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Abstract
Python is a popular programming language whose
performance is known to be uncompetitive in comparison
to static languages such as C. Although significant efforts
have already accelerated implementations of the language,
more efficient ones are still required. The development of
such optimized implementations is nevertheless hampered
by its complex semantics and the lack of an official formal
semantics. We address this issue by presenting an approach
to define an executable semantics targeting the development
of optimizing compilers. This executable semantics is
written in a format that highlights type checks, primitive
values boxing and unboxing, and function calls, which are all
known sources of overhead. We also present semPy, a partial
evaluator of our executable semantics that can be used to
remove redundant operations when evaluating arithmetic
operators. Finally, we present Zipi, a Python optimizing
compiler prototype developed with the aid of semPy. On
some tasks, Zipi displays performance competitive with that
of state-of-the-art Python implementations.

CCS Concepts: • Software and its engineering →
Translator writing systems and compiler generators.

Keywords: compiler, dynamic programming language,
optimization, executable semantics, partial evaluation,
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1 Introduction
Python is a dynamic language known for its extensive
standard library, object-oriented approach and admittedly
poor performance in comparison to static languages such
as C and dynamic languages such as JavaScript [12]. It is
nonetheless among the most popular languages in use today
and its popularity shows no sign of decline [32].

The Python language specification is The Python Language
Reference [31]. While the syntax is formally specified, this is
not the case of the semantics, leaving room for ambiguities
and making it difficult to reason about programs [21].
In our experience, these challenges are related. Python’s

complex semantics and absence of formal specification
complicate the development of a compiler compatible with
CPython, the reference implementation. The effort spent
getting the semantics right leaves little time for optimization.
Furthermore, part of the semantics makes Python

implementations susceptible to execute redundant type
checks, extensive boxing and unboxing of primitive values,
and abundant method calls, which affects performance [14,
34]. Optimization of operations on atomic types (such as
int and float) has been suggested to resolve this issue [34].
This paper offers two main contributions. First, we

describe an executable semantics for Python that is
written in a Python syntax to allow reuse in existing
compilers. Second, we present a tool that applies partial
evaluation to remove redundant type checks, boxing and
unboxing, and method calls from arithmetic operations
on atomic types. We use this executable semantics to
automate the implementation of arithmetic operations in
an optimizing compiler and demonstrate that it provides
run time performance competitive with those of PyPy [5], a
state-of-the-art Python implementation.
This paper is organized as follows. In Section 2, we

provide an overview of Python’s semantics. In Section 3, we
define an executable semantics that describes the behavior of
various Python operations. In sections 4 and 5, we present a
technique for partial evaluation of our executable semantics
that focuses on removing redundant type checks, boxing
and unboxing, and method lookups and invocations from
Python operations. In Section 6, we show how we reused
our executable semantics in the implementation of Zipi, our
partial implementation of a Python optimizing compiler.
Finally, in Section 7 we provide an overview of performance.
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2 Overview of Python’s Semantics
Python’s semantics is highly dynamic. This is an obstacle to
the implementation of an optimizing compiler. This section
gives an overview of this problem.
As of today, Python does not have an official formal

semantics. The reference manual [31] uses prose instead of
a formal specification, which leaves room for ambiguities.
When such ambiguities arise, we refer to the behavior of
CPython [28], the reference implementation.

2.1 Data Model
Python’s abstraction for data are objects, which are entirely
defined by their identity, type and value. The identity is a
unique integer value that never changes across the life of
the object and is available by calling id(obj). The value is
the data represented by the object, for example an integer, a
floating point number or a pointer to another data structure.
Finally, the type determines the operations allowed on the
object. An object’s type is itself an object that can be obtained
with type(obj). Under certain conditions, an object’s type
can be modified. However, this is not possible for objects
whose type is a built-in type such as booleans, floats, integers,
strings, lists, tuples, sets and dictionaries.
All values in a Python program are objects. For example,

Python boolean values are represented by the singleton
objects True and False, which belong to the bool type, a
subtype of the int type. This contrasts with other object-
oriented languages such as JavaScript where primitive data
types such as number and boolean exist [20]. In the absence
of primitive values, the operations allowed on an object are
defined entirely by the methods available on its type. Such
methods governing operations are called magic methods.
Figure 1 shows the semantics of the operation (x + y).

It attempts to invoke the __add__ magic method of x’s
type. If the __add__ method is found, it is invoked with x
and y as arguments and returns the result of (x + y). If
__add__ is not found, or if it is found but returns the special
singleton object NotImplemented, addition falls back on the
__radd__ method of the type of y (the r in the name stands
for reflected). Otherwise, it raises a TypeError exception
with an explicative message (which is omitted for brevity).

The semantics of other arithmetic operations are similar,
only the names of the required methods change. For example,
the semantics of the subtraction operator is identical to that
of addition, but calls the methods __sub__ and __rsub__.

The only operators that cannot be overloaded are the “is”
operator, which compares objects by identity, and the “and”,
“or” and “not” boolean operators. All other operations are
governed by magic methods. For example, iteration in a for-
loop calls the __iter__ method, which returns an iterator.
The syntactical form obj.attr for attribute access calls the
__getattribute__ method. The same applies for function
invocation, truthiness, type casting and so on.

py_add(x, y): # semantics of x + y

if type(x) has a method __add__:

result = type(x).__add__(x, y)

if result is the object NotImplemented:

return py_radd(y, x)

else:

return result

else:

return py_radd(y, x)

py_radd(y, x): # reflected addition

if type(y) has a method __radd__:

result = type(y).__radd__(y, x)

if result is the object NotImplemented:

raise TypeError

else:

return result

else:

raise TypeError

Figure 1. Pseudocode for the semantics of the + operator

2.2 Method Resolution Order
The Python language supports multiple inheritance.
Inheritance expands the features of a type by enabling
it to access its parents’ magic methods. When recovering a
method on a type, such as the __add__ method in Figure 1,
Python executes an ordered search across the type and its
parents. The expression type(x).__add__ first looks for
__add__ on type(x) itself. If no such method is found, it is
looked up recursively on the parents of type(x).
To avoid inconsistencies in the context of multiple

inheritance, searching for a magic method (or any attribute)
requires an order in which to traverse the parents, called the
method resolution order (MRO). The MRO is a property of a
type computed at the creation of the type object by using the
C3 superclass linearization algorithm [23]. The MRO cannot
be altered afterward, but the types contained in the MRO
are often mutable. Their attributes may be updated, new
ones may be introduced, or existing ones may be removed.
This prevents determining a result of the lookup of each
magic method at the creation of a type.
An important exception is that attributes of all built-in

types are read-only. That is the case both in CPython and
PyPy [27], another popular implementation of the language.
Immutability of built-in types is part of Python’s semantics.

2.3 Dynamic Environments and Attributes
Python incorporates features such as dynamic typing, late
binding, and dynamic code evaluation. It also offers a deep
level of introspection that allows altering the behavior of a
program in ways that a compiler can hardly predict through
static analysis [17].
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Python supports modular programming through module
objects. No syntactical distinction is made between a code
file intended to be run directly and one intended to be
imported. When a file is executed, an object of type module
is created. All global assignments executed in its code
are stored as attributes of the module. Conversely, any
modifications applied to a module’s attributes is reflected
on its global environment. Other Python programs can then
import this module to access and also update its attributes.

Python also allows the global scopes of its modules to be
reified by invoking the globals() built-in function. This
function returns a dictionary (a hash table) that allows
the global environment to be read and written. Since the
returned dictionary is a Python object, any program can keep
a reference to it and update it. The prospect of dynamically
loaded code updating the environment at any point of the
execution always remains. This makes static analysis of
global variables impracticable.

2.4 Dynamic Type Checks
In Figure 1, we showed that two objects can be added if
the left-hand operand’s type has a __add__ method that
does not return NotImplemented for the given right-hand
operand. This process requires two forms of type checks1:
(1) looking up whether the left-hand operand’s type has an
__add__ method and (2) checking if the type of the right-
hand operand is suitable for the operation. No explicit type
check is required on the left-hand operand since the method
__add__ was recovered on its type. This ensures that the
magic method receives a first argument of a suitable type.
However, magic methods are not private and can be

called with unexpected arguments. Figure 2 shows the
result of directly calling int.__sub__ and float.__rsub__
with various arguments. The first call returns the expected
result of the operation (43 − 1). The second call shows that
int.__sub__ does not know how to handle an argument
of type float. Subtraction between an int and a float is
handled by float.__rsub__ (third call). The last call shows
that if the first argument of int.__sub__ is not an int then
a TypeError is raised. We conclude that the int.__sub__
method contains a type check of its first argument. When
computing the result of the “−” operator, this check is
redundant since the left-hand operand is already known to
be an instance of int. We observed similar behaviors for
other built-in magic methods.

2.5 Sources of Overhead
The features presented in this section explain the poor
performance of a naive implementation of Python. An
operation as simple as subtracting an integer and a floating
point number requires two method searches in the MRO

1We employ type check in a broad sense to refer to any operation that
requires a test on the type of an object, including magic method dispatches.

>>> int.__sub__(43, 1)

42

>>> int.__sub__(43, 1.0)

NotImplemented

>>> float.__rsub__(1.0, 43)

42.0

>>> int.__sub__(43.0, 1.0)

TypeError: descriptor ' __sub__ ' requires a
' int ' object but received a ' float '

Figure 2. Results of direct calls to magic methods in CPython

of int and float respectively. Both methods are called due
to the first returning NotImplemented. In both cases, the
magic methods apply a redundant type check on their first
argument.
In particular, implementing number arithmetic with

method calls introduces a major overhead on operations
that could otherwise be computed with a single assembly
instruction as C would do. In the case of CPython, function
and method calls are the primary source of overhead [34].
Furthermore, in the context of arithmetic operations,

magic methods are required to extract the values from int
and float objects and generate a new object to store the
result. This procedure, known as boxing and unboxing, leads
to additional overhead [14].

3 Executable Semantics for Python
Wenow present an executable semantics aimed at developing
optimizing Python compilers. Our goal is for such a
formalization to (1) automate the implementation of a
Python compiler, (2) be easily reusable by existing Python
compilers and (3) yield performant implementations.
Writing the numerous magic methods of Python’s built-

in types by hand is tedious and error-prone. We ought to
automate this process to accelerate development, including
that of existing compilers, independently of the language
and tools chosen for its implementation. We achieve this by
writing the semantics in the syntax of Python. Hence, it is
possible to interface with the semantics by using the parsing
infrastructure of an existing compiler.
Our strategy is similar to that of RPython, which

implements a subset of Python with limited dynamic
features [1]. It differs in that we instead use a superset of
Python to highlight parts of the semantics causing overhead
such as boxing and unboxing of primitive values, type
checking, and method calls. In this section, we introduce
this superset of Python and use it to write an executable
semantics. We will show how this semantics can be read
by a compiler to implement optimized versions of various
operators in sections 5 and 6.
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3.1 The Compiler Intrinsics Statement
To express the semantics of operators, we extend Python
with the compiler intrinsics statement. Its syntax is the same
as that of an import statement, except that the module name
must be __compiler_intrinsics__ followed by a sequence
of names. The imported names correspond to low-level
primitives that we call intrinsics (we detail all intrisincs
in Appendix A). Intrinsics imported with the compiler
intrinsics statement are static, they cannot be shadowed
by another assignment or assigned to a variable. Since the
compiler intrinsics statement reuses the syntax of Python’s
import, its implementation requires no change to the parser.
The compiler intrinsics statement has been sufficient

to implement all arithmetic operators, unary operators,
comparison operators, truthiness, length, type casts,
attribute access and assignment, subscript access and
assignment, and context managers [15]. These operators
are magic-method-dependent, which the compiler intrinsics
statement is well suited to implement. We have yet to extend
our executable semantics to describe control flow, scoping
rules and other features that do not rely on magic methods.
In sections 3.2 and 3.3, we provide two examples of

operators for which an executable semantics can be
written with the compiler intrinsics statement: addition
and truthiness. These examples effectively illustrate why
seemingly simple operations incur a significant overhead.

3.2 Example: Semantics of Addition
In Figure 3, we translate the addition semantics from
Figure 1. We import three intrinsics: (1) define_semantics,
which indicates that a decorated function is not a Python
function, but rather the definition of an operator’s semantics,
(2) class_getattr, which implements the MRO lookup of a
magic method, and (3) absent, a sentinel value returned by
class_getattr if no corresponding magic method is found.
The addition semantics in Figure 3 defines the nested

function normal (line 6) and reflected (line 17). Since those
are in the scope of a define_semantics, the compiler can
avoid the allocation of function objects and define low-level
procedures instead. It is also possible to apply lambda-lifting
to prevent the creation of closures capturing ‘x’ and ‘y’. All
arithmetic operators can be defined in similar fashion.

When a function is decorated with define_semantics, we
refer to it as a semantics or the semantics of a given operator.

3.3 Example: Semantics of Truthiness
An object’s truthiness is computed when it is used as the
condition of an if statement or while statement, or if
converted to a boolean using bool(x). Objects considered
to be falsy include False, None, zeros of numeric types and
empty sequences (e.g., an empty list or string).

The operation of truthiness is especially convoluted since
it falls back on recovering the length of objects whose type

1 from __compiler_intrinsics__ \

2 import class_getattr , define_semantics , absent

3

4 @define_semantics

5 def add(x, y):

6 def normal():

7 magic_method = class_getattr(x, "__add__")

8 if magic_method is absent:

9 return reflected()

10 else:

11 result = magic_method(x, y)

12 if result is NotImplemented:

13 return reflected()

14 else:

15 return result

16

17 def reflected():

18 magic_method = class_getattr(y, "__radd__")

19 if magic_method is absent:

20 raise TypeError

21 else:

22 result = magic_method(y, x)

23 if result is NotImplemented:

24 raise TypeError

25 else:

26 return result

27

28 return normal()

Figure 3. Semantics of the + operator written with the
compiler intrinsics statement

does not have a __bool__ magic method. Computing the
length of an object has its own semantics, which must assert
that the resulting length is a small integer.2 In Figure 4, we
implement the truthiness operation. It attempts to call the
__bool__ method, but may fall back on the maybe_length
operation. The latter computes the length of an object, but
returns absent if the object’s type does not have a __len__
method (in which case the object is always truthy).
The maybe_length semantics must assert that the

computed length is a small integer. This operation is
implemented by the index semantics in Figure 5. To abstract
the notion of small integers, we introduce two intrinsic
types: sint and bint, which respectively stand for small
and big integer. Those are abstract subtypes of int that
differentiate between small and big integers using the
isinstance built-in function (fig. 5, lines 12 and 14) while
leaving room for implementation-dependent details. The
result of the index semantics is returned and compared to
zero. The object is truthy only if its length is non-zero.

2Small is implementation-dependent, but typically means an integer that
fits in a machine word.
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1 @define_semantics

2 def truth(obj):

3 magic_method = class_getattr(obj, "__bool__")

4 if magic_method is not absent:

5 result = magic_method(obj)

6 if type(result) is bool:

7 return result

8 else:

9 raise TypeError

10 else:

11 len_result = maybe_length(obj)

12 if len_result is not absent:

13 return len_result != 0

14 else:

15 return True

16

17 @define_semantics

18 def maybe_length(obj):

19 magic_method = class_getattr(obj, "__len__")

20 if magic_method is absent:

21 return absent

22 else:

23 len_result = magic_method(obj)

24 index_result = index(len_result)

25 if index_result < 0:

26 raise ValueError

27 else:

28 return index_result

Figure 4. Semantics of computing the truthiness of an object

1 from __compiler_intrinsics__ \

2 import class_getattr , define_semantics , absent, \

3 sint, bint

4

5 @define_semantics

6 def index(obj):

7 magic_method = class_getattr(obj, "__index__")

8 if magic_method is absent:

9 raise TypeError

10 else:

11 result = magic_method(obj)

12 if isinstance(result, sint):

13 return result

14 elif isinstance(result, bint):

15 raise OverflowError

16 else:

17 raise TypeError

Figure 5. Semantics of casting an object to an index-sized
integer

3.4 Magic Methods
We cannot fully describe Python’s semantics without
describing the magic methods of its built-in types. For
instance, the add semantics from Figure 3 fails to predict the
specific result of the expression (41 + 1.0). In this section,
we introduce intrinsics to describe magic methods.

Applying an operation requires boxing and unboxing
objects’ values. An unboxed value is not a Python object.
Its exact format depends on the host language used by a
compiler, we thus call it a host value. To write magic methods,
we need to express how host values are manipulated.
Therefore, we introduce a family of intrinsic functions that
are named X_to_host and X_from_host.

The intrinsic function X_to_host takes a single argument
of type X and returns the host value of that argument.
For example, the expression int_to_host(42) returns the
numerical representation of 42 in the host language. If the
argument is not an instance of X, then the behavior of the
function is undefined.
The intrinsic function X_from_host is the inverse of

X_to_host. It takes a host value as argument and returns an
object of type X that encapsulates this value. While X could
be any built-in type, we limit ourselves to numerical types
such as int and float for now.
We also introduce the builtin intrinsic, which is similar

to the define_semantics decorator. It is used as a class
decorator and indicates that a given class definition is the
definition of the corresponding built-in type.

In Figure 6, we use these new intrinsics to implement the
__add__ and __floordiv__ (floor division) magic methods
of int. Notice the redundant type check of both methods
on lines 7 and 18 (yet, they are necessary when calling a
magic method directly). In the case of __floordiv__, we also
check that there is no division by zero on line 20. These
magic methods introduce arithmetic operations in the host
languages. In the expressions on lines 10, 20 and 22, the left-
hand and right-hand sides are all host values. However, the
usage of int_to_host can be detected statically, allowing
to generate code for host integers addition. Throughout
the remainder of this paper, examples will frequently show
overloading of operators to execute arithmetic in the host
language.
Magic methods defining the behavior of arithmetic

operators are numerous, but they can be generated
from templates to automate writing down the executable
semantics [15].
For non-numerical types, it is straightforward to extend

our pool of intrinsics to manipulate other types of host
values. For example, we introduce the str_len_to_host
intrinsic function, which takes a Python string as argument
and returns a host integer representing its length. In Figure 7,
we use it to implement the __len__ method of str (string
type).
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1 from __compiler_intrinsics__ \

2 import builtin, int_from_host , int_to_host

3

4 @builtin

5 class int:

6 def __add__(self, other):

7 if isinstance(self, int):

8 if isinstance(other, int):

9 return int_from_host(

10 int_to_host(self) +

11 int_to_host(other))

12 else:

13 return NotImplemented

14 else:

15 raise TypeError

16

17 def __floordiv__(self, other):

18 if isinstance(self, int):

19 if isinstance(other, int):

20 if int_to_host(other) != int_to_host(0):

21 return int_from_host(

22 int_to_host(self) //

23 int_to_host(other))

24 else:

25 raise ZeroDivisionError

26 else:

27 return NotImplemented

28 else:

29 raise TypeError

Figure 6. The __add__ and __floordiv__ methods of int

1 from __compiler_intrinsics__ \

2 import builtin, int_from_host , str_len_to_host

3

4 @builtin

5 class str:

6 def __len__(self):

7 if isinstance(self, str):

8 return int_from_host(str_len_to_host(self))

9 else:

10 raise TypeError

Figure 7. The __len__ magic method of str

3.5 Redundant Operations in the Semantics
Now that we defined somemagicmethods for int and strwe
can analyze the extent of the semantics’s overhead. Consider
what happens if we recover the truthiness value of a string.
The truth semantics looks up for the __bool__ method
(fig. 4, line 3). Since this method cannot be found on str,
the __len__ method is looked up (fig. 4, line 19). So is the

__index__ method later on (fig. 5, line 7). Both the __len__
and __index__ methods are invoked.

Once we know that the object is a string, multiple checks
are superfluous. For example, the __len__method checks the
type of its argument (fig. 7, line 7). Furthermore, the length
of a string will always be a positive small integer. Thus the
whole invocation of the index semantics is unneeded, as well
as the assertion that the length is positive (fig. 4, line 25).
A naive implementation of the truth semantics would

execute these redundant operations. Yet, once we know that
the object is a string, only recovering the length of the string
(fig. 7, line 8) and checking whether it is non-zero (fig. 4,
line 13) is relevant. The required computation boils down to
int_from_host(str_len_to_host(obj)) != 0.
The same exercise with the expression (1 + 2) reveals

redundant operations despite the required computation
boiling down to int_from_host(int_to_host(1) +

int_to_host(2)). Expressing the semantics of primitive
operators using our formalism enables a compiler to
implement that sort of optimization.

4 Behaviors
A compiler can implement arithmetic operators from the
semantics defined in Section 3. Yet, by doing so in a naive
way, that is calling each magic method, the implementation
would likely offer poor performance.

We pointed out that the magic methods of built-in types
cannot be changed. Given an operator and built-in types
for its operands, we can thus predict which magic methods
will be looked up and which of these will contribute to
computing a result. This makes looking up or calling some
magic methods superfluous, for instance if a method is
known to be absent or if it can be predicted that it will
return NotImplemented. We exploit that fact to generate
optimized versions of Python operators.

We define a behavior to be a procedure that describes how
to compute the result of an operator for a given combination of
built-in types without redundant type checks or superfluous
method calls. Behaviors are written in a similar fashion to
operators’ semantics by using the define_behavior intrinsic
decorator, which behaves identically to define_semantics,
but labels functions differently.
In Figure 8, we implement the behaviors for addition

of an integer and a float (add_intX_floatY), floor division
between two integers (floordiv_intX_intY) and truthiness
of a string (truth_strX).

We use operation_ltypeX_rtypeY as naming convention
for behaviors, where operation is the short-circuited
semantics, ltype is the required type of the left-hand
operand and rtype is the required type of the right-hand
operand. We also include the types in the annotation of
the behavior (annotations are the types written after each
argument and are part of Python’s syntax) as it is more
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1 @define_behavior

2 def add_intX_floatY(x: int, y: float):

3 return float_from_host(

4 int_to_host(x) + float_to_host(y))

5

6 @define_behavior

7 def floordiv_intX_intY(x: int, y: int):

8 if int_to_host(y) != int_to_host(0):

9 return int_from_host(

10 int_to_host(x) // int_to_host(y))

11 else:

12 raise ZeroDivisionError

13

14 @define_behavior

15 def truth_strX(x: str):

16 return int_from_host(str_len_to_host(x)) != 0

Figure 8. Behaviors for addition of an integer and
a float (add_intX_floatY), integer floor division
(floordiv_intX_intY) and string truthiness (truth_strX)

convenient for a compiler to read them from the annotation
than from the behavior’s name. Unary behaviors are written
by omitting the right-hand type, for example truth_strX.
We can use partial evaluation to generate all behaviors

for arithmetic operations on numeric types by identifying
whichmethods return a result for each operator. This is made
possible by the fact that a built-in magic method returns
NotImplemented for a value of a given type if and only if it
returns NotImplemented for all instances of that type.
Within a given magic method, most if statements’

conditions are type checks that can be resolved from the
operands’ types. The only exceptions are division and
bitwise-shift, which respectively check for zero division and
negative shift. These are left to be evaluated at run time (see
Figure 8, line 8).

5 A Partial Evaluator to Generate Behaviors
This section presents semPy, a Python tool for generating
behaviors by removing redundant type checks, boxing and
unboxing, and method calls whenever possible.3
semPy is a Python partial evaluator supporting the

compiler intrinsics statement. It takes as inputs a semantics
and a context that consists of built-in types for each of the
arguments. It outputs a specialization of the semantics given
that context, which is a behavior. The behaviors presented
in Figure 8 were generated by semPy. For example, the
add_intX_floatY was generated from the add semantics
(Figure 3) in a context where the left-hand operand is an int
and the right-hand operand is a float.

The structure of operators and built-in magic methods is
sufficiently homogeneous that behaviors can be generated by
3The semPy source code is available online [16].

def __pos__(self):

if isinstance(self, int):

return int_from_host(int_to_host(self))

else:

raise TypeError

Figure 9. The __pos__ magic method of int

using only three transformations: (1) aggressive inlining of
method calls, (2) branch resolution based on type information
and (3) removal of redundant boxing and unboxing.

5.1 Inlining
When a semantics or magic method is invoked, semPy
systematically inlines the callee’s code at the call site. This
removes method calls from semantics specializations. Magic
methods are returned by invocations of the class_getattr
intrinsic function. This function is always called on the
arguments of a semantics, whose types are provided in
the type context, so it is always possible to resolve which
method is to be called, or if that method is absent.

5.2 Branch Resolution
When semPy successfully computes the truthiness of
the condition of an if statement, we can get rid of the
branch that is not executed. Since semantics are written
without using Python dynamic features, we can resolve
the value of expressions that would normally be hard
to evaluate statically. We can resolve conditions such as
isinstance(X, Y), which checks whether X is an object of
type Y. Comparisons of the form (magic_method is absent)
can always be resolved since built-in magic methods are
immutable. We can also resolve comparisons of the form
(result is NotImplemented). In this case, we usually
cannot infer the exact value of result, but we can at least
infer that it is not the object NotImplemented.
Most branches are removed by resolving the

aforementioned conditions. Some branches may still
depend on the value of an object and can only be resolved if
its origin provides sufficient information (such as lengths
being non-negative). If not, the branch must be evaluated at
run time.

5.3 Removal of Redundant Boxing and Unboxing
A naive implementation of Python’s semantics sometimes
causes unnecessary boxing and unboxing. For example, the
pos semantics, which corresponds to unary +, is equivalent
to the identity operation when applied to an integer. Yet, the
magic method __pos__ of int applies boxing and unboxing
to account for the possibility that the argument is of a strict
subtype of int in which case the result should be cast to an
int (see Figure 9). A simple example is that of the expression
+True, which must return 1.
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@define_behavior

def pos_sintX(x: sint):

return x

@define_behavior

def pos_boolX(x: bool):

return int_from_host(int_to_host(x))

Figure 10. Removal of unboxing in unary + of int by semPy

In the context of a behavior where the argument is known
to be of type int, semPy removes this type conversion.
When the cast must occur, for example in the case of unary
+ on a bool, semPy preserves it as shown in the generated
behaviors of Figure 10. This simplification occurs after
inlining and branch resolution. At this point, unnecessary
boxing manifests as chains of calls to primitives that are one
another inverses and can be removed from the behavior.

5.4 The test Behavior
We present another example of unnecessary boxing removal.
Consider the semantics of the if statement where Python
evaluates the truthiness of a value and branches accordingly.
This truthiness is determined by the truth semantics (see
Figure 4), which returns either True or False. We show
the behavior for truthiness of an integer in Figure 11.
This behavior requires the bool_from_host_bool intrinsic
function, which maps booleans in the host language to the
corresponding Python boolean objects.

@define_behavior

def truth_intX(obj: int):

return bool_from_host_bool(

int_to_host(0) != int_to_host(obj))

Figure 11. Behavior for truthiness of int

In the condition of an if, this behavior takes the host result
int_to_host(0) != int_to_host(obj) and converts it to a
Python bool that the if statement immediately needs to
convert back to a host boolean. Thus, the call to the intrinsic
bool_from_host_bool is a form of unnecessary boxing.
We solve this by introducing the test semantics (fig. 12,

line 2) and the intrinsic bool_to_host_bool, which acts as
the inverse of bool_from_host_bool. The purpose of the
test semantics is solely to express a variant of the truth
semantics where we prefer the output to be a host boolean
rather than a Python object. This semantics can be fed to
semPy to return behaviors in which the unnecessary boxing
was removed, such as the test_intX behavior (fig. 12, line 6).

This strategy is expandable to other cases where a
condition is tested but a Python bool is not required, for
example when the condition of an if statement is the result

1 @define_semantics

2 def test(obj):

3 return bool_to_host_bool(truth(obj))

4

5 @define_behavior

6 def test_intX(obj: int):

7 return int_to_host(0) != int_to_host(obj)

Figure 12. The test semantics and behavior of test for int

of a comparison. This would generally invoke one of the
comparison semantics (eq, ne, lt, le, gt or ge), then check
the truthiness of the result (Python comparison operators
can return a value other than True or False). Instead, semPy
can generate behaviors for those specific cases. To those
behaviors we assign the names test_comp_ltypeX_rtypeY
where comp is the partially evaluated comparison semantics.

Figure 13 shows the result of semPy partial evaluation of
le(x, y) (semantics of the <= operator) and its counterpart,
the test_le(x, y) comparisonwhere x and y are respectively
an int and a float.4

@define_behavior

def le_intX_floatY(x: int, y: float):

return bool_from_host_bool(

float_to_host(y) >= int_to_host(x))

@define_behavior

def test_le_intX_floatY(x: int, y: float):

return float_to_host(y) >= int_to_host(x)

Figure 13. The le and test_le behaviors for int and float.

6 Zipi: a Compiler Using Behaviors
We now detail how the tools described in this paper can
be used to implement an optimizing Python compiler.
We present Zipi, a compiler prototype that implements
arithmetic operators and magic methods using the compiler
intrinsics statement.

6.1 Zipi
The Zipi compiler [15] is an ahead-of-time (AOT) compiler
from Python to Scheme [6]. It implements arithmetic
operations using behaviors generated by semPy and extends
this strategy to other operators. Zipi compiles Python to
Scheme code, which is then compiled to an executable using
either the Bigloo [22] or Gambit [10] Scheme compilers.
4In Figure 13, the le_intX_floatY and test_le_intX_floatY behaviors use
the >= operator instead of the expected <= operator. Comparison magic
methods can also return NotImplemented, which may lead to their reflected
magic method to be called. In that case, the __le__ method of int returns
NotImplemented and the comparison resorts to the __ge__ method of float.
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# A Python program that sums a list of integers

s = 0

for x in [1, 2, 3]:

s = s + x

1 ; The main body of the code generated

2 ; by Zipi from the above program

3 (define x #f) ; #f indicates the variable

4 (define s #f) ; is not yet bound

5 (global−register! global (& "x")
6 (lambda () x)

7 (lambda (v) (set! x v)))

8 (global−register! global (& "s")
9 (lambda () s)

10 (lambda (v) (set! s v)))

11 (set! s (py−int−from−scheme 0))
12 (py−for−each
13 #:target

14 (py−make−list (py−int−from−scheme 1)
15 (py−int−from−scheme 2)
16 (py−int−from−scheme 3))
17 (begin

18 (set! x #:target)

19 (set! s

20 (py−add (or s (global−get (& "s")))
21 (or x (global−get (& "x")))))))

Figure 14. An example of Scheme code generated by Zipi

In Figure 14, we present a snippet of code generated by
Zipi from a small Python program. The compiler maps most
operations directly to a procedure or macro provided by
Zipi’s runtime system. For example, the forms py−for−each
(line 12), py−make−list (line 14) and py−add (line 20) are all
Scheme macros whose expansions implement for-loops, list
allocations and addition, respectively. Only relevant parts
of the generated code are shown and variable names have
been demangled for readability.
Zipi supports all compiler intrinsics statement. In

Figure 15, we show the Scheme version of the add semantics
from Figure 3. Note that Zipi compiles the semantics to the
py−add−fallback macro. The full semantics is used only as
a fallback when no specialized behavior exists. Behaviors
are generated and compiled once, at Zipi’s build time.
When generating behaviors for Zipi, we distinguish

between small integers (sint) and big integers (bint). This
allows semPy to generate more specialized behaviors and the
Zipi runtime system to further optimize integer arithmetic
by representing small integers with Scheme fixnums.
In Figure 16, we show the compiled add behaviors for

small integers. The fx+? operator applies small integer
addition with an overflow check. In case of overflow, the
+2 operator applies addition and returns a Scheme big

1 (define−macro (py−add−fallback x y)
2 ̀(let ((x ,x) (y ,y))

3 (py−add−fallback:normal x y)))
4

5 (define (py−add−fallback:normal x y)
6 (let ((magic_method (getattribute−from−obj−mro
7 x (&& "__add__"))))

8 (if (py−test−is magic_method py−absent)
9 (py−add−fallback:reflected x y)
10 (let ((result (py−call magic_method x y)))
11 (if (py−test−is result py−NotImplemented)
12 (py−add−fallback:reflected x y)
13 result)))))

14

15 (define (py−add−fallback:reflected x y)
16 (let ((magic_method (getattribute−from−obj−mro
17 y (&& "__radd__"))))

18 (if (py−test−is magic_method py−absent)
19 (py−raise−binary−TypeError−fallback
20 (&& "+") x y)

21 (let ((result (py−call magic_method y x)))
22 (if (py−test−is result py−NotImplemented)
23 (py−raise−binary−TypeError−fallback
24 (&& "+") x y)

25 result)))))

Figure 15. Scheme version of the add semantics

# Python add behavior for small integers

@define_behavior

def add_sintX_sintY(x: sint, y: sint):

return int_from_host(int_to_host(x) +

int_to_host(y))

; add behavior compiled by Zipi

(define−macro (py−add−sintX−sintY−inline x y)
̀(let ((x ,x) (y ,y))

(or (fx+? x y) (py−bint−to−scheme (+2 x y)))))

(define (py−add−sintX−sintY−fallback x y)
(or (fx+? x y) (py−bint−to−scheme (+2 x y))))

Figure 16. add_sintX_sintY behavior compiled to Scheme

integer. The py−bint−to−scheme procedure is the Scheme
equivalent of the int_to_host intrinsic for big integers.

6.2 Behaviors in Zipi
To dispatch an operation to a specific behavior at run time,
Zipi stores the procedures of each behavior within an array,
called a behavior array. Each operator has its own behavior
array, for example the add behavior array contains behaviors
of addition. Once the type of each operand is known, it is
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possible to recover the corresponding behavior from that
operand’s array and invoke it.
To recover behaviors from a behavior array, we assign a

unique identifier to each type. We call this identifier the class
index of a type. Since we generated separate behaviors for
small integers and big integers, those have separate class
indices despite having the same Python type. For example,
small integers may have the class index 1, big integers the
index 2, bool the index 3 and so on. We reserve the index 0
for all types that have no specialized behavior.
When an arithmetic operator is applied, we recover the

class index of the types of each operand. In the case of unary
operators, this index is the position of the corresponding
behavior in that operator’s behavior array. In the case of
binary behaviors, we apply the formula (right + N ∗ left)
where right and left are the class indices of both operands
and N is the number of existing class indices (Zipi currently
has 17). The procedure at that computed index can be safely
invoked without further type-checking.
In some cases, the procedure stored at the class index

is not a behavior, but rather the full semantics without
specialization. For example, if we add two objects whose
type is user-defined, the resulting index will be 0. The
add behavior array contains the py−add−fallback:normal
procedure (fig. 15, line 5) at that index.

A special case of the dispatch of a behavior happens when
operands are both small integers or both float objects,
which are represented by Scheme fixnum and flonum values
respectively. Since those are common arithmetic operations,
we inline the corresponding behavior for those cases. We
limit inlining to those frequent use cases to avoid code bloat.

Figure 16 shows that Zipi generates two versions of each
behavior. The inline version is a macro allowing to invoke
a behavior inline while the fallback version is a first-class
procedure, which we store in the behavior array.

In Figure 17, we show this inlining processwith the py−pos
macro, which implements the unary + operation. Whenever
the operand x is either a fixnum (line 4) or a flonum (line 5),
we execute the corresponding inline behavior. Otherwise,
we recover the class index of the object and invoke the
corresponding behavior from the add behavior array (line 7).

1 (define−macro (py−pos x)
2 ̀(let ((x ,x))

3 (cond

4 ((fixnum? x) (py−pos−sintX−inline x))
5 ((flonum? x) (py−pos−floatX−inline x))
6 (else

7 ((vector−ref py−pos−behaviors−array
8 (py−obj−class−index x))
9 x)))))

Figure 17. Dispatch of the behavior for unary +

The code for dispatching behaviors is similar in the case of
binary operators. Behaviors are inlined when both operands
are either fixnums or flonums, otherwise the behavior is
recovered from the corresponding behavior array. The same
happens for comparisons, and the truth and test semantics.

7 Performance
In this section, we discuss Zipi’s performance in comparison
to CPython and PyPy [27], the current state-of-the-art
implementation performance-wise. Performance was
measured through microbenchmarks as well as regular
benchmarks implementing well-known algorithms.

Initialization and compilation times vary across CPython,
PyPy, and Zipi. CPython compiles code ahead-of-time (AOT)
into bytecode that is then interpreted by a virtual machine.
PyPy uses a tracing just-in-time (JIT) compiler [5]. Lastly,
Zipi is AOT and has a deep pipeline that compiles Python
code to Scheme, then to C, and finally to machine code5.
As this occurs before execution, we do not consider it in
this evaluation report. We configured our benchmarks to
only measure the run time performance after initialization.
We also allow PyPy’s JIT to warm up by executing a dry
run that does not count toward execution time for each
benchmark. Benchmarks measure real time using the Python
time module, which all implementations provide.

Results were generated by Forensics, our tool for tracking
performance. Both Forensics’ source code [8] and the
benchmarks results are available online [9]. Benchmarks
were executed on a machine with an Intel Core i7-7700K, 48
GB of RAM, and under Debian 10.13 with kernel version SMP
Debian 4.19.269-1. We used CPython 3.9.0 with profile guided
optimization enabled [29]. As for PyPy, we used version
7.3.5. Each PyPy release implements more than one version
of Python, we used the newest version at the time, which
was Python 3.7. Zipi was compiled with Gambit 4.9.3-1380,
with single−host enabled, and GCC 10.3.

7.1 Microbenchmarks
We use microbenchmarks to evaluate the performance of
individual operations and determine whether a targeted
optimization, such as behaviors for arithmetic operators,
is effective. The microbenchmarks have been useful to focus
our optimization efforts on operations suffering from poor
performance. The operation being evaluated is wrapped in a
loop to reach ameasurable time on the order of one second on
CPython. To minimize the loop overhead, its body contains
several repetitions of the measured operation (typically 20).
The microbenchmarks allow a direct comparison between
Zipi and CPython on individual operations. Unfortunately,

5To provide an idea of compilation time, the deltablue program discussed
in Section 7.2 contains 440 lines of code and takes about 50 seconds to
compile. This compilation time could be improved by compiling Python
code directly to machine code.
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Figure 18. Microbenchmarks results of Zipi compared to CPython v3.9.0. A ratio higher than 1 (green) indicates an execution
faster than CPython. A ratio lower than 1 (red) indicates a slower execution.

it does not allow a comparison with PyPy, which treats the
kernel of many of our benchmarks as dead code. Neither Zipi
nor CPython do this, so every operation is actually executed.
Figure 18 shows the results of our microbenchmarks. All
microbenchmarks are described in more details in [15].
Microbenchmarks indicate that behavior optimizations

provide a significant performance boost for binary operators
on small integers (between 15× and 30× faster) and floats
(between 3.0× and 7.2×), truthiness of bools (between 8.7×
and 14×), ints (20x) and strs (between 4.2× and 6.7×), and
comparison between ints (18×) and floats (7.2×).
Performance improvements from other optimizations

unrelated to behaviors also show up in the microbenchmarks.
For instance, assignment to global variables, function calls
and iteration on built-in types are all faster than with
CPython. On the other hand, some microbenchmarks
display poor performance. Those are unoptimized features
that we implemented in a naive way, such as function calls
with keyword arguments.

7.2 Benchmarks
We compared Zipi to CPython and PyPy using custom
benchmarks and benchmarks from PyPerformance, an
authoritative suite of benchmarks for Python [26]. Zipi
being at an early development stage, only four benchmarks
from PyPerformance are supported at the moment, hence
the need for custom benchmarks.
Our custom benchmarks include ack, fib, queens, bague

and sieve. The code for all custom benchmarks is available
in [15]. Benchmarks from PyPerformance include deltablue,
fannkuch, richards and float and are available online [30].
Each benchmark is executed once using parameters that
result in a run time on the order of one second on CPython.
Figure 19 compares the execution time of Zipi and PyPy
using the CPython execution time as a baseline.

Zipi fares especially well on programs that extensively use
small integer arithmetic: ack (38× faster than CPython), fib
(24×) and queens (14×) execute faster than with PyPy. The
bague (3.9×) and sieve (1.2×) benchmarks are slightly faster
than CPython with Zipi. These benchmarks use small integer
arithmetic, but also list and attribute access. The behavior
optimization has a noticeable but limited effect in those cases.
Finally, fannkuch (0.8×), richards (0.7×), deltablue (0.5×)
and float (0.3×) execute slower than with CPython. These
benchmarks make extensive use of user-defined types, which
we did not optimize, our focus being on built-in types.

Overall, Zipi’s performance on benchmarks making
intensive use of small integer arithmetic rival with PyPy.
Yet, this speedup does not translate to benchmarks that
make a limited use of arithmetic. This is expected since
behaviors specifically target arithmetic. We wish to extend
the behavior optimization to other operations in the future
to further analyze its impact on performance.

7.3 Threats to Validity
The validity of our results faces the common potential issues
of assessing the performance of a prototype compiler.
Despite implementing Python’s core features, including

those identified as the main source of overhead in CPython
(see Section 2), Zipi only supports a subset of the language.
It lacks features such as threads, async functions, and most
of the standard library. It remains to measure the impact of
introducing these features in our prototype.

Our benchmarks show a clear performance increase when
executing arithmetic-heavy programs. Nonetheless, the
absence of most modules from Python’s standard library
limits our ability to measure the extent of this speed up on
real-life programs. The PyPerformance benchmark suite also
makes use of external libraries (such as django, a high-level
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Figure 19. The execution time of Zipi (green) and PyPy3.7 v7.3.5 (yellow) is compared to that of CPython v3.9.0. A ratio higher
than 1 indicates an execution faster than CPython. A ratio lower than 1 indicates a slower execution.

web framework written in Python) [25], which prevents
executing some of its benchmarks with Zipi.

8 Related Work
We attribute the first instance of compiler generation from a
formal semantics to Mosses [18], who developed a compiler
generator based on denotational semantics. However, the
generated compilers were inefficient. Mosses later outlined
the pragmatic issues of denotational semantics for compiler
generation. First, extension to a language’s semantics
often requires to completely reformulate the denotational
semantics. Furthermore, denotational semantics fail to
convey how a program must be executed, hindering the
generation of performant compilers [19].

Executable semantics have been implemented for various
languages, including C [7], Java [4], JavaScript [2], LLVM
IR [33], Lua [24], PHP [11], POSIX shell [13], Python [21],
and R [3]. Nowadays, these typically employ frameworks
such as K [4, 7, 11], Redex [24], or a proof assistant such as
Coq to extract an executable semantics [2, 3, 13, 33]. This
generally results in significantly slower implementations
than modern, hand-optimized compilers.
Politz et al. [21] proposed an alternative strategy for

defining a Python executable semantics. It involves
translating code into a lambda calculus equipped with
key features such as method lookup. While not focused on
performance, the technique demonstrates how the semantics
can be described by desugaring code into key features.
Our approach was inspired by the RPython experiment,

which allows to express high-level details about a language’s
semantics while remaining easy to analyze statically [1].

9 Conclusion
We presented an approach to define an executable semantics
for Python operators allowing reuse in optimizing compilers.
We expressed this semantics using a syntax similar to that
of Python for seamless integration to an existing compiler.
Our approach enhances Python with primitive functions to
describe operations at a lower level. This allows us to define
the notion of behavior, a specialization of an operator for a
given combination of built-in types. In particular, we showed
how behaviors remove redundant type checks, magicmethod
calls, boxing and unboxing.

We implemented semPy, a tool for partial evaluation of the
semantics, to generate behaviors automatically. The overall
structure of Python’s operators and magic methods allows to
generate behaviors using straightforward function inlining
and branch resolution.

We integrated these behaviors to Zipi, an AOT optimizing
Python compiler prototype. Zipi dispatches operations to
their corresponding behaviors at run time. This increases
execution speed, offering performance that rivals PyPy.
Although this speedup is limited to arithmetic-heavy
programs, behaviors could be extended to other operations
or serve alongside other optimization techniques.
We hope semPy and the behavior optimization can

contribute to the ongoing optimization efforts of Python
implementations. It appears to us that they would be well
suited for CPython, as they specifically address the known
overhead of this implementation.
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1. Built-in names such as int and isinstance have their
standard binding;

2. The built-in functions globals(), locals(), vars()
and super() are never called;

3. No global variable is used except to refer to other
semantics

This precludes the use of problematic Python features,
which in turn allows the compiler to apply optimizations
such as inlining built-in function calls. Preventing the usage
of global variables allows the compiler to skip the creation
of a module altogether as it removes the need for a dynamic
global environment. The behavior of define_semantics is
undefined if not used as a function decorator.

class_getattr

The class_getattr intrinsic function takes a Python object
and a string literal as arguments. It traverses the MRO
of the object’s type to recover the attribute specified by
the string literal. If the attribute is found, it is returned.
Otherwise, the value absent is returned to indicate that
the attribute was not found. Figure 20 shows a pseudocode
implementation of class_getattr. In most cases, the result
of a call to class_getattr is a magic method. However, due
to Python’s dynamic nature, any object could be returned in
which case calling the returned value may raise an exception.
The behavior of class_getattr is undefined if it is called
with anything but the aforementioned arguments.

class_getattr(obj, name):

for each class in the mro of type(obj):

if class has an attribute name:

return class.name

return absent # instrinsic value ' absent '

Figure 20. Pseudocode for the class_getattr intrinsic

absent

The absent intrinsic is a primitive value similar to the
JavaScript undefined [20]. It has an identity and can be
compared with the is operator. It is not a Python object and
so any other operation on it is undefined.

sint

An abstract subtype of int representing small integers. It is
not a proper Python type, but allows to differentiate between
small and big integers using the isinstance built-in function,
while leaving room for implementation-dependent details
regarding the exact threshold between small and big integers.
For instance, isinstance(x, sint) returns True if x has
type int and is a small integer, and returns False otherwise.
Usage of sint in another context than as second argument
of isinstance is undefined.

bint

Similar to sint, but for big integers.

builtin

The builtin intrinsic is used as a class decorator. It indicates
that a class definition is the definition of the corresponding
built-in type. Similarly to the define_semantics decorator,
it declares that the class body does not use Python’s most
dynamic features: built-in names have their standard binding,
no calls to globals(), locals(), vars() and super() occur
and no global variable is used.

define_behavior

The define_behavior intrinsic is used as a function
decorator. It indicates that a function is the definition
of a behavior. Similarly to the define_semantics decorator,
it declares that the function does not use Python most
dynamic features.

X_from_host

A family of primitive functions where X can be any built-
in type, although we limit ourselves to int and float in
the scope of this paper. The primitive X_from_host takes
the host representation of an object of type X and returns
the corresponding Python object of type X. This applies the
operation of boxing a native value in a Python object.

X_to_host

The primitive X_to_host takes a Python object of type X and
returns the corresponding native representation of the object.
This applies the operation of unboxing a native value from a
Python object.
There exists one case where X_to_host does not behave

as the inverse of X_from_host. The bool type is a subtype of
int and the boolean values, True and False, are respectively
equal to 1 and 0. Thus, int_from_host(int_to_host(True))
must in fact return 1. This is why the bool_from_host_bool
and bool_to_host_bool primitive functions are required.

bool_from_host_bool

A primitive function that maps booleans in the host language
to the corresponding Python boolean. It does not allocate a
new object, since Python booleans are singleton objects.

bool_to_host_bool

A primitive function that maps Python booleans to the host
language representation of booleans. This function is the
inverse of the bool_from_host_bool intrinsic.

str_len_to_host

A primitive function that returns the length of a Python
string as an integer in the host language.
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