
A Compact and Extensible Portable Scheme VM
Léonard Oest O’Leary
Université de Montréal

Canada
leonard.oest.oleary@umontreal.ca

Marc Feeley
Université de Montréal

Canada
feeley@iro.umontreal.ca

Abstract
Virtual Machines (VM) tend to evolve over their life cycle
with features being added regularly and a growing footprint.
In a VM designed for resource constrained environments
this trend deteriorates the VM’s primary quality. We present
how extensibility is implemented in the Ribbit Scheme VM
that is both compact and portable to multiple languages. Our
approach adds annotations to the VM’s source code allowing
the compiler to generate the source code of a specialized
VM extended with user-defined primitives and with needless
ones removed. This gives the best of both worlds: an extensi-
ble VM packed with all and only the features needed by the
source code, while maintaining a small code footprint.

CCSConcepts: •Computer systems organization→Em-
bedded software.

Keywords: VirtualMachines, Compiler, Dynamic Languages,
Scheme, Compactness
ACM Reference Format:
Léonard Oest O’Leary and Marc Feeley. 2023. A Compact and Ex-
tensible Portable Scheme VM. In Proceedings of MoreVMs ’23 Work-
shop (MoreVMs ’23). ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
There are many aspects that must be considered when de-
signing and implementing a Virtual Machine (VM). Some
of the most important are the portability of the VM imple-
mentation, the memory footprint for code and data, the code
execution speed, and feature fullness. Our work targets re-
source constrained environments where the code size must
be minimized, and also VM embedding in other software.
Situations where this is relevant are:

• extending existing software with scripting support
• microcontrollers with small code memory [1]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MoreVMs ’23, March 2023, Tokyo, Japan
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

• space-limited operating system boot sectors and firmware
• mobile code where the code’s transmission time must
be minimized, such as web apps for mobile phones on
slow networks, firmware updates on IoT devices [7]
or a Mars rover needing code updates from Earth

In previous work we have designed and implemented the
Ribbit VM (RVM) for a subset of the Scheme programming
language that is portable and has a small footprint [8]. The
system supports features such as tail calls, closures, con-
tinuations and incremental compilation. In other VM work,
portability is defined as the ability to take the VM imple-
mentation written in some host language (typically a system
language like C/C++) and to compile it on multiple platforms
(machines and operating systems). The RVM’s portability is
at a higher level; it can be ported easily to other host lan-
guages and we have done so for C, Clojure, Common Lisp,
Haskell, JavaScript, Julia, Lua, ML, Python, Scala, Scheme,
Zig, and even POSIX shell. This is possible because of the
RVM’s small size: typically only 200-400 lines of code, de-
pending on the language, and some additional lines of code
for a garbage collector when the host language does not
manage memory automatically, such as C and POSIX shell.
It is typically a few days of work to port the RVM to a new
language by translating an existing implementation by hand.
Thanks to the small size and multiple existing implementa-
tions, the barrier to entry is very low for end-programmers,
making the RVM attractive to add scripting support to any
software, regardless of the language it is written in. This
also offers a more seamless integration of the VM because
there is a single memory management system (no inter-heap
reference management and the VM’s objects are represented
using the same language as the embedding software).
As with any VM development, there has been a desire to

extend Ribbit and the RVM with new features: more com-
plete support of the Scheme language (rest parameters, file
I/O, floating point, bignums, ...), addition of new primitive
procedures to improve execution speed, addition of a For-
eign Function Interface (FFI), better debugging support, etc.
Unfortunately, any extension increases the footprint of the
RVM and this slowly deteriorates the main quality of the
RVM, making it less portable and attractive.

Ribbit aims to be a lightweight implementation of Scheme
that requires little effort by an end-programmer to adapt
to specific tasks. The system can be extended at different
levels (the VM itself, the compiler, the runtime library, and
the source program) and we want this to be feasible for an

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MoreVMs ’23, March 2023, Tokyo, Japan Léonard Oest O’Leary and Marc Feeley

end-programmer without having to understand all the inner
workings of the system as well as programmers earlier in
the supply chain such as library and tooling creators.
In this paper we explain how Ribbit and the RVM have

been made extensible without jeopardizing its small foot-
print. The basic idea is to specialize the RVM to the source
program that is being compiled. In other words, parts of the
VM are removed if they are not required by the program and
new parts are added to the VM for extensions specific to the
source program. Not only does this offer the best of both
worlds (small size and feature fullness) in some situations, the
footprint is smaller than the original RVM implementation.

We start with an overview of Ribbit’s original architecture
and then explain how it was modified for extensibility.

2 Ribbit
Ribbit’s central component is the Ribbit Scheme compiler
(rsc), an Ahead Of Time (AOT) moderately optimizing com-
piler that generates code executed by the targeted RVM
implementation (in the host language selected at compile-
time). The source program and runtime library are combined
and compiled as one unit. This allows the compiler to ana-
lyze the whole code and determine the procedure definitions
that are dead and that can be eliminated from the generated
RVM code. The RVM code is then converted to a compact
string representation. The compaction algorithm takes into
account the static frequency of the operations in the pro-
gram to encode frequent operations using fewer characters,
typically one character per RVM operation. This string is
then embedded into the target RVM implementation as a
string literal. When the RVM starts executing, it will use this
string to build in the main heap a symbol table (see below)
and a more convenient representation of the code as a linked
graph of instructions.
Although Ribbit implements a subset of the Scheme lan-

guage, it is still quite powerful. Indeed the rsc AOT compiler
is itself written in this subset of Scheme so it can bootstrap
itself. Consequently both rsc and programs compiled by rsc
are portable in the sense of our high-level portability.

The runtime library notably includes the procedures read,
write, and eval which are the basis for implementing a
Read-Eval-Print-Loop (REPL) at the console. This means
that a compact Scheme interpreter can be created by com-
piling a simple Scheme program with rsc. For example, the
interpreter’s total footprint is less than 4K bytes with the
JavaScript RVM. Moreover a Scheme program compiled with
rsc can easily include a REPL functionality for run time de-
bugging and experimentation. The eval procedure is based
on the compile procedure that implements a non-optimizing
incremental compiler that converts a Scheme expression to
its RVM code wrapped in a parameterless procedure. Calling
this procedure has the effect of evaluating the expression.
The generated RVM code uses the same linked graph repre-
sentation as AOT compiled code.

For implementation simplicity Scheme’s symbol type is
represented at run time as a heap allocated structure with
a field containing the symbol’s name (a Scheme string) and
a field containing the value of the global variable with that
name (for example the + symbol has the Scheme addition
procedure in its global variable field). A symbol table must be
maintained at run time to implement the string->symbol
procedure in order to create only one symbol and global
variable with a given name. In many programs, space can be
saved by not maintaining a symbol table (which is simply
a list of symbols) and the names of the symbols. Not only
does this save heap space at run time but it reduces the size
of the generated RVM code’s compacted string represen-
tation which contains the names of the source program’s
symbols, a saving of 25%-30% for typical programs. This is de-
termined during the dead code analysis. If string->symbol
is dead there is no need for a symbol table. If in addition
symbol->string is dead then there is no need to store the
symbol’s name. Note that read depends on string->symbol
and write depends on symbol->string and the REPL de-
pends on both. This means, for example, that a program
using write but not read will avoid the symbol table but
still store the names in symbols. To improve the space sav-
ing when both string->symbol and symbol->string are
live, such as when a REPL is used, the programmer can add a
(export sym1...) declaration to the program. The compiler
will initialize the run time symbol table with the symbols in
the list and will assume those global variables are live. The
list usually contains the global variable names that might
be referred to from the REPL, for example all the Scheme
predefined procedure names in the case of the interpreter.

3 RVM
Ribbit’s VM is designed to be compact. It is a stack machine
with a classic code interpretation loop that dispatches on the
next instruction to execute. An unusual aspect of the RVM
is the simplicity of memory management: all data structures
are built solely out of fixed size cells with 3 fields, called ribs.
The run time stack, RVM code and Scheme objects are all
represented using linked ribs. A Scheme object is either an
integer or a rib whose third field is an integer indicating the
type of object (0=pair, 1=procedure, 2=symbol, 3=string, etc).
The RVM instructions closely match Scheme’s basic con-

structs: jump, call, get, set, const, and if. Procedure calls
are performed with jump (tail call) and call (non-tail call).
They can call one of 20 primitive procedures that are built
into the RVM, or closures created using a lambda-expression.
The get and set instructions are for reading and writing
local and global variables. These 4 instructions contain a
parameter that is either an integer indicating the location of
a local variable on the stack, or a symbol indicating a global
variable. Any other values required by the instruction are
passed on the stack. The const instruction pushes to the
stack the data that is in the instruction. The if instruction

A Compact and Extensible Portable Scheme VM MoreVMs ’23, March 2023, Tokyo, Japan

pops a value from the stack and follows one of two paths
depending on whether the value is false or not.

Ribbit’s functionality is mainly defined by the set of prim-
itive procedures. The 20 primitives support basic operations:
rib, rib?, field[0/1/2], field[0/1/2]-set!, eqv?, <, +,
-, *, quotient, getchar, putchar, id, arg1, arg2, and close.
These primitives were carefully chosen to allow the defini-
tion of more complex Scheme procedures in the runtime
library. For example, the primitive procedure rib constructs
a rib from the value of its 3 fields, and the primitive pro-
cedures field0, field1, and field2 extract each of those
fields from a rib. A Scheme pair is represented with a rib
whose first two fields contain the first (car) and second (cdr)
field of the pair. Consequently the Scheme procedures cons,
car, cdr, and pair? are defined in the runtime library as:
(define (cons car cdr) (rib car cdr 0)) ;; 0 = pair type
(define (car pair) (field0 pair))
(define (cdr pair) (field1 pair))
(define (pair? x) (and (rib? x) (eqv? 0 (field2 x))))

The primitive id (identity) eliminates the need for a return
instruction since a tail call to id has the same effect. The
primitive arg1 has the same effect as a pop instruction to
discard unneeded results (for Scheme’s begin sequential
execution construct). The primitive close, which captures
the stack to create a closure, is also used for implementing
the call/cc procedure which also needs to capture the stack.

4 Extensibility
To make Ribbit extensible we exploit the fact that the com-
piler takes a source program and generates the source code of
a RVM that embeds the RVM code generated for the program.
It is natural to extend this model to make deeper changes
to the source code of the RVM when new functionality is
needed by the source program. Providing low-level inter-
faces is critical to an extensible VM, as it widen’s the range
of uses and allows application-specific optimizations [6].
Adding primitives to the RVM is a natural place to start.

These primitives could be added directly to the RVM’s source
code, like would be required in typical VMs, but we also
want to allow end-programmers less knowledgeable in the
system’s inner workings to do this. We added support to rsc
for a define-primitive construct that can appear in the
source program or the runtime library. It defines a new RVM
primitive procedure with a name and a string containing the
implementation in the RVM’s source code. For example, a
square primitive could be added to the Python RVM with:
(define-primitive (square x) ;; only name matters
"lambda: push(pop()**2)") ;; code added to RVM

If rsc determines that square is live, an index will be as-
signed to that primitive, say 20, and the define-primitive
will be replaced with the creation of a primitive procedure:
(define square (rib 20 0 1)) ;; 1 = procedure type

Which assigns to square a procedure represented as a rib.
The compiler will also modify the primitive procedure dis-
patch logic of the RVM to handle index 20 by executing
the code specified in the define-primitive construct. This
serves as a simple FFI/intrinsics mechanism, with the advan-
tage that there is very little overhead for calling extensions.
Generating a specialized VM also allows removing from

the RVM source code all primitives that are determined dead
by rsc. For example the getchar primitive could be removed
when the program does not read input, the close primitive
could be removed when no closures are created, etc.

The host code in define-primitive constructs is usually
specific to one host language. We added to the cond-expand
conditional expansion construct a test so that the host can be
taken into account at compile-time. A primitive can have one
implementation for each relevant host language like this:

(cond-expand ((host py) ;; Python host
(define-primitive (square x)

"lambda: push(pop()**2)"))
((host c) ;; C host
(define-primitive (square x)

"{ int x = pop(); push(x*x); }")))

This is convenient to modularly extend domain-specific run-
time libraries with interfaces to services that exist in multiple
host languages (access to filesystems and databases, fetching
web documents, cryptographic hashing, etc).

Since the beginning of the project the RVM’s source code
for each host has been a self-standing file, including a prede-
fined hello world RVM code string. This allows most of the
development of a new RVM to be done with the usual devel-
oper tools and code editors without requiring the execution
of rsc. This is a valuable quality that we want to preserve. In
addition the RVM’s source code must be modifiable by rsc
without having to embed knowledge of the host language
in rsc which would make it harder to port to new host lan-
guages. For that reason our approach is based on annotating
the RVM source code. These annotations are parsed by rsc to
determine how the RVM’s source code needs to be modified.
To avoid including a parser for every host language in rsc,
these annotations are placed in host language comments and
have the easy to find marker @@(...)@@ and a Lispy syntax.
The @@(token indicates the start of an annotation, fol-

lowed by a name and optional parameters on the same line.
If the annotation ends on the same line with a)@@ token,
then this annotation refers to code on this line (see the ex-
ample below). If it ends later on, the annotation refers to
everything after the starting line, until and including the
line containing the matching closing bracket)@@. Note that
annotations can embed other annotations, for example, the
primitives (plural) annotation indicate the section of code
containing all the primitives. Inside it, primitive (singular)
annotations indicate the location of a specific primitive. With
the @@ token, we allow stopping the parsing of annotations

MoreVMs ’23, March 2023, Tokyo, Japan Léonard Oest O’Leary and Marc Feeley

without closing them to support languages that need to end
comments with a token, such as Pascal.

For code generation the annotations inform rsc about the
host syntax, in particular for RVM code string literals and
the primitive dispatch logic code (switch statement, array
of procedures, etc). For maximum flexibility annotations can
embed Scheme code generating host code as a string.
Multiple sections of RVM source code may be needed to

implement specific features. For example to implement the
getchar primitive the C RVM needs a #include <stdio.h>
at the top, an auxiliary C function that calls the C getchar,
and code in the primitive dispatch logic.Moreover the putchar
primitive also depends on #include <stdio.h>. For this
reason features are named and the annotations express de-
pendencies between the sections of RVM source code. Here
is the C RVM’s implementation of the putchar primitive:
#include <stdio.h> // @@(feature stdio)@@

...

switch (prim_index) {

// @@(primitives (gen "case " index ":" body)

...

case 19: // @@(primitive (putchar c) (use stdio)

putchar(tos()); break; // print top of stack

//)@@

...

//)@@

}

...

The define-primitive construct optionally indicates de-
pendencies on features. A define-feature construct is also
available for programs to define new features or override
standard ones, and it can also indicate dependencies. rsc
does the transitive closure of the feature dependencies to
include only what is needed in the RVM generated.

5 Related Work
Jupiter is a Java Virtual Machine (JVM) that aims flexibility
through software design choices [4]. New extensions can be
easily written by extending existing classes and interfaces.
However, the VM needs to be modified to do so. It doesn’t
offer dynamic primitive creation, and it is unclear if this is
even possible given the JVM context.

Benzo is a framework for low-level programming [2] at a
high-level of abstraction. It allows dynamic modifications of
components, like our annotation system. It does this through
a FFI similar to define-primitive. However, Benzo is not
a VM, it runs on a single host language, and it doesn’t have
a liveness analysis or target resource constrained systems.
Maté is a VM with a similar code size as Ribbit [7]. It

targets sensor networks and offers on-the-go network ca-
pabilities with abstractions for simplifying the writing of
asynchronous applications. In terms of extensibility, eight
instructions have been reserved for users to define. Ribbit’s
annotation system has no such limitation and through prim-
itives it could define powerful network abstractions as well.

The VM generation tools vmgen[5] and Tiger[3] can gen-
erate and specialize a C implementation of a VM with the
main goal to improve the execution speed. They analyze and
profile the VM code to extract superinstructions, specialized
instructions, and speed-related optimizations. The speed im-
provement of the VM code interpreter comes at the cost
of a larger VM. In Ribbit, we are concerned with the VM’s
size and portability across host languages. Our approach
modifies VM implementations without any knowledge of
the host language syntax through the use of annotations in
comments, making it portable and modular.
6 Conclusion
In this paper, we showcased an annotation language to al-
low specializing a portable VM to the needs of the program.
Extensions are expressed in the source program and the
code of standard features is labelled in the VM’s source code.
This allows the compiler’s dead code analysis to be applied
to the whole program including runtime library and VM’s
source code. The system’s extensibility does not compromise
the size of the final executable because it contains only the
needed parts. In future work we think it will be interesting to
explore how to allow more global properties of the VM to be
deactivated/activated, such as support for tail calls, first class
continuations, threads, etc. It will also be interesting to see
if this allows a complete implementation of RnRS Scheme to
fit in a small code memory for typical programs.
References
[1] Sean Bartell. 2021. Optimizing whole programs for code size. Thesis.

University of Illinois Urban. https://hdl.handle.net/2142/113862
[2] Camillo Bruni, Stéphane Ducasse, Igor Stasenko, and Guido Chari. 2014.

Benzo: Reflective Glue for Low-level Programming. In Proceedings of
the International Workshop on Smalltalk Technologies. Association for
Computing Machinery, New York, NY, USA. https://hal.inria.fr/hal-
01060551

[3] Kevin Casey, David Gregg, and M. Ertl. 2005. Tiger - An Interpreter
Generation Tool., Vol. 3443. 246–249. https://doi.org/10.1007/978-3-
540-31985-6_18

[4] Patrick Doyle, Carlos Cavanna, and Tarek S. Abdelrahman. 2004. The
design and implementation of a modular and extensible Java Virtual
Machine. Software: Practice and Experience 34, 3 (2004), 287–313. https:
//doi.org/10.1002/spe.565

[5] M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan. 2002.
Vmgen—a generator of efficient virtual machine interpreters. Software:
Practice and Experience 32, 3 (2002), 265–294. https://doi.org/10.1002/
spe.434

[6] Tim Harris. 1999. An Extensible Virtual Machine Architecture. In Pro-
ceedings of the OOPSLA’99 Workshop on Simplicity, Performance and
Portability in Virtual Machine Design. Association for Computing Ma-
chinery. https://www.microsoft.com/en-us/research/publication/an-
extensible-virtual-machine-architecture/

[7] Philip Levis and David Culler. 2002. Maté: a tiny virtual machine
for sensor networks. ACMSIGPLAN Notices 37, 10 (Oct 2002), 85–95.
https://doi.org/10.1145/605432.605407

[8] Samuel Yvon and Marc Feeley. 2021. A small scheme VM, compiler,
and REPL in 4k. In Proceedings of the 13th ACM SIGPLAN International
Workshop on Virtual Machines and Intermediate Languages (VMIL 2021).
Association for Computing Machinery, New York, NY, USA, 14–24.
https://doi.org/10.1145/3486606.3486783

https://hdl.handle.net/2142/113862
https://hal.inria.fr/hal-01060551
https://hal.inria.fr/hal-01060551
https://doi.org/10.1007/978-3-540-31985-6_18
https://doi.org/10.1007/978-3-540-31985-6_18
https://doi.org/10.1002/spe.565
https://doi.org/10.1002/spe.565
https://doi.org/10.1002/spe.434
https://doi.org/10.1002/spe.434
https://www.microsoft.com/en-us/research/publication/an-extensible-virtual-machine-architecture/
https://www.microsoft.com/en-us/research/publication/an-extensible-virtual-machine-architecture/
https://doi.org/10.1145/605432.605407
https://doi.org/10.1145/3486606.3486783

	Abstract
	1 Introduction
	2 Ribbit
	3 RVM
	4 Extensibility
	5 Related Work
	6 Conclusion
	References

