
Type Check Removal Using Lazy
Interprocedural Code Versioning

Baptiste Saleil
Université de Montréal

baptiste.saleil@umontreal.ca

Marc Feeley
Université de Montréal
feeley@iro.umontreal.ca

Abstract
Dynamically typed languages use runtime type checks
to ensure safety. These checks are known to be a cause
of performance issues. Several strategies are used to re-
move type checks but are expensive in a JIT compilation
context or limited in the absence of code duplication.
This paper presents an interprocedural approach based
on Basic Block Versioning that allows the removal of
many type checks without using an expensive analysis
while simplifying the compilation process by avoiding
the use of an intermediate representation. The exper-
imentations made with our Scheme implementation of
the technique show that more than 75% of type checks
are removed in generated code.

1. Introduction
Dynamic typing lets the compiler verify the type safety
at runtime through type checks directly inserted into
the generated machine code. These operations are
known to be a cause of performance issues of dynami-
cally typed languages.

A lot of work has been done to reduce the cost of
type checks. Type inference [5, 10] determines types, if
possible, at compile time to avoid checks in the gener-
ated code. Tracing JIT compilation [9] interprets code
to collect information, including types, during execution
in order to generate optimized code using this informa-
tion. Both techniques are not effective at removing type
checks on polymorphic variables with known types. For
example if an analysis shows that a variable n could
only take the types string and char, then to be con-
servative the compiler will surround primitives using n
with a type check. Another approach is to use Basic
Block Versioning [3] (BBV) in a Just In Time (JIT)
compiler to lazily specialize generated code depending
on information gathered during previous executions by
duplicating polymorphic code. In the same example as
above, two different versions of the code will be gener-
ated, one for string and one for char as required by
the actual type of n during multiple executions. In ad-
dition to this more precise context-dependent strategy,

BBV doesn’t need an expensive analysis or fixed point
algorithm to infer types.

This paper presents a JIT compilation technique
based on BBV which extends the original technique and
addresses issues encountered in its implementation in a
compiler for Scheme [13]. The first contribution is an ex-
tremely lazy compilation design which allows the com-
piler to directly translate s-expressions into stubs able
to generate machine code. This allows the compiler to
avoid the use of an intermediate representation such as
Single Static Assignment form [4] and Three Address
Code [11] and consequently save compilation time. This
is particularly adapted in our context of JIT compila-
tion in which compilation time directly impacts execu-
tion time. The other contribution is the use of multiple
specialized function entry points allowing the compiler
to propagate gathered typing information through func-
tion calls.

This paper is organized as follows. Section 3 presents
the general approach and how types are discovered
with the use of extremely lazy compilation. Section 4
explains how we extended code versioning to propagate
accumulated information interprocedurally. Section 5
explains the problem introduced by free variables and
how it is solved. Section 6 presents experimental results.
Related work and future work are presented in sections
7 and 8.

2. Basic Block Versioning
Basic Block Versioning is an approach allowing to gen-
erate several specialized versions of a basic block. Each
version is specialized according to the information avail-
able when compiling this block. The information is
gathered from the compilation of the previous basic
blocks in the execution flow therefore the technique does
not require static analysis or profiling.

Gathered information could be the type of live vari-
ables. Because it is hard to predict all types used dur-
ing execution, the compiler can’t generate all versions
ahead of time without a combinatorial explosion. JIT
compilation allows to only generate versions actually

executed. Because BBV allows keeping several versions
of the same code, the compiler can generate specialized
versions based on variable types even if the code uses
polymorphic variables.

Here is a simple example using type information to
generate specialized versions of basic blocks:
(if (number? a)

(< a 100)
...)

When compiling this code, if the compiler knows
that a is a fixnum, it generates a specialized version
of the true branch using comparison on fixnums, and
without type check for primitive <. All the subsequent
executions in which a is known to be a fixnum will use
this specialized version. If, with another execution, a is
known to be a flonum, the compiler generates a new
version using a floating point number comparison and
no type check. All the subsequent executions in which
a is a flonum will use this version.

We then have two versions of the same code spe-
cialized for particular compilation context. Each time a
version is generated, the compiler may discover new in-
formation that will possibly cause the generation of new
more specialized versions of the successor basic blocks.
Extremely lazy compilation aims to use code versioning
to simplify the compilation process.

3. Extremely Lazy Compilation
3.1 Presentation
Typical compilers use an intermediate representation
such as SSA or TAC. These representations are used to
facilitate static analysis and code generation but they
are expensive to generate. This compilation overhead is
problematic if the implementation uses a JIT compiler
because the compilation time impacts the execution
time.

Extremely lazy compilation aims to simplify the im-
plementation of code versioning by directly transform-
ing the AST into code stubs with little overhead.

The idea is to do a more fine-grained JIT compilation
by representing each not yet executed continuation of
the program as a machine code stub. Then, a compila-
tion context is associated with each expression and all
information discovered during the compilation of this
expression can directly be beneficial to the compilation
and execution of the next expression in the execution
flow.

3.2 Implementation
To implement BBV, a compiler must maintain a com-
pilation context which associates type information to
each live variable of the current basic block. Because
our implementation is based on a stack machine, where
temporary values are quickly consumed, we decided to

maintain a context containing type information of all
variables available in the current scope to avoid a more
expensive liveness analysis. This allows the compiler to
translate from s-expressions to code stubs with no prior
code analysis other than those used to properly imple-
ment the Scheme language (such as mutation analysis
and free variable analysis). However the use of a stack
machine is not a requirement for the implementation of
extremely lazy compilation.

In our implementation, we decided to keep only the
information of simple (not compound) Scheme types.
For example when creating a pair, the value is tagged
as pair and we lose the possibly known information of
its car and cdr. This allows avoiding compound type
tracking that rapidly causes combinatorial explosion of
the types and therefore an explosion in the number of
versions.

...
(let ((c (integer- >char n)))

(char=? c #\C)
...)

Figure 1. Example of a lazy code object chain

To implement extremely lazy compilation we create
separate code stubs, which we call lazy code objects, for
each piece of code and not only at a basic block level.
Each object contains exactly three things (i) a code gen-
erator which, given a typing context, is able to generate
a specialized version of the code associated to this stub
(ii) a table which contains entry points of each already
generated version, and (iii) a reference to the successor

object in the execution flow. Then these objects are or-
ganized in a similar way to Continuation Passing Style
[13] using the successor reference to trigger the compi-
lation of the continuation by giving it the newly discov-
ered type information during compilation of the current
expression. Figure 1 shows a simplified representation of
the lazy code objects chain created from the associated
Scheme code. If the compiler triggers the compilation
of the first object with a context in which we know that
n is a number and with an empty stack, the compiler
successively triggers the compilation of the next object
updating the context information at each step. We see
that after the compilation of integer->char the com-
piler knows that a character is now on top of the stack.
After binding c to the value on top of the stack, the
compiler knows that c is a character for the rest of
compilation and then compile a version of char=? in
which it knows that both operands are characters. In
this specific example, because no branching instruction
is encountered, every object belongs to the same basic
block thus all the chain is generated inline without ex-
tra jump instruction, exactly like the original approach
of BBV. Thereby this extremely lazy design allows the
compiler to keep type information of constants, or other
newly discovered type for future compilation.

It is worth mentioning that using extremely lazy
compilation, the compiler behaves like original BBV
technique which allows it to also enrich the context with
type information discovered from type checks previously
executed in the flow (A type check is represented by a
lazy code object, two successors and two distinct typing
contexts associated to the two objects).

3.3 Chain construction
Figure 2 shows a simplified code of the function gener-
ating the lazy objects chain from a given s-expression.
Similarly to CPS, the function also takes the successor
lazy code object as a second parameter. If the function
is called for the first time, an object with a generator
able to generate the final return instructions sequence
is given.

Each call to make-lazy-code-stub creates a lazy
code object with the given code generator. A lazy code
object is consumed by the function jump-to which is
always called from within a generator. This function
selects the version to jump to (the version associated to
the current context) or generates a new inlined version
if it does not exist yet. Each call to gen-chain creates
a chain of lazy code objects ready to be consumed using
the two functions make-lazy-code-stub and jump-to
and returns the lazy code object representing the entry
point of the chain.

Two cases are shown in the figure. In the first case the
s-expression is a number then the compiler creates an
object which, when triggered, generates a simple imme-

(define (gen-chain ast successor)
(cond

...
((number? ast)

(make-lazy-code-stub
(lambda (ctx) ; Generator

(x86-push ast)
(jump-to successor

(ctx-push ctx CTX_NUM)))))
...
((eq? (car ast) 'integer- >char)

(let ((lazy-conv
(make-lazy-code-stub

(lambda (ctx) ; Generator
(x86-pop rax)
(x86-to-char rax)
(x86-push rax)
(jump-to

successor
(ctx-push (ctx-pop ctx)

CTX_CHAR)))))
(lazy-check

(make-lazy-code-stub
(lambda (ctx) ; Generator

(x86-pop rax)
(x86-cmp tag_rax TAG_NUM)
(x86-jne label-error)
(x86-push rax)
(jump-to

lazy-conv
(ctx-push (ctx-pop ctx)

CTX_NUM))))))

(gen-chain
(cadr ast)
(make-lazy-code-stub

(lambda (ctx) ; Generator
(if (eq? (type-top ctx) CTX_NUM)

(jump-to lazy-conv ctx)
(jump-to lazy-check ctx)))))))

...))

Figure 2. Example of how to build a lazy code object
chain from a s-expression and a successor lazy code
object.

diate push instruction and triggers the next object with
an updated context. The second case shows an example
of using the context. If the primitive integer->char is
encountered the compiler generates a first object which,
when triggered, is only used to trigger the right object
depending on current type information, if the value is a
number no check is needed, otherwise the object com-
piling a type check is triggered.

4. Interprocedural Type Propagation
4.1 Presentation
The approach presented in previous section aims to
collect as much type information as possible during
execution and compilation of previous lazy code objects
in order to specialize the next objects in the execution

flow using this information. A limit is that this approach
does not apply interprocedurally.

In order to transmit gathered information from func-
tion caller to callee the compiler needs to specialize
functions entry points. This implies that each function
possibly has several entry points depending on the type
of actual parameters.

However commonly used closure representations such
as flat-closure and others [7] only allow to store one
entry point for the associated procedure. Because the
arguments are possibly polymorphic in Scheme, and
only one entry point is allowed, the compiler loses type
information to use a generic entry point.

4.2 Implementation
Our solution to keep collected information is to extend
the traditional flat closure representation by adding a
reference to an external table which contains all entry
points of the procedure, each one specialized according
to the known types of parameters. This external table
is associated to a procedure and therefore shared by
every instance of this procedure. The initial entry point
now represents the generic entry point without any
assumptions on the type of parameters. This table is
created at compile time, thus possibly in a dedicated
memory area, and will live for the rest of the execution.

The problem with this external table is that with the
higher-order functions of Scheme, the compiler doesn’t
necessarily know the identity of the callee function when
compiling a call site, and is not able to determine
the offset to use to get the right entry point from
the table. Our solution to this problem is to keep a
global layout shared by all the external tables which
allows the compiler to associate a fixed offset to a
specific context. Thereby the compiler is able to use
this offset to retrieve the callee entry point regardless
of the procedure identity.

When a procedure is first compiled, the compiler
creates the external table and fills it with the function
stub address. When compiling a call site, the compiler
retrieves the offset associated to the calling context.
If this context was never used before, a new offset is
reserved to it. The generated code then gets the entry
point (which is either the stub address or the address
of a generated version) and jump to it. Note that the
compiler adds the context as an additional argument
to allow the stub to generate a version for this specific
context. Whenever the stub is triggered, it generates the
version and patches the external table entry which now
contains the address of the newly generated version.

Figure 3 shows an example of a memory state after
execution. At the top is the global layout in which we
can see that each procedure call used one of the 5 con-
texts, regardless of the procedure called. Then we see
that two procedures were compiled. The external table

Figure 3. Extension of flat closure representation

of the first procedure contains two entry points which
means that two specialized versions have been gener-
ated during execution. The first is associated to ctx2
and the other to ctx3, all other slots contain proce-
dure stub address. This procedure was instantiated two
times and both instances share the same external ta-
ble. Finally, three versions of the other procedure have
been generated using a single instance. This time the
three versions are specialized for contexts ctx2, ctx4
and ctx5, and other slots contain the address of the
code stub of the associated procedure. We can see in
the figure that the offset associated to a context is ac-
tually invariant in all external tables.

4.3 External table limitation
This global layout could be a limitation if there is a com-
binatorial explosion on the types of parameters during
execution. In this case, each external table must con-
tain enough entries to store all of these contexts greatly
increasing the memory used by the tables. Although
this hypothetic explosion must be handled, our mea-
sures show that there is no such explosion in practice.
Moreover, some simple heuristics can be used to reduce
the size of the global table by removing the contexts in
which we don’t have enough information:

• If at a call site the compiler knows nothing about
the type of parameters, it can simply use the fallback
generic entry point. This eliminates all unnecessary
entries from the global table and avoids the use of
the indirection to retrieve the external table which
is useless in this case.

• If the list of effective parameters in a calling context
is long it probably means that they will be received
in a rest parameter and the type information will be
lost. In this case the compiler could use the fallback
generic entry point.

• If the compiler doesn’t know enough types on pa-
rameters, for example if there are 4 arguments and
only one is known to be an integer, it could fall back
to the generic entry point. In this precise case the
cost of the indirection to get the offset from external
table is more expensive than checking the type of an
integer (as well as other non heap allocated objects)
using tag types in callee function.

• Of course a better heuristic is probably a combina-
tion of heuristics.

A complementary aggressive solution could be to set
a maximum allowed size for global layout and stop
specializing entry points when the limit is reached.
This can be done by using the generic entry point if a
calling context, which doesn’t exist in the global layout
after reaching the limit, is used. This completely avoids
the combinatorial explosion but potentially loses useful
information. This is a technique to use as a last resort
to prevent the hypothetical explosion.

The table presented in figure 4 shows the amount of
memory (expressed in kilobytes) used by the entry point
tables, the number of lines of code and the number of
tables created for each benchmark. Because the stan-
dard library used by our implementation contains 110
functions, none of the benchmarks create less than 110
tables. The total size correspond to the perfect situation
in which the size of the external tables is exactly equal
to the minimum size required by the global layout. Our
current implementation arbitrarily sets a constant size
for the execution but there are two ways to avoid table
overflows :
• Directly allocate a large amount of memory and

stop specializing when the table is full. This can be
coupled to the heuristics presented above.

• Use simple algorithm of dynamic reallocation to re-
size the external tables coupled to a garbage collector
phase to update references.

The table shows that many benchmarks need less
than 64 kilobytes to store the external tables. Only the
benchmark compiler requires more (2.8 megabytes).
The bigger memory footprint is not really significant

Benchmark Lines of
code

Number of
tables

Total tables
size (kb)

compiler 11195 1561 2847
earley 647 187 64
conform 454 208 47
graphs 598 161 43
mazefun 202 149 37
peval 629 187 31
sboyer 778 149 23
browse 187 128 16
paraffins 172 133 14
boyer 565 134 13
nqueens 30 117 12
dderiv 74 121 8
string 24 113 5
deriv 34 112 4
destruc 45 113 4
perm9 97 117 4
triangl 54 112 4
array1 25 115 3
cpstak 24 116 3
primes 26 114 3
tak 10 111 3
ack 7 111 2
divrec 15 112 2
sum 8 112 2
cat 19 112 <1
diviter 16 112 <1
fib 8 111 <1
sumloop 22 113 <1
takl 26 113 <1
wc 38 112 <1

Figure 4. Space usage of the external tables

considering the current amount of memory available on
the devices.

4.4 Impact on calling sequence
The technique presented in this section allows the com-
piler to propagate the collected information through the
call sites using the external entry points table. This
however requires changes in calling convention.

Figures 5 shows the additions made to common call-
ing convention. This figure assumes that the called clo-
sure is in r8. The more expensive one is the indirec-
tion to retrieve the external table from the closure. In
fact this cost is the same of the one introduced by vir-
tual method table of object oriented programming us-
ing single inheritance [6]. But this indirection cost is
compensated if the information in the context avoids at
least one type check on a heap allocated object such as
string or pair in Scheme because this check requires
a memory access to retrieve the sub-tag representing

;Get external table location from closure
mov rax, [r8]
;Get entry point
mov rax, [rax+ctx_offset]
;Add context id as extra argument
mov rdi, ctx_id
;Call entry point
call rax

Figure 5. Calling sequence with interprocedural prop-
agation (Intel syntax)

the type. The other is the extra mov used to give the
context (the constant ctx id) to the callee in case the
call triggers a function stub. This time the move cost
is directly compensated by the fact that the compiler
doesn’t need to give the number of actual parameters
because the stub can retrieve this information directly
from the context.

The interprocedural type propagation presented in
this section only applies to the function entry points.
Currently, our implementation does not track the type
of returned values.

5. Free Variables
The presence of higher order functions means that in
general, the compiler doesn’t know the identity of the
called function when compiling a call site. Thus, when
compiling a call site it doesn’t have any information
on the type of the free variables so it is only able to
specialize the entry point regarding the type of param-
eters. With specialized entry points, if two instances of
the same closure but with different free variable types
are called at the same call site, the same entry point
is used, potentially resulting on an error. Lets take the
well-known functional adder as an example:
(define (make-adder n)

(lambda (x)
(+ n x)))

(let ((add10 (make-adder 10))
(add#f (make-adder #f)))

(add10 1)
(add#f 1))

In this code two adders are created. The first adds
10 to its argument. The second tries to add #f to
its argument and causes an error. When calling both
adders, the calling context is the same because in both
cases there is only one argument which is known to
be a number. It is then obvious that both instances
can’t share the same entry points table because the free
variable n is polymorphic.

The easiest solution, which doesn’t lose the gathered
type information of free variables is to specialize the ex-

ternal table of a function according to the type combina-
tions of its free variables. It is then possible to have sev-
eral external tables shared between the instances, with
same free variable types, of a function. In the example
above, because the tables are specialized according to
the type of free variables, both instances use a distinct
entry points table. This handling of free variables al-
lows to keep tracking their types, but slightly increases
the number of external tables, and the amount of mem-
ory they use. The number of tables and the total size
previously presented in figure 4 consider this approach.

Finally, if the compiled language allows variable mu-
tation, the compiler is not able to specialize external
tables regarding the type of mutable free variables be-
cause a type mutation could occurs at any time. The
type of these variables can not be tracked.

6. Results
6.1 Number of tests removed
This section presents the results obtained with our
Scheme implementation of lazy interprocedural code
versioning. Figure 6 shows the number of runtime type
checks executed with and without interprocedural prop-
agation enabled without any maximum in the number
of generated versions of the same lazy code object. The
executed checks shown in this figure are percentages
relative to an execution in which the maximum num-
ber of versions is set to 0 (i.e. only a generic version
is used thus all type checks are executed). The ex-
tremely lazy compilation coupled to code versioning al-
low the compiler to remove a lot of type checks. For
the benchmark array1, BBV removes almost all type
tests. What is more interesting is that interprocedu-
ral propagation of type information allows the compiler
to remove a lot more type checks. For the benchmarks
cpstak, string and sum, the interprocedural propaga-
tion allows to remove almost all type checks. For the
other benchmarks, the interprocedural propagation still
removes a significant number of type checks. On aver-
age, around 63.7% of type checks are removed without
interprocedural propagation and 77.2% with both BBV
and interprocedural propagation.

6.2 Limiting the number of versions
We originally expected that the number of versions
would grow faster than the original versioning for two
reasons:

• The compiler specializes the versions according to
the type information of all variables and not only
live ones.

• Entry points are also versioned. Moreover the com-
piler specializes the entry points according to the
type information of all actual parameters.

0%

20%

40%

60%

80%

100%

a
rr

a
y
1

cp
st

a
k

st
ri

n
g

su
m

a
ck

p
e
rm

9

d
iv

re
c

fi
b

su
m

lo
o
p

ta
k

d
e
st

ru
c

g
ra

p
h
s

p
a
ra

ff
in

s

m
a
ze

fu
n

p
ri

m
e
s

co
m

p
ile

r

d
iv

it
e
r

e
a
rl

e
y

ca
t

n
q
u
e
e
n
s

w
c

b
ro

w
se

co
n
fo

rm

sb
o
y
e
r

d
e
ri

v

p
e
v
a
l

tr
ia

n
g
l

d
d
e
ri

v

b
o
y
e
r

ta
kl

max=inf, interprocedural disabled max=5, interprocedural enabled max=inf, interprocedural enabled

Figure 6. Percentage of executed check relative to generic versions

Figure 6 also shows the effect of changing the maxi-
mum number of versions on the number of type checks
removed. We choose to show this result with a maxi-
mum of 5 versions to refer to the first presented BBV
and to compare it to the result without limiting the
number of versions. The benchmark browse is affected
with a change of 4.5% which is not a huge increase in
addition to being the only significantly affected bench-
mark. Moreover, our experiments showed that there is
no pathological case causing an explosion on the num-
ber of versions as we would expect. However, our im-
plementation currently doesn’t support other number
types than fixnum and because we think that a lot of
type mutations occur with number-related operations
such as integer overflow, it would be more interesting,
once implemented, to study types evolution again so the
effect of the number of maximum versions on the total
amount of removed type checks.

A behavior worth mentioning appears in figure 7.
This figure shows the percentage of removed type checks
with a maximum of 3 versions and with and without
interprocedural propagation enabled. We can see on
benchmarks browse, earley and nqueens that when
enabling interprocedural propagation more dynamic
checks are executed. This is due to the fact that, be-
cause entry points are specialized according to the type
of all actual parameters, a few versions among the lim-
ited number are wasted in the sense that a known type
used to generate a new version is possibly attached to
a variable which is not or little used in the rest of ex-
ecution. When the limit is reached, all the subsequent
versions use the fallback generic entry point whereas
they are possibly based on type information attached
to most used variables. This results in an increase of the
number of executed type checks. Even if this behavior

(define (fibcps n k)
(if (< n 2)

(k n)
(fibcps (- n 1)

(lambda (r1)
(fibcps (- n 2)

(lambda (r2)
(k (+ r1 r2))))))))

(define (fib n)
(fibcps n (lambda (r) r)))

Figure 8. CPS implementation of a function calculat-
ing the nth Fibonacci number

almost disappears starting from a limit of 4, it must
be considered as a new parameter to consider when
limiting the number of versions.

6.3 Propagation of the returned value
Our implementation does not currently propagate the
type of the return values. A mechanism close to the
one used to specialize the entry points could be used,
which would amount to using Continuation Passing
Style. Let’s use the code presented in figure 8 as an ex-
ample. This code is a CPS program computing the nth

Fibonacci number. Each return site is transformed into
a function call representing a call to the continuation.
Because the compiler is able to propagate the type in-
formation through the function calls, the collected type
information is propagated through the rest of the func-
tion. An interesting result with this example is that if
the type of n is known to be a number when calling
the fib function, and because of the CPS, absolutely
no type checks are executed. If the compiler does not
know the type of n its type is checked at the first ex-

0%

20%

40%

60%

80%

100%

a
rr

a
y
1

cp
st

a
k

st
ri

n
g

su
m

a
ck

p
e
rm

9

d
iv

re
c

fi
b

su
m

lo
o
p

d
e
st

ru
c

ta
k

p
a
ra

ff
in

s

p
ri

m
e
s

m
a
ze

fu
n

d
iv

it
e
r

ca
t

co
m

p
ile

r

w
c

g
ra

p
h
s

co
n
fo

rm

sb
o
y
e
r

d
e
ri

v

p
e
v
a
l

tr
ia

n
g
l

b
ro

w
se

d
d
e
ri

v

e
a
rl

e
y

b
o
y
e
r

ta
kl

n
q
u
e
e
n
s

max=3, interprocedural disabled max=3, interprocedural enabled

Figure 7. Percentage of executed check with limit on the number of versions set to 3

ecution of the expression (< n 2) and the information
will be propagated to the rest of the program and this
results in the execution of only one type test.

7. Related work
Several works have been done to remove dynamic type
checks. Type inference [5] uses static analysis to recover
type information from source program and allows to
remove type checks in some cases. Henglein [10] also
presented an interprocedural type inference in almost-
linear time. Type inference performs expensive static
work not necessarily suitable for a JIT compiler and is
also often limited by the absence of code duplication.

Other approaches, such as Gradual Typing first pre-
sented by Siek [12], aim to remove dynamic type checks
by explicitly writing type hints to the compiler. Ocur-
rence typing, improved by Logical Types, used in Typed
Racket [14, 15], allows to infer more types and prevents
the programmer from explicitly writing certain types.
However, by letting the user explicitly write the type
information, these approaches impact the simplicity of
the language which is one of the main advantages of
dynamically typed languages.

Other work attempts to remove type checks using
code duplication. The well-known technique of Trace
Compilation is often used in compilers to remove type
checks [9]. Trace Compilation aims to specialize specific
parts of the program according to the information gath-
ered from profiling. But this technique requires the use
of an interpreter to profile code and to record traces.
Chang et al. presented a technique using Trace Com-
pilation based on the observation of the actual types
of variables at runtime to specialize code according to
this information [2]. However this approach implies the
compilation to a statically typed intermediate repre-

sentation. In contrast with trace based techniques, Ex-
tremely Lazy Compilation aims to simplify the compi-
lation process by using only a JIT compiler without any
intermediate representation.

Finally, Bolz et al. presented a simple Scheme im-
plementation based on Meta Tracing [1]. Because this
simplicity is close to our goal to simplify the compilation
process, it could be interesting to compare performance
between both implementations.

8. Future work
First, we would like to improve the interprocedural
propagation of context by keeping the type of returned
values. As explained in section 6, CPS conversion is
a good starting point to explore the effects on the
generated code.

Another work should be to improve our implemen-
tation to better evaluate performance of the technique.
A short term goal is to implement others data types
such as flonum which we think to be responsible for
more polymorphic data. Then we should reanalyze the
space needed by external tables as well as the impact
of changing the maximum number of versions on the
number of type checks removed.

Another improvement should be to consider register
allocation in our implementation, first to explore the
integration of register allocation information into the
context and to be able to evaluate the technique by
comparing performance with state of the art Scheme
JIT compilers such as Racket [8].

Finally, a future work is to explore some heuristics,
among those presented in section 4, to use in order
to reduce the memory footprint of the external tables
without adding expensive dynamic type checks.

9. Conclusion
This paper presents the technique of extremely lazy
compilation which allows the compiler to discover the
type of variables from compilation and execution of pre-
vious code in the execution flow. According to this type
information, the compiler uses code versioning to gen-
erate specialized versions of the code to remove a lot of
type checks executed at runtime, even if a variable is
polymorphic. This paper also presents an interprocedu-
ral extension of code versioning allowing to propagate
the type information gathered from extremely lazy com-
pilation through function calls by specializing the entry
points using an external entry points table.

Our Scheme implementation shows that, in average,
more than 75% of type checks are removed but they
introduce two potential flaws. First, the external tables
impact the amount of memory used, but we showed this
amount stays low in practice. The other is an additional
cost due to the indirection used at call sites. But again,
we showed this cost is rapidly compensated.

Extremely lazy compilation and interprocedural
propagation can be improved especially by using CPS
or derived form to propagate the type of returned val-
ues using the same mechanism as the one used for entry
points. It would also be good to improve our current
implementation to be able to better evaluate perfor-
mances.

Because the techniques don’t need any intermediate
representation or expensive static analysis, they allow
to quickly implement a language with a simple JIT com-
piler with reasonable performance. Our current imple-
mentation is a good starting point to experiment on
code versioning for example with the integration of reg-
ister allocation information in compilation context.

References
[1] C. F. Bolz, T. Pape, J. Siek, and S. Tobin-Hochstadt.

Meta-tracing makes a fast Racket. In Workshop on
Dynamic Languages and Applications, 2014.

[2] M. Chang, M. Bebenita, A. Yermolovich, A. Gal, and
M. Franz. Efficient just-in-time execution of dynami-
cally typed languages via code specialization using pre-
cise runtime type inference. Technical report, Citeseer,
2007.

[3] M. Chevalier-Boisvert and M. Feeley. Simple and effec-
tive type check removal through lazy basic block ver-
sioning. In Proceedings of the 2015 European Conference
on Object-Oriented Programming (ECOOP). LIPIcs,
2015.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single as-
signment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 13(4):451–490, 1991.

[5] L. Damas and R. Milner. Principal type-schemes for
functional programs. In Proceedings of the 9th ACM
SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 207–212. ACM, 1982.

[6] K. Driesen. Efficient Polymorphic Calls, volume 596.
Springer Science & Business Media, 2001.

[7] R. K. Dybvig. Three implementation models for
Scheme. PhD thesis, University of North Carolina at
Chapel Hill, 1987.

[8] M. Flatt and PLT. Reference: Racket. Techni-
cal Report PLT-TR-2010-1, PLT Design Inc., 2010.
http://racket-lang.org/tr1/.

[9] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin,
M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky,
J. Orendorff, et al. Trace-based just-in-time type spe-
cialization for dynamic languages. In ACM Sigplan No-
tices, volume 44, pages 465–478. ACM, 2009.

[10] F. Henglein. Global tagging optimization by type in-
ference. ACM SIGPLAN Lisp Pointers, (1):205–215,
1992.

[11] M. Lam, R. Sethi, J. Ullman, and A. Aho. Compilers:
Principles, techniques, and tools, 2006.

[12] J. G. Siek and W. Taha. Gradual typing for functional
languages. In Scheme and Functional Programming
Workshop, volume 6, pages 81–92, 2006.

[13] G. J. Sussman and G. L. Steele Jr. Scheme: A inter-
preter for extended lambda calculus. Higher-Order and
Symbolic Computation, 11(4):405–439, 1998.

[14] S. Tobin-Hochstadt and M. Felleisen. The design and
implementation of Typed Scheme. ACM SIGPLAN
Notices, 43(1):395–406, 2008.

[15] S. Tobin-Hochstadt and M. Felleisen. Logical types
for untyped languages. ACM SIGPLAN Notices, 45(9):
117–128, 2010.

