
Chapter 2: Objects and Primitive Data

Presentation slides for

Java Software Solutions
Foundations of Program Design

Second Edition

by John Lewis and William Loftus

Java Software Solutions is published by Addison-Wesley

Presentation slides are copyright 2000 by John Lewis and William Loftus. All rights reserved.
Instructors using the textbook may use and modify these slides for pedagogical purposes.

2

Objects and Primitive Data

b We can now explore some more fundamental programming
concepts

b Chapter 2 focuses on:
• predefined objects
• primitive data
• the declaration and use of variables
• expressions and operator precedence
• class libraries
• Java applets
• drawing shapes

3

Introduction to Objects

b Initially, we can think of an object as a collection of services
that we can tell it to perform for us

b The services are defined by methods in a class that defines
the object

b In the Lincoln program, we invoked the println method
of the System.out object:

System.out.println ("Whatever you are, be a good one.");

object method
Information provided to the method

(parameters)

4

The println and print Methods

b The System.out object provides another service as well

b The print method is similar to the println method,
except that it does not advance to the next line

b Therefore anything printed after a print statement will
appear on the same line

b See Countdown.java (page 53)

5

Abstraction

b An abstraction hides (or ignores) the right details at the
right time

b An object is abstract in that we don't really have to think
about its internal details in order to use it

b We don't have to know how the println method works in
order to invoke it

b A human being can only manage seven (plus or minus 2)
pieces of information at one time

b But if we group information into chunks (such as objects)
we can manage many complicated pieces at once

b Therefore, we can write complex software by organizing it
carefully into classes and objects

6

The String Class

b Every character string is an object in Java, defined by the
String class

b Every string literal, delimited by double quotation marks,
represents a String object

b The string concatenation operator (+) is used to append one
string to the end of another

b It can also be used to append a number to a string
b A string literal cannot be broken across two lines in a

program
b See Facts.java (page 56)

7

String Concatenation

b The plus operator (+) is also used for arithmetic addition
b The function that the + operator performs depends on the

type of the information on which it operates
b If both operands are strings, or if one is a string and one is

a number, it performs string concatenation
b If both operands are numeric, it adds them
b The + operator is evaluated left to right
b Parentheses can be used to force the operation order
b See Addition.java (page 58)

8

Escape Sequences

b What if we wanted to print a double quote character?
b The following line would confuse the compiler because it

would interpret the second quote as the end of the string

System.out.println ("I said "Hello" to you.");

b An escape sequence is a series of characters that represents
a special character

b An escape sequence begins with a backslash character (\),
which indicates that the character(s) that follow should be
treated in a special way

System.out.println ("I said \"Hello\" to you.");

9

Escape Sequences

b Some Java escape sequences:

b See Roses.java (page 59)

Escape Sequence

\b
\t
\n
\r
\"
\'
\\

Meaning

backspace
tab

newline
carriage return
double quote
single quote
backslash

10

Variables

b A variable is a name for a location in memory
b A variable must be declared, specifying the variable's name

and the type of information that will be held in it

int total;

int count, temp, result;

Multiple variables can be created in one declaration

data type variable name

Variables

b A variable can be given an initial value in the declaration

b When a variable is referenced in a program, its current
value is used

b See PianoKeys.java (page 60)

int sum = 0;
int base = 32, max = 149;

12

Assignment

b An assignment statement changes the value of a variable
b The assignment operator is the = sign

total = 55;

b You can only assign a value to a variable that is consistent
with the variable's declared type

b The expression on the right is evaluated and the result is
stored in the variable on the left

b The value that was in total is overwritten

b See Geometry.java (page 62)

Constants

b A constant is an identifier that is similar to a variable
except that it holds one value for its entire existence

b The compiler will issue an error if you try to change a
constant

b In Java, we use the final modifier to declare a constant

final int MIN_HEIGHT = 69;

b Constants:
• give names to otherwise unclear literal values
• facilitate changes to the code
• prevent inadvertent errors

Primitive Data

b There are exactly eight primitive data types in Java

b Four of them represent integers:
• byte, short, int, long

b Two of them represent floating point numbers:
• float, double

b One of them represents characters:
• char

b And one of them represents boolean values:
• boolean

Numeric Primitive Data

b The difference between the various numeric primitive types
is their size, and therefore the values they can store:

Type

byte
short
int
long

float
double

Storage

8 bits
16 bits
32 bits
64 bits

32 bits
64 bits

Min Value

-128
-32,768
-2,147,483,648
< -9 x 1018

+/- 3.4 x 1038 with 7 significant digits
+/- 1.7 x 10308 with 15 significant digits

Max Value

127
32,767
2,147,483,647
> 9 x 1018

16

Characters

b A char variable stores a single character from the
Unicode character set

b A character set is an ordered list of characters, and each
character corresponds to a unique number

b The Unicode character set uses sixteen bits per character,
allowing for 65,536 unique characters

b It is an international character set, containing symbols and
characters from many world languages

b Character literals are delimited by single quotes:

'a' 'X' '7' '$' ',' '\n'

17

Characters

b The ASCII character set is older and smaller than Unicode,
but is still quite popular

b The ASCII characters are a subset of the Unicode
character set, including:

uppercase letters
lowercase letters
punctuation
digits
special symbols
control characters

A, B, C, …
a, b, c, …
period, semi-colon, …
0, 1, 2, …
&, |, \, …
carriage return, tab, ...

18

Boolean

b A boolean value represents a true or false condition

b A boolean can also be used to represent any two states, such
as a light bulb being on or off

b The reserved words true and false are the only valid
values for a boolean type

boolean done = false;

Arithmetic Expressions

b An expression is a combination of operators and operands
b Arithmetic expressions compute numeric results and make

use of the arithmetic operators:

Addition +
Subtraction -
Multiplication *
Division /
Remainder %

b If either or both operands to an arithmetic operator are
floating point, the result is a floating point

Division and Remainder

b If both operands to the division operator (/) are integers,
the result is an integer (the fractional part is discarded)

b The remainder operator (%) returns the remainder after
dividing the second operand into the first

14 / 3 equals?

8 / 12 equals?

4

0

14 % 3 equals?

8 % 12 equals?

2

8

Operator Precedence

b Operators can be combined into complex expressions

result = total + count / max - offset;

b Operators have a well-defined precedence which
determines the order in which they are evaluated

b Multiplication, division, and remainder are evaluated prior
to addition, subtraction, and string concatenation

b Arithmetic operators with the same precedence are
evaluated from left to right

b Parentheses can always be used to force the evaluation
order

Operator Precedence

b What is the order of evaluation in the following
expressions?

a + b + c + d + e
1 432

a + b * c - d / e
3 241

a / (b + c) - d % e
2 341

a / (b * (c + (d - e)))
4 123

Assignment Revisited

b The assignment operator has a lower precedence than the
arithmetic operators

First the expression on the right hand
side of the = operator is evaluated

Then the result is stored in the
variable on the left hand side

answer = sum / 4 + MAX * lowest;

14 3 2

Assignment Revisited

b The right and left hand sides of an assignment statement
can contain the same variable

First, one is added to the
original value of count

Then the result is stored back into count
(overwriting the original value)

count = count + 1;

Data Conversions

b Sometimes it is convenient to convert data from one type to
another

b For example, we may want to treat an integer as a floating
point value during a computation

b Conversions must be handled carefully to avoid losing
information

b Widening conversions are safest because they tend to go
from a small data type to a larger one (such as a short to
an int)

b Narrowing conversions can lose information because they
tend to go from a large data type to a smaller one (such as
an int to a short)

Data Conversions

b In Java, data conversions can occur in three ways:
• assignment conversion
• arithmetic promotion
• casting

b Assignment conversion occurs when a value of one type is
assigned to a variable of another

b Only widening conversions can happen via assignment

b Arithmetic promotion happens automatically when
operators in expressions convert their operands

Data Conversions

b Casting is the most powerful, and dangerous, technique for
conversion

b Both widening and narrowing conversions can be
accomplished by explicitly casting a value

b To cast, the type is put in parentheses in front of the value
being converted

b For example, if total and count are integers, but we
want a floating point result when dividing them, we can
cast total:

result = (float) total / count;

Creating Objects

b A variable either holds a primitive type, or it holds a
reference to an object

b A class name can be used as a type to declare an object
reference variable

String title;

b No object has been created with this declaration
b An object reference variable holds the address of an object
b The object itself must be created separately

Creating Objects

b We use the new operator to create an object

title = new String ("Java Software Solutions");

This calls the String constructor, which is
a special method that sets up the object

b Creating an object is called instantiation

b An object is an instance of a particular class

Creating Objects

b Because strings are so common, we don't have to use the
new operator to create a String object

title = "Java Software Solutions";

b This is special syntax that only works for strings

b Once an object has been instantiated, we can use the dot
operator to invoke its methods

title.length()

String Methods

b The String class has several methods that are useful for
manipulating strings

b Many of the methods return a value, such as an integer or a
new String object

b See the list of String methods on page 75 and in Appendix
M

b See StringMutation.java (page 77)

Class Libraries

b A class library is a collection of classes that we can use when
developing programs

b There is a Java standard class library that is part of any
Java development environment

b These classes are not part of the Java language per se, but
we rely on them heavily

b The System class and the String class are part of the
Java standard class library

b Other class libraries can be obtained through third party
vendors, or you can create them yourself

Packages

b The classes of the Java standard class library are organized
into packages

b Some of the packages in the standard class library are:

Package

java.lang
java.applet
java.awt
javax.swing
java.net
java.util

Purpose

General support
Creating applets for the web
Graphics and graphical user interfaces
Additional graphics capabilities and components
Network communication
Utilities

The import Declaration

b When you want to use a class from a package, you could
use its fully qualified name

java.util.Random

b Or you can import the class, then just use the class name

import java.util.Random;

b To import all classes in a particular package, you can use
the * wildcard character

import java.util.*;

The import Declaration

b All classes of the java.lang package are automatically
imported into all programs

b That's why we didn't have to explicitly import the System
or String classes in earlier programs

b The Random class is part of the java.util package
b It provides methods that generate pseudo-random numbers
b We often have to scale and shift a number into an

appropriate range for a particular purpose
b See RandomNumbers.java (page 82)

Class Methods

b Some methods can be invoked through the class name,
instead of through an object of the class

b These methods are called class methods or static methods

b The Math class contains many static methods, providing
various mathematical functions, such as absolute value,
trigonometry functions, square root, etc.

temp = Math.cos(90) + Math.sqrt(delta);

The Keyboard Class

b The Keyboard class is NOT part of the Java standard
class library

b It is provided by the authors of the textbook to make
reading input from the keyboard easy

b Details of the Keyboard class are explored in Chapter 8
b For now we will simply make use of it
b The Keyboard class is part of a package called cs1, and

contains several static methods for reading particular types
of data

b See Echo.java (page 86)
b See Quadratic.java (page 87)

Formatting Output

b The NumberFormat class has static methods that return a
formatter object

getCurrencyInstance()
getPercentInstance()

b Each formatter object has a method called format that
returns a string with the specified information in the
appropriate format

b See Price.java (page 89)

Formatting Output

b The DecimalFormat class can be used to format a
floating point value in generic ways

b For example, you can specify that the number be printed to
three decimal places

b The constructor of the DecimalFormat class takes a
string that represents a pattern for the formatted number

b See CircleStats.java (page 91)

Applets

b A Java application is a stand-alone program with a main
method (like the ones we've seen so far)

b An applet is a Java program that is intended to transported
over the web and executed using a web browser

b An applet can also be executed using the appletviewer tool
of the Java Software Development Kit

b An applet doesn't have a main method
b Instead, there are several special methods that serve

specific purposes
b The paint method, for instance, is automatically executed

and is used to draw the applets contents

Applets

b The paint method accepts a parameter that is an object of
the Graphics class

b A Graphics object defines a graphics context on which we
can draw shapes and text

b The Graphics class has several methods for drawing
shapes

b The class that defines the applet extends the Applet class
b This makes use of inheritance, an object-oriented concept

explored in more detail in Chapter 7

b See Einstein.java (page 93)

Applets

b An applet is embedded into an HTML file using a tag that
references the bytecode file of the applet class

b It is actually the bytecode version of the program that is
transported across the web

b The applet is executed by a Java interpreter that is part of
the browser

Drawing Shapes

b Let's explore some of the methods of the Graphics class
that draw shapes in more detail

b A shape can be filled or unfilled, depending on which
method is invoked

b The method parameters specify coordinates and sizes
b Recall from Chapter 1 that the Java coordinate system has

the origin in the upper left corner
b Many shapes with curves, like an oval, are drawn by

specifying its bounding rectangle
b An arc can be thought of as a section of an oval

Drawing a Line

X

Y

10

20

150

45

page.drawLine (10, 20, 150, 45);

page.drawLine (150, 45, 10, 20);
or

Drawing a Rectangle

X

Y

page.drawRect (50, 20, 100, 40);

50

20

100

40

Drawing an Oval

X

Y

page.drawOval (175, 20, 50, 80);

175

20

50

80

bounding
rectangle

The Color Class

b A color is defined in a Java program using an object
created from the Color class

b The Color class also contains several static predefined
colors

b Every graphics context has a current foreground color
b Every drawing surface has a background color

b See Snowman.java (page 99-100)

