
CPar: A Parallel Language for Divide and ConquerParallelismEri
 Methot, Mar
 Feeley, Bernard GendronCentre de re
her
he sur les transportsDpt. d'informatique et de re
her
he oprationnelleUniversit�e de Montr�ealMontr�eal, QC, CanadaAbstra
t Although re
ent advan
es in 
omputerlanguages have made parallel programming an easi-er task, their use has been limited to 
oarse grainedparallelism largely due to the overhead in
urred byexposing parallelism. CPar is a language tailored totake advantage of a divide and 
onquer style of par-allelism and provides an e�e
tive way to implementit on a shared memory multipro
essors. The obje
-tives of CPar are twofold: limit pro
essor 
ommu-ni
ation and redu
e the overhead of exposing par-allelism. To a
hieve these goals, CPar implements\Lazy Remote Pro
edure Calls" and \Task Steal-ing" in an innovative way. Our tests have shownthat even for �ne grained appli
ations, CPar 
anattain a total overhead of less than 45% on a 64pro
essor Sun Enterprise 10000 and 5% on a fourpro
essor Intel ma
hine when 
ompared to equiv-alent sequential programs. The present paper dis-
usses the implementation of the CPar systems andalso 
ompares it to the Cilk system.Keywords:parallel, language, 
par1 Introdu
tionMany languages designed to express 
ontrolparallelism do a �ne job at fa
ilitating the taskof programming 
ertain styles of parallel algo-rithms. In parti
ular, extensions to C su
h asCilk [4℄ are well suited to express parallel algo-rithms in a divide an 
onquer fashion. Cilk pro-grams have relatively low overheads and pro-vide automati
 load balan
ing.In this paper we present CPar, also an exten-

sion to C that exploits this type of parallelism.Using an innovative implementation of \LazyRemote Pro
edure Calls" and \Task Stealing"CPar a
hieves low total overhead. Althoughla
king the syn
hronization 
onstru
ts and de-bugging tools found in Cilk, CPar does o�er asubstantial improvement in performan
e at a�ne granularity.We start by outlining the run-time and pro-gramming models of CPar programs and go onto des
ribe two important aspe
ts of the CParsystem: \Lazy Remote Pro
edure Calls" and\Task Stealing". The following se
tion dis
uss-es 
ode transformations. Through experimentswe study the run-time behavior of CPar pro-grams. We measure the overhead of exposingparallelism as well as 
ommuni
ation overhead.We also 
ompare our system to Cilk. Our pri-mary 
on
ern is speed. Our tests show thatfrom a raw performan
e perspe
tive, CPar's to-tal overhead is up to two orders of magnitudesmaller than Cilk's.2 The Run-Time ModelA des
ription of the run-time behavior of CP-ar programs helps put into perspe
tive the dif-ferent te
hniques used to obtain a low run-time overhead. At start-up, a �xed numberof worker OS threads are laun
hed and ea
h ofthem implements the following strategy: whena thread has no work to do or is waiting for an-other task to end, it �nds an unexe
uted taskand starts exe
uting it. All threads start with-



out any work to do ex
ept the main threadwhi
h exe
utes the main fun
tion. During theexe
ution of a task, a worker might en
ountera \fork" 
onstru
t. At this point, a task is 
re-ated and made available to the other workersthus enabling the parallel exe
ution of the pro-gram.3 The Programming ModelCPar is an extension to C and requires onlya single keyword to express parallelism. Thekeyword par extends the syntax of a fun
tion
all in the following manner:fun
tion(arg1,...,argN) par f...g;The par keyword is a fork 
onstru
t for whi
hthe semanti
s are to exe
ute the fun
tion 
all
on
urrently with the instru
tions in the 
om-pound statement. The result of this parallel
all is the result of the fun
tion 
all itself. Tasksyn
hronization is impli
it and takes pla
e atthe end of the 
ompound statement. Althoughslightly less expressive than the expli
it syn-
hronization me
hanism found in the Cilk sys-tem it does require 
onsiderably less e�ort tomanage be
ause it does not employ lo
ks onthe 
riti
al path.4 Lazy Remote Pro
. CallsAs the run-time model suggests, a new threadis not 
reated every time a fork 
onstru
t isen
ountered in the exe
ution 
ow. Instead, weuse a data stru
ture that we make available toall worker threads to enable parallelism. A lazyremote pro
edure 
alls (LRPC) as des
ribed byFeeley [3℄ is simply a way to tell the systemthat the 
reation of a new task whi
h performsa fun
tion 
all has been requested without a
-tually 
reating an independent thread of exe-
ution for it. In CPar, the 
reation of a LRPCis done in three steps: the allo
ation, initial-ization and the publi
ation of a data stru
ture
alled a task des
riptor.The task des
riptor must 
ontain suÆ
ientinformation to re
onstru
t the original fun
-tion 
all. The publi
ation of this des
riptor

allows other workers to see it and exe
ute it onbehalf of its 
reator. Des
riptors are allo
atedon the run-time sta
k and their publi
ation isdone by pushing a pointer to their des
riptoronto a distributed deque of LRPC.When the underlying ar
hite
ture use reg-isters to pass arguments to a fun
tion, LRPCarguments will need to be 
opied when the 
al-l is made. The is a portable te
hnique but itrequires one or two extra memory referen
esper fun
tion argument. When arguments to afun
tion are passed using the run-time sta
kwe 
an use the 
ontext of the fun
tion 
all asour task des
riptor. With this approa
h, weonly need to add an extra spa
e for the resultin 
ase the task is stolen. Another �eld is al-so needed for the address of a proxy fun
tion.We note that using this optimization may notalways be bene�
ial.5 Task StealingTask stealing is the te
hnique used by CParto provide automati
 load balan
ing. When-ever a worker thread is idle, its starts lookingfor work in the deques of other worker thread-s. A worker also looks for work while wait-ing at a syn
hronization point. Task stealingrequires a distributed task deque and a

om-panying a

ess 
ontrol proto
ol to guaranteemutually ex
lusive a

ess to individual task de-s
riptors. Be
ause task stealing is expensive itis wise to limit its frequen
y at whi
h it o
-
urs. The a

ess 
ontrol proto
ol is relativelystraightforward. We will refer the reader toFeeley [2℄ for the details and proof of 
orre
t-ness.The frequen
y at whi
h stealing o

urs 
anbe redu
ed by transferring large 
hunks of workat ea
h task steal. For this reason, CPar work-ers steal tasks from the bottom of the task d-eque. When using a divide and 
onquer ap-proa
h, older tasks will typi
ally 
ontain morework than newer ones [2, 5℄. One interestingaspe
t of task stealing is that it requires littleextra 
ode in the heavily exe
uted areas of theparallel program. The pro
ess of stealing takes



pla
e in the same fun
tion that handles work-er syn
hronization. Sin
e syn
hronization onlyo

urs when a worker is a
tually waiting foranother to 
omplete a stolen task, task steal-ing should not a

ount for mu
h of the totaloverhead.6 Code GenerationThe CPar 
ompiler targets the C diale
t under-stood by the GNU C Compiler. To allow theGNU C 
ompiler to do a good job optimizingthe sour
e 
ode, it is important to minimize theextent of 
ode transformations. Thus, CParonly transforms the sour
e 
ode lo
ally whereparallel 
onstru
ts are found. We note that leaf
alls 
arry no overhead as their exe
ution 
ownever rea
hes the parallel 
ode segments.EÆ
ient a

ess to the lo
al deque of task de-s
riptors is important for overall performan
e.We use a data stru
ture aligned on a 4K byteboundary that 
ontains the head pointer andthe entries of the deque in an array. The d-eque tail pointer is kept in a ma
hine register.With a simple mask operation we 
an re
over apointer to the 4K byte area and thus to out da-ta stru
ture. On the SPARC pro
essor wherethere are more registers available, a se
ond ma-
hine register is dedi
ated for this purpose.For the Intel pro
essor, a total of 11 extra in-stru
tions in
luding only 4 memory referen
esare ne
essary to 
reate, initialize and publish atask des
riptor. This is the key to the perfor-man
e obtained by CPar and dis
ussed furtherin our experimental results. Similar, althoughless impressive results are found for the SPAR-C ar
hite
ture even though we 
annot take ad-vantage of the run-time sta
k as we do on Intelpro
essors. Consequently, the number of in-stru
tions is greater and the number of mem-ory referen
es depends on the number of argu-ments to the parallel fun
tion 
all.7 Experimental ResultsIn this se
tion we explore the run-time be-havior of CPar programs. We are interest-

ed in measuring the 
ommuni
ation overheadbetween pro
essors and 
omparing the perfor-man
e of CPar programs to their Cilk 
oun-terparts. Tests where 
ondu
ted on two plat-forms: An Intel 
omputer with four Pentiumpro
essors running at 150MHz and a Sun En-terprise 10K with 64 pro
essors running at400MHz ea
h. Our tests used up to 58 pro-
essors and all measurements where done usingthe average times of 10 exe
utions.7.1 Communi
ation OverheadFrom a parallel pro
essing standpoint, a low
ommuni
ation frequen
y is usually preferable.As su
h we have put mu
h e�ort into limitingthis overhead. In CPar, 
ommuni
ation o

urswhen a worker attempts to steal work fromanother and also when they syn
hronize. C-Par in
orporates features that limit both type-s of 
ommuni
ations. One of these is to stealwork from the bottom of the deque and theother is to 
he
k for task 
ompletion before
alling the syn
hronization pro
edure.We mea-sured the normalized 
ommuni
ation overheadas follow: B
 = n�Tn�T1Ts where n = 58. Table1 shows the 
ommuni
ation overhead obtainedon a set of test programs. The overhead is typ-i
ally under 5%. Considering the high degreeof parallelism found in these programs, we �ndthe level of 
ommuni
ation to be relatively low.7.2 A Comparison to CilkTo verify the 
ompetitiveness of our implemen-tation we pro
eeded to 
ompare CPar to ver-sion 5.2 of the Cilk system. The results of thisben
hmark 
an be found in Table 1.Curiously, some of our parallel programs arefaster than their sequential equivalents. Thisunusual 
ir
umstan
e is probably 
aused by
a
he e�e
ts and/or better instru
tions order-ing. Thus, they are not representative of a nor-mal overhead measurement. The Cilk equiva-lent program on the other hand all have animportant total overhead when the granularityof the task is �ne.CPar outperforms Cilk in speed for these



Prog. Ts T1 T58 T1Ts B
�b 257.7 345.2 6.1 34.0% 3.4%sum 116.5 165.8 2.46 42.3% -19.8%queens 221.6 265.1 4.74 19.6% 4.4%knap 556.8 558.0 10.0 0.0% 4.0%s
an 111.3 125.2 2.5 12.5% 2.3%mmul 795.6 787.8 13.5 -1.0% -0.5%poly 94.6 107.2 2.06 13.3% 13.0%Table 1: Overheads on the Sun E-10K.programs. We note however that as the gran-ularity of the tasks grows, the di�eren
es inperforman
e between CPar and Cilk tends todiminish.8 Con
lusionWe have introdu
ed the CPar language de-signed for parallel programming in a divide and
onquer style. Although the te
hniques usedby CPar are not entirely new, their implemen-tation as a sour
e to sour
e transformation aswell as their integration and evaluation in ahigh quality C 
ompiler are. We have seen thatfew instru
tions are ne
essary at ea
h parallel
all site for implementing parallelism and auto-mati
 load balan
ing whi
h results in low totaloverhead. Our preliminary tests show that C-Par has good potential and 
ompares favorablyto the Cilk system from a performan
e perspe
-tive when exe
uting �ne grained programs.Simple and elegant, CPar o�ers the pro-grammer the ability to express parallel algo-rithms without worrying about the run-timeoverhead asso
iated by exposing parallelism.Yet CPar is still in an early stage and shouldin
lude in the near future some interesting fea-tures found in the Cilk system su
h as syn
hro-nization 
onstru
ts and debugging tools.Referen
es[1℄ Gendron B. and Chabini I. Parallel Perfor-man
e Measures Revisited. In High Per-forman
e Computing Symposium'95, pages381{392, Montreal, Canada, jul 1995.

CPar Prog. Ts T1 T4 T1Ts T4Ts�b(34) 1.88 1.88 0.47 0.0% 4.0sum(4e6) 1.48 1.16 0.30 -21% 4.9queens(13) 2.76 2.84 0.71 2.9% 3.9knap(34) 1.63 1.66 0.42 1.8% 3.9s
an(4e6) 2.70 2.82 0.76 4.4% 3.6mmul(384) 1.56 1.60 0.41 2.6% 3.8poly(8e3) 2.89 2.78 0.70 -3.8% 4.1Cilk Prog. Ts T1 T4 T1Ts T4Ts�b(34) 1.88 8.27 2.12 331% 0.88sum(4e6) 1.40 4.24 1.11 203% 1.26queens(13) 2.76 5.94 1.52 115% 1.82knap(34) 1.63 2.61 0.703 60% 2.33s
an(4e6) 2.70 9.17 2.42 240% 1.12mmul(384) 1.56 2.09 0.56 34% 2.78poly(8e3) 2.89 2.90 0.772 0.1% 3.74Table 2: CPar vs Cilk on Intel ma
hine.[2℄ Mar
 Feeley. An EÆ
ient and GeneralImplementation of Futures on Large S
aleShared-Memory Multipro
essors. Te
hni-
al Report IRO-869, Dept. d'Informatiqueet de Re
her
he Op�erationnelle, Universit�ede Montr�eal, 1993.[3℄ Mar
 Feeley. Lazy Remote Pro
edure Callsand its Implementation in a Parallel Vari-ant of C. In Queinne
 C. Ito T., Hal-stead R., editor, Parallel Symboli
 Lan-guages and Systems 95, Sprigner-VerlagLe
ture Notes in Computer S
ien
e 1068,pp. 3{21, 1995.[4℄ Matteo Frigo, Charles E. Leiserson, andKeith H. Randall. The Implementationof the Cilk-5 Multithreaded Language. InPro
. of the 1998 ACM SIGPLAN Sym-posium on Programming Language Designand Implementation, jun 1998. MIT.[5℄ Fran
is L'E
uyer. Con
eption et r�ealisationd'une variante parall�ele de C bas�ee surla 
r�eation paresseuse de tâ
hes. Mas-ter's thesis, Dept. d'Informatique et deRe
her
he Op�erationnelle, Universit�e deMontr�eal, de
 1997.


