter-
mined. In particular, the cost of the object representation could be
isolated by compiling directly to it, thus avoiding the indirection
of message sends. All available compile-time information could be
translated to proper specialized object representation methods. The
performance cost of the reification and the dynamicity could then
be separated.

Finally, support for the browser Document Object Model and
a proper integration with a web browser will be done to test the
system on real web applications.

Acknowledgments
This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC), the Fonds
Queébeécois de la Recherche sur la Nature et les Technologies
(FQRNT) and Mozilla Corporation.

Thanks to all the anonymous reviewers for the invaluable feed-
back on earlier versions of this paper.

9 2013/3/9

References
[1] Google caja. http://code.google.com/p/google-caja/, De-

cember 2012.
[2] Google traceur. http://code.google.com/p/traceur-compiler/,

December 2012.
[3] G. Bracha and D. Ungar. Mirrors: design principles for meta-

level facilities of object-oriented programming languages. In
Proceedings of the 2004 ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages
331–344, New York, NY, USA, 2004. ACM. ISBN 1-58113-
831-8. doi: http://doi.acm.org/10.1145/1028976.1029004. URL
http://doi.acm.org/10.1145/1028976.1029004.

[4] P. Heidegger, A. Bieniusa, and P. Thiemann. Access permission con-
tracts for scripting languages. In Proceedings of the 39th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’12, pages 111–122, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1083-3. doi: 10.1145/2103656.2103671.
URL http://doi.acm.org/10.1145/2103656.2103671.

[5] E. C. M. A. International. ECMA-262: ECMAScript Language Speci-
fication. ECMA (European Association for Standardizing Information
and Communication Systems), Geneva, Switzerland, third edition, Dec.
1999.

[6] P. Michaux. Lazy function definition pattern.
http://michaux.ca/articles/lazy-function-definition-pattern,
December 2012.

[7] I. Piumarta and A. Warth. Self-sustaining systems. chap-
ter Open, Extensible Object Models, pages 1–30. Springer-
Verlag, Berlin, Heidelberg, 2008. ISBN 978-3-540-
89274-8. doi: 10.1007/978-3-540-89275-5_1. URL
http://dx.doi.org/10.1007/978-3-540-89275-5_1.

[8] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of
the dynamic behavior of JavaScript programs. In Proceedings of the
2010 ACM SIGPLAN conference on Programming language design and
implementation, pages 1–12. ACM, 2010.

[9] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated construction of
javascript benchmarks. In Proceedings of the 2011 ACM international
conference on Object oriented programming systems languages and ap-
plications, OOPSLA ’11, pages 677–694, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0940-0. doi: 10.1145/2048066.2048119.
URL http://doi.acm.org/10.1145/2048066.2048119.

10 2013/3/9

