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Abstract
Compact language implementations are increasingly popular
for use in resource constrained environments. For embedded
applications such as robotics and home automation, it is use-
ful to support a Read-Eval-Print-Loop (REPL) so that a basic
level of interactive development is possible directly on the
device. Due to its minimalistic design, the Scheme language
is particularly well suited for such applications and several
implementations are available with different tradeoffs. In this
paper we explain the design and implementation of Ribbit, a
compact Scheme system that supports a REPL, is extensible
and has a 4 KB executable code footprint.

CCS Concepts: •Computer systems organization→ Em-
bedded software.
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1 Introduction
The Scheme programming language is a member of the Lisp
family that is known for its short specification, its minimal-
istic design and the expressive power of the constructs it
offers. Scheme is often cited as a good choice when a lan-
guage implementation with a small footprint is needed either
as an extension language embedded in a larger software or to
stand on its own in a resource constrained microcontroller.
The use case which has motivated our work is code mo-

bility where an executable program can be embedded in a
document, email, or website. In that use case the size of the
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program must be small to minimize the transmission or load-
ing time or to satisfy space constraints, such as the size of a
disk boot sector, the URL length limit and the UDP packet
size. On the other hand, the space used while the program is
executing is of secondary importance.

Implementations of Scheme subsets typically have an exe-
cutable machine code footprint in the 20-200 KB range [13].
The main factors impacting the footprint are the size of the
builtin library and the support for interactive development
using a REPL. PICOBIT [26] is currently one of the most com-
pact Scheme system at 5-15 KB on PIC microcontrollers (de-
pending on the size of the source program and the configured
features), however it achieves this with a whole-program
compilation that removes unused parts of the builtin library
and so it does not offer a REPL. In this paper we explain the
design of Ribbit, a compact and extensible implementation
of Scheme that can be used with and without a REPL.
To make things concrete, we set a target goal of fitting a

REPL and as big of a library as possible in a 4 KB executable
footprint, less than PICOBIT, which lacks a REPL. For host
languages like JavaScript, Python and Scheme that aren’t
typically Ahead-Of-Time (AOT) compiled to an executable
form, this is the target size of the minified source code.
This objective is challenging as a Scheme system must

support non-trivial features: closures, tail calls, first-class
continuations and automatic memory management.

2 Design
In order to maximize the system’s usefulness, the design
must not be specialized to a given platform. It is desirable to
write the system’s source code using simple constructs that
are portable to multiple languages. We use the term portable
in its general sense since we are concerned about portability
across languages. Thus the source code is portable if it can
be translated manually with minimal effort (on the order of a
day or two of work) to any host language that is appropriate
for the end application (e.g. C in the case of microcontrollers
and JavaScript for web apps). Moreover the system should
be easy to modify and extend to support application specific
features such as access to hardware ports, platform specific
interfaces, and Scheme language extensions.

2.1 Overall Design
We achieve a compact executable footprint by a layering of
languages. The compilation pipeline is shown in Figure 1.
At the lowest level is a tiny VM, the Ribbit VM (RVM), a
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Figure 1. The compilation pipeline: the AOT compiler pro-
duces a compact encoding of the program and runtime li-
brary which is then embedded in the RVM source code.

stack machine adapted to Scheme and implemented in a host
language, currently one of C, JavaScript, Python, and Scheme.
The RVM’s core is roughly 150 lines of portable code.

The main parts of the REPL, including the parser, evalua-
tor and runtime library, are written in Scheme and compiled
to the RVM instruction set using a moderately optimizing
AOT Scheme compiler. The optimizations most relevant to
code size are constant propagation and dead code analysis
that remove definitions of constants and library procedures
unused by the program. To achieve this, both the main pro-
gram and the library are read by the compiler and processed
as a single unit. The compiler also creates a compact textual
representation of the generated RVM instructions which is
embedded as a string in the RVM source code and expanded
at run time during the initialization phase using a short
decompaction algorithm explained in Section 2.11. A key
benefit of this language layering is that when implementing
a given feature the compact representation of the RVM code
is more compact than when using the host language.
A programmer may use the system through the REPL

available in the runtime library or through the AOT compiler
to benefit from its optimizations. Since the REPL is part of the
runtime library, a compiled program may also make use of it
at run time. This allows the programmer to adapt and extend
the runtime library with application specific functionality.
The VM implementation need only be extended with new
primitives to access platform specific features.

Unlike several other Scheme systems offering a REPL, the
evaluator that is used by the REPL and also the runtime
library’s eval procedure, is based on a non-optimizing incre-
mental compiler that generates RVM code at run time. This
offers better execution speed than the usual implementation
of eval as an interpreter. The evaluator uses the runtime

library’s compile procedure to first compile the Scheme ex-
pression to a parameterless procedure and then calls this
procedure to cause the expression’s execution by the RVM:

(define (eval expr) ((compile expr)))

2.2 Memory Management and the RVM
When the host language does not manage memory using a
garbage collector (GC), such as C and assembler, the RVM’s
code must include one. The choice of algorithm is important
as it impacts the memory access speed, the space usage, and
the executable footprint (due to the code required for the GC
and memory accesses).
Four things need to be stored in memory: the Scheme

objects, the Scheme global variables, the RVM’s stack, and the
instruction stream executed by the RVM. To avoid arbitrary
limits, all of these are allocated in a garbage collected heap.
This allows the depth of procedure call nesting and the size
of the program’s RVM code to be essentially unlimited (the
only limit is the size of the heap). It also allows the space of
unused code to be reclaimed at a fine granularity, for example
when a procedure is redefined using the REPL the code of the
old definition can be reclaimed if it is not currently executing
or reachable from the stack or other live data structure.
A distinguising feature of the system is that all types

of memory allocated structures are built out of fixed sized
records called ribs (hence the name Ribbit). Immediate values
are not memory allocated. The RVM currently only supports
fixed precision integers (Scheme fixnums) as immediate val-
ues, but there is no fundamental reason the RVM could not
be extended to support other types. Each rib contains three
object references. The choice of using three fields for ribs
offers a good compromise for representing Scheme objects,
the stack and the instruction stream, as explained in the next
sections. For now it suffices to understand that the stack and
instruction stream use one field of the rib to explicitly chain
the ribs. For its operation, the RVM maintains two variables:
stack, which refers to the rib at the top-of-stack (TOS), and
pc, which refers to the rib containing the RVM instruction
being executed. These are the only garbage collection roots
of the RVM (aside from the constants #f and #t), so any
object not reachable from the stack or the instruction stream
following the current point of execution can be reclaimed.

When the host language is C, an object reference is imple-
mented with a machine word with the lower bit encoding the
type: 1 when the object is an integer (the other bits represent
the integer value), and 0 when the object is a rib (all the bits
are the aligned address of the rib in memory). The fact that
the memory manager only deals with a single type of mem-
ory allocated object means that a header field is not needed
thus saving space. Moreover, a Cheney-style stop-and-copy
GC [9] is used with the simplification that the scanning of
the copied objects need not detect object boundaries because
all fields of the copied objects must be updated.
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Figure 2. The representation of memory allocated Scheme
objects using ribs. (Procedures are coloured yellow to help
identify them in Figure 5)

When the host language is a dynamically typed language
with garbage collected object arrays (e.g. JavaScript and
Python), a rib is a three element host array and Scheme inte-
gers are mapped to host integers. The language’s run time
type tests can distinguish integers from ribs, for example
in JavaScript if(x instanceof Array). . . can be used, but
also the more clever and compact if(x.length). . . (when x
is a rib x.length is 3 which acts like true and when x is an
integer the result is undefined which acts like false).

2.3 Scheme Object Representation
For representing memory allocated Scheme objects, the last
field of the rib contains a type indicator and the two other
fields contain the rest of the object’s attributes (see Figure 2).
The type indicator could be any Scheme object as long as it
is unique (according to eqv?), but currently a small Scheme
integer is used for simplicity.

For pairs, the first two fields are the car and cdr.
The procedure representation contains the code and env

attributes and is explained in greater detail in Section 2.6.
For symbols the second field is the symbol’s name as a

Scheme string and the first field is used to store the value of
the Scheme global variable with that name. A separate table
of global variables is not needed because a RVM instruction
that accesses a global variable refers directly to the symbol.
During program execution the RVM does not need to man-
age a symbol table. However, a symbol table is part of the
implementation of the runtime library’s string->symbol
procedure, which itself is called by read. Consequently, a
symbol table is managed by the runtime library only if the
source program uses these library procedures or the REPL.

For Scheme strings and vectors, the second field is a Scheme
integer indicating the length, and the first field is respectively
the Scheme list of characters and elements. Note that a bi-
nary or ternary tree could have been used instead of a list,

Figure 3. The representation of the six RVM instruction
types using ribs. (Coloured red to help identify code in Fig-
ure 5)

which would give logarithmic rather than linear time in-
dexing. However the more complex indexing code would
increase the runtime library’s footprint.

The special values #f, #t, and () have the same type indi-
cators and each is allocated once in the RVM initialization
phase. This allows testing for these objects using a fast ref-
erence equality (eqv?). The first two fields are unused and
are initialized to an implementation dependent convenient
value (typically 0). For simplicity Scheme characters are not
a distinct type and are represented as integers. It would be
easy to add a distinct type at the cost of a larger runtime
library footprint.

2.4 Instruction Graph Representation
Many VMs represent the instruction stream as a sequence of
bytecodes in dedicated blocks of memory. This can compli-
cate the garbage collection of unused code and the handling
of return addresses that need to be distinguished from other
values on the stack. In the RVM, instructions are stored in
ribs with the last field referencing the rib of the next instruc-
tion (except the tail call instruction, jump, which has no next
instruction). As a result, a return address is a reference to
a rib and is handled by the GC like all other objects. The
instruction stream is really an instruction graph. This graph
representation could be used to express loops without ex-
plicit jump instructions, but currently the AOT compiler does
not take advantage of this as explained in Section 2.11.
The RVM has only six instruction types. Each one corre-

sponds to a basic construct of Scheme (except lambda which
is handled specially), and with distinct instructions for tail
and non-tail calls. As shown in Figure 3, the first field of the
rib contains a small Scheme integer opcode indicating the
instruction type (0=jump or call, 1=set, 2=get, 3=const,
4=if). For the if instruction, which pops the TOS and com-
pares it to #f, the second field is a reference to the code
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rib 0 z←pop();y←pop();x←pop();r←rib(x,y,z)
id 1 x←pop();r←x
arg1 2 y←pop();x←pop();r←x
arg2 3 y←pop();x←pop();r←y
close 4 x←pop();r←rib(x[0],stack,1)
rib? 5 x←pop();r←bool(x is a rib)
field0 6 x←pop();r←x[0]
field1 7 x←pop();r←x[1]
field2 8 x←pop();r←x[2]
field0-set! 9 y←pop();x←pop();x[0]←y;r←y
field1-set! 10 y←pop();x←pop();x[1]←y;r←y
field2-set! 11 y←pop();x←pop();x[2]←y;r←y
eqv? 12 y←pop();x←pop();r←bool(x is identical to y)
< 13 y←pop();x←pop();r←bool(x<y)
+ 14 y←pop();x←pop();r←x+y
- 15 y←pop();x←pop();r←x-y
* 16 y←pop();x←pop();r←x*y
quotient 17 y←pop();x←pop();r←x//y
getchar 18 x←getchar();r←x
putchar 19 x←pop();putchar(x);r←x

bool(x) = #t if x, otherwise #f

Figure 4. The primitive procedures defined by the RVM. The
result of the primitive is r.

jumped to when TOS≠#f and the last field is the reference
to the code jumped to when TOS=#f. For the const instruc-
tion the second field is a reference to the object to push to
the stack. For the jump, call, set, and get instructions the
second field is the instruction’s operand, which can be either
a Scheme nonnegative integer or Scheme symbol. An integer
indicates a stack slot relative to the top (i.e. 0 is the TOS) and
a symbol indicates the global variable with that name.

2.5 Primitive Procedures
The data operations of the RVM are implemented using prim-
itive procedures. Figure 4 gives the operations performed by
the 20 available primitives. The Scheme object correspond-
ing to a primitive is simply a rib whose first field (code) is a
Scheme integer in the range 0 to 19, the second field (env) is
unused, and the third field is 1, the type indicator for proce-
dures. The RVM only initializes the rib global variable and
it is up to the runtime library to create the Scheme objects
corresponding to the other primitives it needs using calls to
rib, for example the id primitive can be defined with:
(define id (rib 1 0 1)) ;; identity procedure

When a primitive is called through a call instruction
it pops a certain number of arguments from the stack and
pushes to the stack the operation’s result. The number of
arguments is fixed for a given primitive and the RVM does
not check that there are enough arguments on the stack.
The same operations are executed when a primitive is

called through a jump instruction, but before the result is
pushed to the stack the RVM’s stack and pc variables are

updated according to the continuation in the current stack
frame which contains the state of those variables when the
call was executed (the details are given in Section 2.7). The
jump instruction naturally corresponds to a tail call and all
procedure activations end with a jump. A procedure which
ends with a result that isn’t a tail call in the source code can
return the value by pushing it to the stack and then executing
a jump to the id primitive.

2.6 Closures
Closures are distinguished from primitive procedures by
having a code field that refers to a rib. That rib’s first field
is a Scheme integer indicating the number of arguments
expected by the procedure, and the third field is a reference
to the rib that is the RVM instruction at the procedure entry
point.

The env field of closures allows access to its free variables
(disregarding global variables which are accessed through
the corresponding symbol). When a procedure is defined
in the global scope it has no free variables so the env field
is not relevant. The AOT compiler handles this by creating
a constant procedure with the empty list in the env field.
For procedures defined in nested scopes, the AOT compiler
uses the close primitive to construct the closure. The only
argument is a constant procedure template whose code field
will be copied to the code field of the allocated closure. The
close primitive also saves the RVM’s stack variable in the
closure’s env field. When the procedure is called, the env
field will be used to access the variables accessible at the
point where the closure was created. This is possible because
a reference to the current procedure is put on the stack as
part of the call protocol, as is explained in the next section.

2.7 The Call Protocol
A call to a non-primitive procedure does several things.
First it allocates a continuation rib to be filled-in later. Then
it pops from the stack as many values as the number of pa-
rameters expected by the procedure and accumulates the
values in a list whose tail is the continuation rib. Conse-
quently the list contains the values in the reverse order they
were on the stack, which itself is the reverse of the order in
the source code. The continuation rib is then initialized as
follows: the RVM’s stack variable is stored in the first field,
a reference to the called procedure is put in the second field,
and the next field of the call instruction is put in the third
field. Finally the constructed list is assigned to the RVM’s
stack variable and the entry point rib of the procedure is
assigned to the RVM’s pc variable.
Now that control has been transferred to the called pro-

cedure all the information required to access local and free
variables, and also to return control to the caller, is available
through the RVM’s stack variable. When a jump instruc-
tion is executed, the continuation rib is found by looping
through the stack until a rib with a non-zero third field is
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Figure 5. The state of the RVM during the execution of a call to the factorial procedure. The state shown corresponds to just
before the recursive call (f (- x 1)) is executed when x is 8, which is after two recursive calls to f. The ribs coloured green
are the stack frames. In dark green are the continuation ribs.

found. A local variable is accessed by using a get instruction
whose integer index indicates a slot before the continuation
rib. A free variable is also accessed by using a get instruc-
tion, but with an integer index that indicates a slot past the
continuation rib. This works because the chaining of the
stack ribs is in the second field, and in the second field of
the continuation rib is a reference to the current procedure,
and the second field of the procedure object is the env field
containing a reference to the stack when the closure was
created. The AOT compiler can determine the slot index by
taking into account that each transition to a parent lexical
scope requires adding 2 to the index (for the continuation
rib and the current procedure closure that must be skipped).
A jump to a non-primitive procedure works in a similar

way. The only difference is that the continuation rib’s first
and third fields are copied from the continuation rib of the
current activation.

To help explain the call protocol we show in Figure 5
the state of the RVM during the execution of the recursive
factorial procedure. The state shown is after having started
two recursive calls and just before calling f in the third
recursive call (f (- x 1)). The RVM’s stack variable refers
to the current stack frame which ends with a continuation
rib that is linked to the caller’s stack frame and return address
(ret). In this example the factorial procedure is defined in
the global scope, so the closure’s env field is the empty list.
If the closure had free variables it would refer to a rib in the
stack frame that was current when the closure was created.

This example also shows other interesting features. Both
stack slots and global variables store their values in the first
field of a rib. This simplifies the implementation of the get
and set instructions. The operand of those instructions al-
ways designates a rib (either a stack slot or a symbol) and
then the first field is either read or written to. The facto-
rial procedure returns the value 1 by pushing it to the stack
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with a const instruction and then executes a jump to the
id primitive. Moreover, note that the symbol storing the id
primitive has an empty name (thus saving space). This is
possible thanks to an AOT compiler extension that allows
renaming symbols (to an empty name in the case of the id
symbol) and indicating which ones must be put in the run-
time system’s symbol table so that the programmer can use
them at the REPL.

2.8 Variadic Procedures
The Scheme language supports creating variadic procedures
that receive the rightmost arguments in the form of a list,
the rest parameter. Some common standard procedures such
as +, append, and map, are often called with exactly two
arguments in practice but can take a different number of
arguments when necessary.

Variadic procedures could be implemented in the RVM by
passing the argument count on the stack and constructing
the rest parameter on entry to the procedure. They could
also be implemented without changing the RVM by adopting
a calling convention that passes parameters using a Scheme
list. Both of these approaches would negatively impact the
system’s footprint so variadic procedures are not currently
supported by Ribbit.

2.9 Closure Space Safety
A consequence of saving the RVM’s stack variable in the
closure is that closures are not safe-for-space [21, 24] be-
cause they hold on to more data than strictly needed; not
only lexical variables but all the call history. The AOT and
incremental compilers could be modified to use a flat-closure
representation that copies into the closure only its free vari-
ables. However this would add complexity to the RVM and/or
adversely affect the RVM code compactness. The Scheme
language specification does not require closures to be safe-
for-space, so Ribbit currently avoids flat-closures in order to
minimize the system’s footprint.

2.10 First-Class Continuations
The implementation of first-class continuations can be done
entirely in the runtime library as shown in Figure 6. The key
idea is to obtain a reference to the stack through the close
primitive and then to read and write the continuation rib.

When the call/cc procedure is called it is passed a single
parameter, the receiver procedure. That procedure will be
called with a single parameter k, a closure that represents
the continuation of call/cc. The program will call k with
a single parameter, the value that must be returned to the
continuation of call/cc.
So both call/cc and k are procedures that take a single

parameter.When executed at the very beginning of those pro-
cedure’s bodies the expression (field1 (field1 (close
#f)))will create a closure containing a reference to the stack
which is extracted by a call to field1 and then a second call

(define (call/cc receiver)
;; first get call/cc's continuation rib "c"
(let ((c (field1 (field1 (close #f)))))

(receiver
(lambda (r)

;; get current continuation rib "c2"
(let ((c2 (field1 (field1 (close #f)))))

(field0-set! c2 (field0 c)) ;; set "stack" field
(field2-set! c2 (field2 c)) ;; set "pc" field
r))))) ;; return to continuation of call/cc

Figure 6. The definition of call/cc in the runtime library.

to field1 will skip one rib (containing the sole parameter)
to get a reference to the continuation rib.

What needs to be done when k is called is to copy the con-
tent of the continuation rib of the call/cc activation (c) to
the continuation rib of the current activation (c2). That way
when k returns it will return to the continuation of call/cc.
Note that the continuation rib c2 was freshly created when
k was called, whether with a jump or call, so it cannot be
part of a previously captured continuation.

2.11 Compact Encoding of Instruction Graph
For portability reasons, in particular to support non AOT
compiled host languages (e.g. JavaScript and Python), the
RVM instruction graph generated by the Ribbit AOT com-
piler is embedded in the RVM source code in the form of a
string. This string will be decoded during the initialization
of the RVM to reconstruct the rib representation of the in-
struction graph. It is important for the decoding algorithm
to be relatively short to not negatively impact the RVM’s
footprint.
Characters that must be escaped are not ideal to use in

the embedded string because they need one extra byte to
encode them compared to other characters and the source
code size matters for non AOT compiled host languages. For
this reason we restrict the characters to ASCII and avoid
using \ and ", and also the space character that might cause
problems with some editors. This leaves 92 usable characters
to encode the RVM instruction graph. Each character of the
string is a code with 92 possible values.
The encoded instruction graph starts with the names of

all the symbols and global variables used by the instruc-
tion graph separated by commas, in other words the pro-
gram’s symbol table. This allows referring to a symbol by
its index in the symbol table. Some of the names may be
blank if these symbols aren’t meant to be accessible through
string->symbol, read and the REPL.
The jump, call, set, and get instructions have one ope-

rand that can be a symbol, indicating the global variable of
that name, or a nonnegative integer index of a stack slot.

To simplify the decoder a const instruction in the encoded
instruction graph has a constant object that is a symbol, a
nonnegative integer or closure (with empty env field). This
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closure
jump call set get const const if

code range 0..22 23..55 56..58 59..71 72..85 86..90 91
s 20 30 0 10 11 4 -

Figure 7. The range of codes used in the encoding of the
RVM instruction graph. The number of short encodings is s.

allows the encoding to be like the jump, call, set, and get
instructions when the operand is not a closure. Consequently,
the AOT compiler must avoid generating const instructions
with other types of constant objects. Instead the constant
object is put in a fresh global variable at the start of the
execution and a get instruction is used to access the constant
(this is done with an appropriate computation, for example
(- 0 1) to create the constant -1).

The encoding must contain the information on the type
of operand and also a nonnegative integer 𝑖 indicating the
symbol’s index in the symbol table or the slot’s index on the
stack. To avoid an arbitrary limit on the values of 𝑖 that can be
encoded, a variable length encoding is used. If 𝑖 is less than 46
(half of 92) a single code containing 𝑖 is used. For larger values
of 𝑖 multiple codes are used. If 𝑘 codes are used to encode 𝑖
the first 𝑘−1 codes contain a value between 46 and 91 and the
𝑘th code contains a value between 0 and 45. By computing
each of these codes modulo 46, the 𝑘 codes can be interpreted
as a base-46 integer that encodes 𝑖 . For example 𝑘 = 2 codes
can encode 𝑖 up to 2115 and 𝑘 = 3 codes can encode 𝑖 up
to 97335. The AOT compiler optimizes the compactness by
sorting the symbol table to give small indexes to the symbols
and global variables that are frequently referred to by the
instruction graph. Slot indexes are naturally biased towards
small values of 𝑖 .
To achieve a high compactness each RVM instruction

needs to be encoded by a small number of codes, ideally
just one code for the most frequently occuring instructions.
Each instruction type is allotted a certain range of values
out of the 92 possible code values as shown in Figure 7. The
ranges were determined experimentally to give a compact
encoding for the REPL with runtime library.
Each range covers 𝑟 code values and the first 𝑠 = 𝑟 − 3

values are for short encodings. For 𝑖 < 𝑠 a short encoding gives
in a single code the value of index 𝑖 , which is a symbol index
when the instruction is a jump or call, a slot index when
the instruction is a set or get, and a literal integer when the
instruction is a const. Of the remaining 3 code values one
indicates that the index 𝑖 is encoded in a variable length base-
46 integer. The remaining 2 code values are for encoding an
index 𝑖 which is a slot index when the instruction is a jump
or call, and a symbol index when the instruction is a set,
get or const. The first code contributes a 0 or 1 as the first
digit in a variable length base-46 integer.

For const instructions where the operand is a closure, the
index 𝑖 represents the number of arguments it expects. There

are 4 short encodings for the frequent case of 0..3 arguments,
otherwise a variable length encoding is used to encode 𝑖 .

A single code value is needed to encode the if instruction.
The RVM supports instruction graphs that contain shar-

ing and cycles. However a decoding algorithm that supports
general graphs would be complex and adversely affect the
footprint. For this reason the AOT compiler always creates
an instruction graph that is a tree (no sharing and no cycles).
To simplify the reconstruction of the rib representation of
the instruction graph the string representation contains the
encoded instructions in reverse order. As each instruction is
decoded they are added to the front of the accumulated list of
ribs. Consequently a jump instruction marks the beginning
of a (reversed) branch of the tree, the if instruction marks
the joining of 2 branches, and the closure const instruction
marks the end of a branch of the tree. In other words, the
decoded instructions contain enough information to recon-
struct the tree without other structural markers. When a
jump instruction is decoded the current instruction graph is
pushed to a stack and a new instruction graph containing
just the jump instruction is started. When an if or closure
const instruction is decoded, the stack is popped to get the
operand to put in the instruction.

The symbol table decoding and instruction graph decoding
take roughly 25 lines of code each in the JavaScript version.

2.12 Runtime Library
The runtime library that is combined with the source pro-
gram is a command-line argument of the AOT compiler. For
convenience, two runtime libraries that are mostly subsets
of the R4RS Scheme [1] standard procedures are supplied
with the Ribbit system: min and max. The min runtime library
has only basic procedures, but includes eval, read, write,
call/cc, and enough to run all our benchmarks and a REPL.
The max runtime library has all the features of the min run-
time library and covers most of the other R4RS procedures.
Both libraries restrict numbers to small integers and do not
support a distinct character type or file system operations.
The eval (and REPL) of the max runtime library supports
more special forms including define, set!, lambda, if, and,
or, cond, let, and quote, which are the same supported by
the AOT compiler. A detailed list of features supported by
these libraries is shown in Figure 8.

The AOT compiler supports an (export symbol. . .) form
that allows the programmer to specify the set of symbols to
be included in the run time symbol table, and consequently
accessible through string->symbol, read, and the REPL.
This affects the AOT compiler’s procedure dependency graph
analysis that determines the set of procedures that are part
of the compiled program.
The “Ribbit REPL” is a program compiled by the AOT

compiler with the min or max runtime library and containing
nothing but a call to the repl procedure and an appropriate
export form for all the procedures defined by that library.
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The min library supports these predefined procedures (in
bold are the special forms supported by eval):
*, +, -, <, =, cadddr, caddr, cadr, call/cc, car, cddr, cdr, cons,
define, display, eof-object?, equal?, eqv?, eval, if, lambda,
length, list->string, list->vector, list-ref, make-string,
make-vector, newline, not, null?, pair?, peek-char, procedure?,
quote, quotient, read, read-char, repl, set!, set-car!, set-cdr!,
string->list, string->symbol, string-length, string-ref,
string-set!, string?, symbol->string, symbol?, vector->list,
vector-length, vector-ref, vector-set!, vector?, write

The max library adds support for:
<=, >, >=, abs, and, append, assoc, assq, assv, begin, boolean?,
ca...r, cd...r, ceiling, cond, denominator, eq?, even?, expt, floor,
for-each, gcd, integer?, lcm, let, map, max, member, memq, memv, min,
modulo, negative?, number->string, numerator, odd?, or, positive?,
remainder, reverse, round, string->number, string-append,
string-copy, string-fill!, string<=?, string<?, string=?,
string>=?, string>?, substring, truncate, vector-fill!, zero?

Figure 8. The features supported by the runtime libraries.

3 Evaluation
3.1 Footprint
The footprint of the system is the sum of the RVM’s footprint
and the length of the source program instruction graph’s
string representation produced by the AOT compiler. This
later part is independent of the host language, and only
depends on the source program and the runtime library.
For the Ribbit REPL the string representation of the in-

struction graph is 2068 and 4241 bytes, roughly 2 KB and
4 KB, respectively for the min and max runtime libraries. A
detailed breakdown of this footprint is given in Figure 9.
These numbers suggest the rule of thumb that each line of
code (LOC) contributes 7 bytes to the total footprint.
The footprint when the RVM implementation is taken

into account for the C, JavaScript, Python and Scheme host
languages is given in Figure 10. The first column of the table
is the footprint for an empty program (giving the “bare RVM”
footprint). We can see that with the min runtime library both
JavaScript and Python achieve our 4 KB target footprint and
the others are close (in particular C with -Os at 4.7 KB).
For the C host language the RVM was compiled in two

ways: with the -Os option (optimize for space) and the -O3
option (optimize for speed). In the case of C, the footprint
refers to the executable file size on disk for a statically linked
x86-32 ELF executable produced by the gcc compiler. Note
that this RVM includes a garbage collector implementation
and system calls for I/O to avoid linking with the C stdio
library. Additional methods are employed to reduce code
size, mainly stripping the ELF binary of unused sections
and simplifying the produced executable. The result is an
executable file with a footprint close to the incremental size
cost of embedding the RVM in a complete C application.
For JavaScript, Python and Scheme, the footprint is the

size of the source code after minification. The JavaScript
version includes a simple DOM-based console emulation to

Ribbit REPL +
min lib max lib

bytes LOC bytes LOC Feature
456 993 symbol table
481 86 1040 149 eval with incr. compiler
323 58 409 69 read + string->number
258 43 360 50 write + number->string
550 162 1439 361 other procedures
2068 349 4241 629 string representation total

Figure 9.The breakdown of the footprint for various features
of the runtime libraries. The lines of code are for the Scheme
code stripped of comments and pretty-printed.

Bare Ribbit REPL +
RVM min lib max lib Host
2.6 KB 4.7 KB 6.9 KB C -Os
5.5 KB 7.6 KB 9.7 KB C -O3
1.8 KB 3.8 KB 5.9 KB JavaScript
2.0 KB 4.0 KB 6.1 KB Python
2.8 KB 4.9 KB 7.0 KB Scheme

Figure 10. The executable footprint for various host lan-
guages. The first column shows the footprint for an empty
program.

support the REPL interaction in the web page. The full code
is given in Figure 13 to give a visual understanding of the
footprint breakdown and an appreciation for the small size
of the RVM implementation.

3.2 Execution Speed
To evaluate the execution speed we compare Ribbit with
Scheme systems implemented in C that aim to be embed-
dable on small devices or inside larger applications. For this
comparison we use a suite of 10 standard Scheme bench-
marks ranging from 15 to 280 LOC and with a mix of op-
erations: integer arithmetic, list processing, recursion, and
in one case, ctak, first-class continuations. The number of
internal iterations in these benchmarks was adjusted to get
an execution time with the C -O3 version of Ribbit that is
on the order of 1-2 seconds and each benchmark is run 10
times to calculate the average and standard deviation. The
tool hyperfine [22] is used perform time measurement. The
test machine is a Intel i7-9750H (12) @ 4.5 GHz with 16
GB of RAM running Linux. All C compilations were done
with gcc 10.3.0. The JavaScript Ribbit was run with Node.js
v17.0.0 [12], the Python Ribbit was run with Pypy 7.3.5 [3],
and the Scheme Ribbit was compiled with Gambit v4.9.3 [14].

A first use case of interest is the context where a REPL is
needed. For this we have used the C version of Ribbit, com-
piled with -O3 and -Os, because they offer different space-
time tradeoffs. A 240 KB heap is used in both cases. These
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are compared to other systems that provide a REPL: MiniS-
cheme [20], TinyScheme [25], SCM [17], SIOD [8], and the
Chicken interpreter [2].
The benchmark results are given in Figure 11. For each

system the executable footprint is given and the execution
time for each program. The execution time is absolute in the
case of the C -O3 version of Ribbit and for the other systems
it is expressed relatively to that. A first observation is that the
-O3 version has a 60% larger footprint and it executes twice
as fast as the -Os version. The footprint of Ribbit, even the
-O3 version, is considerably smaller than the other systems.

In terms of execution speed, the C -O3 version of Ribbit
is consistently faster than the other systems, with the ex-
ception of two programs where SCM is marginally faster.
For several programs Ribbit is an order of magnitude faster
than MiniScheme and TinyScheme. SCM has the next best
performance, followed by SIOD, and then Chicken. Surpris-
ingly most systems fail to run ctak which uses first-class
continuations. Moreover, Chicken’s performance on ctak is
about 7.5× slower than Ribbit even though Chicken’s design
is based on a fast implementation of continuations. We find
these results surprising because execution speed was not a
specific design goal. We believe this good execution speed
may be due to the RVM’s extreme compactness that helps
optimize the use of the processor’s caches.

A second use case is when a REPL is not needed, for exam-
ple when the development phase is finished and the program
is put into production. For this situation we compare Ribbit’s
AOT compiler to the BIT [13] and PICOBIT [26] Scheme sys-
tems that only provide an AOT compilation mode. We also
compare with the JavaScript, Python and Scheme versions of
Ribbit. We are interested in both the total footprint and the
execution time. The results are given in Figure 12. Again the
execution time is absolute in the case of the C -O3 version
and is relative for the other systems.

Here too the C version of Ribbit compares favourably; sev-
eral programs have an order of magnitude smaller footprint
and execution time than BIT and PICOBIT. Unsurprisingly
Ribbit’s fastest version is the C version, but the other host lan-
guages also give reasonable performance, often faster than
BIT and PICOBIT.With the C -Os version several benchmark
programs have a footprint below 3 KB. Thanks to a compact
RVM the JavaScript version gives the smallest footprints, in
some cases below 2 KB.

4 Related Work and Conclusion
Language implementations fitting inside a single disk sector
are not an uncommon programming challenge. Our work
takes inspiration from sectorlisp [30], a 856 byte implementa-
tion of Lisp, which itself takes inspiration from sectorforth [4],
an implementation of Forth that fits in a single 512 byte disk
sector. Those systems use a direct (non-layered) implementa-
tion of the language itself and lack a garbage collector, while

Ribbit implements a more featurefull language. Our work is
closer in spirit to the Smalltalk-80 implementation, where
we put emphasis on minimizing the footprint of the VM.

Using specialized machines to run languages in the Lisp
family is also not a novel idea. Lispmachines use a specialized
hardware platform to execute Lisp code efficiently. Similar
to our work is the Scheme-79 chip [27, 29] which uses a
linked representation of the code (called S-code). Porting our
VM to a hardware description language is conceivable but
would require adding other facilities to make it practical. The
core logic would however stay the same. The PicoLisp [7]
team claims [6] to have implemented a similar idea but few
details can be found. Similar to Ribbit, PicoLisp implements
all objects using only a two field pair structure. Ribbit’s three
field ribs are reminiscent of the Bigloo [23] extended pairs,
which masquerade as pairs but have three fields.

Running Ribbit on bare metal, without a host operating
system, is particularly attractive due to its small size. Mi-
mosa [33] and Loko-Scheme [32] are examples of bare metal
Schemes. The total system footprint could be reduced by
implementing a low-level interface to the hardware in the
VM and building the higher-level interface on top of that in
the Scheme library which has a compact representation.
In recent years, there has been increased interest in pro-

viding high level languages to heavily constrained environ-
ments such as microcontrollers. The well known project
MicroPython [11] provides a Python environment for pop-
ular microcontroller platforms. Espruino [10] is a similar
effort to bring JavaScript to ARM based microcontrollers.
Armpit Scheme [19] and uLisp [18] bring Scheme and Lisp
to ARM based microcontrollers as well. Interestingly, all
these projects enable the use of a REPL to facilitate devel-
opment and provide an interactive interface to the devices.
Darjeeling and uJ [5, 15] are Java implementations for micro-
controllers which do not include a REPL, perhaps because
until the addition of jshell, the REPL is not a traditional
Java feature. OCaPIC [31], an OCaml port for PIC microcon-
trollers, and MicroScheme [28] are also without a REPL.
Having a language implementation running on top of a

VM simplifies embedding into other projects, for example to
add scripting to complex software, such as video games, or
to provide a cross platform core for multiplatform software,
such as mobile applications. Lua [16] is a typical example of
such a language with a small footprint, around 250 KB. In
this context, a much smaller footprint VM like the RVM with
little platform dependencies is ideal to minimize the cost of
embedding and the footprint overhead.
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Ribbit REPL + min lib MiniScheme TinyScheme SCM SIOD Chicken (csi)
C -O3 C -Os [20] [25] [17] [8] [2]

Footprint 7.6 KB 4.7 KB 57.6 KB 254.6 KB 266.3 KB 240.4 KB 4661.0 KB
ctak 1.18s ±1.2% 1.9× ±1.0% FAIL FAIL FAIL FAIL 7.5× ±2.8%
fib 1.32s ±1.5% 1.9× ±1.3% 13.1× ±1.2% 33.5× ±1.6% 1.6× ±3.4% 2.4× ±1.1% 4.8× ±4.3%
sum 1.05s ±1.3% 2.1× ±1.3% 17.6× ±1.9% 43.1× ±1.1% 1.9× ±2.3% 3.3× ±2.2% 5.8× ±2.3%
ack 1.47s ±2.6% 2.0× ±0.9% 28.8× ±0.9% 35.0× ±0.7% 2.3× ±2.8% FAIL 4.7× ±8.8%
mazefun 1.20s ±2.4% 1.9× ±0.8% FAIL 30.7× ±0.8% 1.2× ±2.0% FAIL 3.3× ±1.4%
nqueens 0.91s ±1.0% 1.9× ±1.2% 12.3× ±1.5% 28.1× ±1.2% 1.4× ±2.9% 2.6× ±1.3% 3.9× ±5.1%
tak 0.94s ±1.4% 2.0× ±0.9% 9.3× ±2.1% 24.3× ±1.8% 1.2× ±2.7% 2.1× ±1.3% 3.1× ±4.6%
takl 1.18s ±1.6% 1.7× ±1.8% 8.4× ±1.3% 18.2× ±0.8% 0.9× ±2.9% 1.7× ±1.2% 2.3× ±4.0%
primes 1.03s ±1.6% 2.1× ±1.0% 13.9× ±1.5% 36.0× ±1.3% 1.7× ±2.4% 2.8× ±1.6% 4.8× ±1.8%
deriv 0.94s ±2.2% 2.0× ±1.0% 7.0× ±1.5% 16.2× ±1.3% 0.9× ±2.1% 1.5× ±1.0% 2.5× ±2.4%

Figure 11. Footprint and execution speed comparison when a REPL is used.

Ribbit’s AOT compiler + min lib BIT PICOBIT
C -O3 C -Os JavaScript Python Scheme [13] [26]

ctak 0.94s 5.7 KB 2.1× 2.8 KB 11.2× 2.0 KB 16.2× 2.2 KB 2.9× 3.1 KB 40.9× 39.5 KB 7.8× 113.4 KB
fib 1.06s 5.6 KB 2.0× 2.7 KB 9.5× 1.9 KB 5.5× 2.0 KB 3.2× 2.9 KB 22.2× 39.3 KB 25.5× 113.1 KB
sum 0.81s 5.6 KB 2.3× 2.7 KB 12.2× 1.9 KB 7.1× 2.0 KB 3.4× 2.9 KB 26.2× 39.3 KB 36.2× 113.1 KB
ack 1.11s 5.6 KB 2.1× 2.7 KB 9.2× 1.9 KB 6.7× 2.1 KB 2.6× 3.0 KB 51.5× 39.3 KB FAIL
mazefun 1.04s 10.4 KB 2.0× 7.6 KB 7.7× 6.7 KB 8.3× 6.9 KB 2.5× 7.8 KB FAIL FAIL
nqueens 0.71s 5.7 KB 2.1× 2.9 KB 10.9× 2.1 KB 6.9× 2.2 KB 3.1× 3.1 KB 17.4× 39.5 KB 13.2× 113.4 KB
tak 0.74s 5.6 KB 2.1× 2.7 KB 10.5× 1.9 KB 7.0× 2.1 KB 3.0× 3.0 KB 18.5× 39.3 KB 10.5× 113.1 KB
takl 0.94s 5.7 KB 1.8× 2.8 KB 9.1× 2.0 KB 5.6× 2.1 KB 2.7× 3.1 KB 11.4× 39.5 KB 2.2× 113.2 KB
primes 0.77s 5.8 KB 2.3× 2.9 KB 11.5× 2.1 KB 7.2× 2.2 KB 3.8× 3.1 KB 28.6× 39.5 KB 22.1× 113.4 KB
deriv 0.72s 5.9 KB 2.1× 3.0 KB 10.1× 2.2 KB 6.9× 2.3 KB 2.9× 3.2 KB FAIL FAIL

Figure 12. Footprint and execution speed comparison when a Scheme AOT compiler is used.
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";y="length";D=document;u=0;Q="addEventListener";K="selectionStart";D[Q]("DOMContentLoaded",()=>{T=D.body;r=T
.appendChild(D.createElement("textarea"));r.style="width:100%;height:50vh;";T[Q]("keypress",J=>{a=r[K];a<u&&(
u=a);13==J.keyCode&&(J.preventDefault(),E+=r.value.slice(u,a)+"\n",R(10),H())});H()});R=J=>(u=r[K]=(r.value+=
String.fromCharCode(J))[y],J);Y=()=>O<E[y]&&k(B());O=0;B=()=>E[O++].charCodeAt(0);S=()=>{a=B()-35;return 0>a?
57:a};v=J=>{a=S();J*=46;return 46>a?J+a:v(J+a-46)};e=()=>{a=d[0];d=d[1];return a};G=[0,0,5];I=[0,0,5];g=s=[0,
0,5];for(b=v(0);0<b--;)g=[[0,[s,0,3],2],g,0];n=s;for(b=0;;)if(f=B(),44==f)g=[[0,[n,b,3],2],g,0],n=s,b=0;else{
if(59==f)break;n=[f,n,0];b++}g=[[0,[n,b,3],2],g,0];N=J=>C(g,J)[0];C=(J,M)=>M?C(J[1],M-1):J;for(d=0;;){b=a=S()
;q=0;for(l=-1;(q=[20,30,0,10,11,4][++l])+2<b;)b-=q+3;if(90<a)b=e();else if(l||(d=[0,d,0]),b=b>=q?b==q?v(0):N(
v(b-q-1)):3>l?N(b):b,4<l){b=[[b,0,e()],0,1];if(!d)break;l=4}d[0]=[l?l-1:0,b,d[0]]}t=J=>{g[0][0]=J;g=g[1]};t([
0,g,1]);t(G);t(I);t(s);i=b[0][2];d=[0,0,[5,0,0]];k=J=>(d=[J,d,0],!0);z=J=>J?I:G;x=J=>J[y];A=J=>x(J)?J:C(d,J);
P=()=>{for(w=d;!w[2];)w=w[1];return w};m=J=>()=>k(J(e()));j=J=>()=>k(J(e(),e()));U=J=>()=>k(J(e(),e(),e()));X
=[U((J,M,W)=>[W,M,J]),m(J=>J),()=>(e(),!0),()=>{c=e();e();return k(c)},()=>k([e()[0],d,1]),m(J=>z(x(J))),m(J=
>J[0]),m(J=>J[1]),m(J=>J[2]),j((J,M)=>M[0]=J),j((J,M)=>M[1]=J),j((J,M)=>M[2]=J),j((J,M)=>z(M===J)),j((J,M)=>z
(M<J)),j((J,M)=>M+J),j((J,M)=>M-J),j((J,M)=>M*J),j((J,M)=>M/J|0),Y,m(R)];H=()=>{for(;;){h=i[1];switch(i[0]){c
ase 5:return;case 0:h=A(h)[0];f=h[0];if(x(f)){F=p=[0,h,0];for(V=f[0];V--;)F=[e(),F,0];0===i[2]?(L=P(),p[0]=L[
0],p[2]=L[2]):(p[0]=d,p[2]=i[2]);d=F}else{if(!X[f]())return;0===i[2]?(f=P(),d[1]=f[0]):f=i}i=f;break;case 1:A
(h)[0]=e();break;case 2:k(A(h)[0]);break;case 3:k(h);break;case 4:if(e()!==G){i=i[1];continue}}i=i[2]}}

Figure 13. The JavaScript implementation of the Ribbit REPL with min runtime library showing the amount of code for each
major part of the system. About half of the code is for the string containing the representation of the instruction graph. Note
that this code has gone through a minification process to make it more compact and it is all on a single line with no line breaks.
This code can be executed by visiting the following link: https://udem-dlteam.github.io/ribbit/repl-min.html . The REPL with
max runtime library can be executed by visiting the following link: https://udem-dlteam.github.io/ribbit/repl-max.html .
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