CPar: A Parallel Language for Divide and Conquer
Parallelism

Eric Methot, Marc Feeley, Bernard Gendron
Centre de recherche sur les transports
Dpt. d’informatique et de recherche oprationnelle

Université de Montréal
Montréal, QC, Canada

Abstract Although recent advances in computer
languages have made parallel programming an easi-
er task, their use has been limited to coarse grained
parallelism largely due to the overhead incurred by
exposing parallelism. CPar is a language tailored to
take advantage of a divide and conquer style of par-
allelism and provides an effective way to implement
it on a shared memory multiprocessors. The objec-
tives of CPar are twofold: limit processor commu-
nication and reduce the overhead of exposing par-
allelism. To achieve these goals, CPar implements
“Lazy Remote Procedure Calls” and “Task Steal-
ing” in an innovative way. Our tests have shown
that even for fine grained applications, CPar can
attain a total overhead of less than 5% on a 64
processor Sun Enterprise 10000 and 5% on a four
processor Intel machine when compared to equiv-
alent sequential programs. The present paper dis-
cusses the implementation of the CPar systems and
also compares it to the Cilk system.

Keywords:parallel, language, cpar

1 Introduction

Many languages designed to express control
parallelism do a fine job at facilitating the task
of programming certain styles of parallel algo-
rithms. In particular, extensions to C such as
Cilk [4] are well suited to express parallel algo-
rithms in a divide an conquer fashion. Cilk pro-
grams have relatively low overheads and pro-
vide automatic load balancing.

In this paper we present CPar, also an exten-

sion to C that exploits this type of parallelism.
Using an innovative implementation of “Lazy
Remote Procedure Calls” and “Task Stealing”
CPar achieves low total overhead. Although
lacking the synchronization constructs and de-
bugging tools found in Cilk, CPar does offer a
substantial improvement in performance at a
fine granularity.

We start by outlining the run-time and pro-
gramming models of CPar programs and go on
to describe two important aspects of the CPar
system: “Lazy Remote Procedure Calls” and
“Task Stealing”. The following section discuss-
es code transformations. Through experiments
we study the run-time behavior of CPar pro-
grams. We measure the overhead of exposing
parallelism as well as communication overhead.
We also compare our system to Cilk. Our pri-
mary concern is speed. Our tests show that
from a raw performance perspective, CPar’s to-
tal overhead is up to two orders of magnitude
smaller than Cilk’s.

2 The Run-Time Model

A description of the run-time behavior of CP-
ar programs helps put into perspective the dif-
ferent techniques used to obtain a low run-
time overhead. At start-up, a fixed number
of worker OS threads are launched and each of
them implements the following strategy: when
a thread has no work to do or is waiting for an-
other task to end, it finds an unexecuted task
and starts executing it. All threads start with-

out any work to do except the main thread
which executes the main function. During the
execution of a task, a worker might encounter
a “fork” construct. At this point, a task is cre-
ated and made available to the other workers
thus enabling the parallel execution of the pro-
gram.

3 The Programming Model

CPar is an extension to C and requires only
a single keyword to express parallelism. The
keyword par extends the syntax of a function
call in the following manner:
function(argl,...,argN) par {...};

The par keyword is a fork construct for which
the semantics are to execute the function call
concurrently with the instructions in the com-
pound statement. The result of this parallel
call is the result of the function call itself. Task
synchronization is implicit and takes place at
the end of the compound statement. Although
slightly less expressive than the explicit syn-
chronization mechanism found in the Cilk sys-
tem it does require considerably less effort to
manage because it does not employ locks on
the critical path.

4 Lazy Remote Proc. Calls

As the run-time model suggests, a new thread
is not created every time a fork construct is
encountered in the execution flow. Instead, we
use a data structure that we make available to
all worker threads to enable parallelism. A lazy
remote procedure calls (LRPC) as described by
Feeley [3] is simply a way to tell the system
that the creation of a new task which performs
a function call has been requested without ac-
tually creating an independent thread of exe-
cution for it. In CPar, the creation of a LRPC
is done in three steps: the allocation, initial-
ization and the publication of a data structure
called a task descriptor.

The task descriptor must contain sufficient
information to reconstruct the original func-
tion call. The publication of this descriptor

allows other workers to see it and execute it on
behalf of its creator. Descriptors are allocated
on the run-time stack and their publication is
done by pushing a pointer to their descriptor
onto a distributed deque of LRPC.

When the underlying architecture use reg-
isters to pass arguments to a function, LRPC
arguments will need to be copied when the cal-
1 is made. The is a portable technique but it
requires one or two extra memory references
per function argument. When arguments to a
function are passed using the run-time stack
we can use the context of the function call as
our task descriptor. With this approach, we
only need to add an extra space for the result
in case the task is stolen. Another field is al-
so needed for the address of a proxy function.
We note that using this optimization may not
always be beneficial.

5 Task Stealing

Task stealing is the technique used by CPar
to provide automatic load balancing. When-
ever a worker thread is idle, its starts looking
for work in the deques of other worker thread-
s. A worker also looks for work while wait-
ing at a synchronization point. Task stealing
requires a distributed task deque and accom-
panying access control protocol to guarantee
mutually exclusive access to individual task de-
scriptors. Because task stealing is expensive it
is wise to limit its frequency at which it oc-
curs. The access control protocol is relatively
straightforward. We will refer the reader to
Feeley [2] for the details and proof of correct-
ness.

The frequency at which stealing occurs can
be reduced by transferring large chunks of work
at each task steal. For this reason, CPar work-
ers steal tasks from the bottom of the task d-
eque. When using a divide and conquer ap-
proach, older tasks will typically contain more
work than newer ones [2, 5]. One interesting
aspect of task stealing is that it requires little
extra code in the heavily executed areas of the
parallel program. The process of stealing takes

place in the same function that handles work-
er synchronization. Since synchronization only
occurs when a worker is actually waiting for
another to complete a stolen task, task steal-
ing should not account for much of the total
overhead.

6 Code Generation

The CPar compiler targets the C dialect under-
stood by the GNU C Compiler. To allow the
GNU C compiler to do a good job optimizing
the source code, it is important to minimize the
extent of code transformations. Thus, CPar
only transforms the source code locally where
parallel constructs are found. We note that leaf
calls carry no overhead as their execution flow
never reaches the parallel code segments.

Efficient access to the local deque of task de-
scriptors is important for overall performance.
We use a data structure aligned on a 4K byte
boundary that contains the head pointer and
the entries of the deque in an array. The d-
eque tail pointer is kept in a machine register.
With a simple mask operation we can recover a
pointer to the 4K byte area and thus to out da-
ta structure. On the SPARC processor where
there are more registers available, a second ma-
chine register is dedicated for this purpose.

For the Intel processor, a total of 11 extra in-
structions including only 4 memory references
are necessary to create, initialize and publish a
task descriptor. This is the key to the perfor-
mance obtained by CPar and discussed further
in our experimental results. Similar, although
less impressive results are found for the SPAR-
C architecture even though we cannot take ad-
vantage of the run-time stack as we do on Intel
processors. Consequently, the number of in-
structions is greater and the number of mem-
ory references depends on the number of argu-
ments to the parallel function call.

7 Experimental Results

In this section we explore the run-time be-
havior of CPar programs. We are interest-

ed in measuring the communication overhead
between processors and comparing the perfor-
mance of CPar programs to their Cilk coun-
terparts. Tests where conducted on two plat-
forms: An Intel computer with four Pentium
processors running at 150MHz and a Sun En-
terprise 10K with 64 processors running at
400MHz each. Our tests used up to 58 pro-
cessors and all measurements where done using
the average times of 10 executions.

7.1 Communication Overhead

From a parallel processing standpoint, a low
communication frequency is usually preferable.
As such we have put much effort into limiting
this overhead. In CPar, communication occurs
when a worker attempts to steal work from
another and also when they synchronize. C-
Par incorporates features that limit both type-
s of communications. One of these is to steal
work from the bottom of the deque and the
other is to check for task completion before
calling the synchronization procedure. We mea-
sured the normalized communication overhead
as follow: B, = %”S_Tl where n = 58. Table
1 shows the communication overhead obtained
on a set of test programs. The overhead is typ-
ically under 5%. Considering the high degree
of parallelism found in these programs, we find
the level of communication to be relatively low.

7.2 A Comparison to Cilk

To verify the competitiveness of our implemen-
tation we proceeded to compare CPar to ver-
sion 5.2 of the Cilk system. The results of this
benchmark can be found in Table 1.

Curiously, some of our parallel programs are
faster than their sequential equivalents. This
unusual circumstance is probably caused by
cache effects and/or better instructions order-
ing. Thus, they are not representative of a nor-
mal overhead measurement. The Cilk equiva-
lent program on the other hand all have an
important total overhead when the granularity
of the task is fine.

CPar outperforms Cilk in speed for these

(P | o] 6] o] E]]
fib 257.7 | 345.2 | 6.1 || 34.0% | 3.4%
sum 116.5 | 165.8 | 2.46 || 42.3% | -19.8%
queens || 221.6 | 265.1 | 4.74 || 19.6% | 4.4%
knap 556.8 | 558.0 | 10.0 || 0.0% | 4.0%
scan 111.3 | 125.2 | 2.5 || 12.5% | 2.3%
mmul || 795.6 | 787.8 | 13.5 || -1.0% | -0.5%
poly 94.6 | 107.2 | 2.06 || 13.3% | 13.0%

Table 1: Overheads on the Sun E-10K.

programs. We note however that as the gran-
ularity of the tasks grows, the differences in
performance between CPar and Cilk tends to
diminish.

8 Conclusion

We have introduced the CPar language de-
signed for parallel programming in a divide and
conquer style. Although the techniques used
by CPar are not entirely new, their implemen-
tation as a source to source transformation as
well as their integration and evaluation in a
high quality C compiler are. We have seen that
few instructions are necessary at each parallel
call site for implementing parallelism and auto-
matic load balancing which results in low total
overhead. Our preliminary tests show that C-
Par has good potential and compares favorably
to the Cilk system from a performance perspec-
tive when executing fine grained programs.
Simple and elegant, CPar offers the pro-
grammer the ability to express parallel algo-
rithms without worrying about the run-time
overhead associated by exposing parallelism.
Yet CPar is still in an early stage and should
include in the near future some interesting fea-
tures found in the Cilk system such as synchro-
nization constructs and debugging tools.

References

[1] Gendron B. and Chabini I. Parallel Perfor-
mance Measures Revisited. In High Per-
formance Computing Symposium’95, pages
381-392, Montreal, Canada, jul 1995.

|crarProg. | .| | m| L | &r)|
fib(34) 1.88 | 1.88 | 047 || 0.0% | 4.0
sum(4e6) 1.48 | 1.16 0.30 -21% 4.9
queens(13) || 2.76 | 2.84 | 0.71 || 2.9% | 3.9
knap(34) 163 | 1.66 | 042 | 1.8% | 3.9
scan(4e6) 2.70 | 2.82 0.76 4.4% 3.6
mmul(384) 1.56 | 1.60 0.41 2.6% 3.8
poly(8e3) 2.89 | 2.78 0.70 -3.8% 4.1
Cilk Prog. T, | Ty Ty | 2
fib(34) 1.88 | 8.27 2.12 331% | 0.88
sum(4e6) 140 | 4.24 | 1.11 | 203% | 1.26
queens(13) 2.76 | 5.94 1.52 || 115% | 1.82
knap(34) 1.63 | 2.61 | 0.703 || 60% | 2.33
scan(4e6) 2.70 | 9.17 2.42 || 240% | 1.12
mmul(384) 1.56 | 2.09 0.56 34% | 2.78
poly(8e3) 2.89 | 2.90 | 0.772 0.1% | 3.74

—

—

[

L

Table 2: CPar vs Cilk on Intel machine.

Marc Feeley. An Efficient and General
Implementation of Futures on Large Scale
Shared-Memory Multiprocessors. Techni-
cal Report IRO-869, Dept. d’Informatique
et de Recherche Opérationnelle, Université
de Montréal, 1993.

Marc Feeley. Lazy Remote Procedure Calls
and its Implementation in a Parallel Vari-
ant of C. In Queinnec C. Ito T., Hal-
stead R., editor, Parallel Symbolic Lan-
guages and Systems 95, Sprigner-Verlag
Lecture Notes in Computer Science 1068,
pp. 321, 1995.

Matteo Frigo, Charles E. Leiserson, and
Keith H. Randall. The Implementation
of the Cilk-5 Multithreaded Language. In
Proc. of the 1998 ACM SIGPLAN Sym-
posium on Programming Language Design
and Implementation, jun 1998. MIT.

Francis L’Ecuyer. Conception et réalisation
d’une variante parallele de C basée sur
la création paresseuse de taches. Mas-
ter’s thesis, Dept. d’Informatique et de
Recherche Opérationnelle, Université de
Montréal, dec 1997.

