
Chapter 3: Program Statements

Presentation slides for

Java Software Solutions
Foundations of Program Design

Second Edition

by John Lewis and William Loftus

Java Software Solutions is published by Addison-Wesley

Presentation slides are copyright 2000 by John Lewis and William Loftus. All rights reserved.
Instructors using the textbook may use and modify these slides for pedagogical purposes.

2

Program Statements

b We will now examine some other program statements

b Chapter 3 focuses on:
• the flow of control through a method
• decision-making statements
• operators for making complex decisions
• repetition statements
• software development stages
• more drawing techniques

Flow of Control

b Unless indicated otherwise, the order of statement
execution through a method is linear: one after the other in
the order they are written

b Some programming statements modify that order, allowing
us to:
• decide whether or not to execute a particular statement, or
• perform a statement over and over repetitively

b The order of statement execution is called the flow of
control

Conditional Statements

b A conditional statement lets us choose which statement will
be executed next

b Therefore they are sometimes called selection statements

b Conditional statements give us the power to make basic
decisions

b Java's conditional statements are the if statement, the if-else
statement, and the switch statement

5

The if Statement

b The if statement has the following syntax:

if (condition)
statement;

if is a Java
reserved word

The condition must be a boolean expression.
It must evaluate to either true or false.

If the condition is true, the statement is executed.
If it is false, the statement is skipped.

The if Statement

b An example of an if statement:

if (sum > MAX)
delta = sum - MAX;

System.out.println ("The sum is " + sum);

First, the condition is evaluated. The value of sum
is either greater than the value of MAX, or it is not.

If the condition is true, the assignment statement is executed.
If it is not, the assignment statement is skipped.

Either way, the call to println is executed next.

b See Age.java (page 112)

Logic of an if statement

condition
evaluated

false

statement

true

8

Boolean Expressions

b A condition often uses one of Java's equality operators or
relational operators, which all return boolean results:

== equal to
!= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

b Note the difference between the equality operator (==) and
the assignment operator (=)

9

The if-else Statement

b An else clause can be added to an if statement to make it an
if-else statement:

if (condition)
statement1;

else
statement2;

b See Wages.java (page 116)

b If the condition is true, statement1 is executed; if the
condition is false, statement2 is executed

b One or the other will be executed, but not both

Logic of an if-else statement

condition
evaluated

statement1

true false

statement2

11

Block Statements

b Several statements can be grouped together into a block
statement

b A block is delimited by braces ({ … })

b A block statement can be used wherever a statement is
called for in the Java syntax

b For example, in an if-else statement, the if portion, or the
else portion, or both, could be block statements

b See Guessing.java (page 117)

12

Nested if Statements

b The statement executed as a result of an if statement or else
clause could be another if statement

b These are called nested if statements

b See MinOfThree.java (page 118)

b An else clause is matched to the last unmatched if (no
matter what the indentation implies)

Comparing Characters

b We can use the relational operators on character data
b The results are based on the Unicode character set
b The following condition is true because the character '+'

comes before the character 'J' in Unicode:

if ('+' < 'J')
System.out.println ("+ is less than J");

b The uppercase alphabet (A-Z) and the lowercase alphabet
(a-z) both appear in alphabetical order in Unicode

Comparing Strings

b Remember that a character string in Java is an object

b We cannot use the relational operators to compare strings

b The equals method can be called on a string to determine
if two strings contain exactly the same characters in the
same order

b The String class also contains a method called compareTo
to determine if one string comes before another
alphabetically (as determined by the Unicode character set)

Comparing Floating Point Values

b We also have to be careful when comparing two floating
point values (float or double) for equality

b You should rarely use the equality operator (==) when
comparing two floats

b In many situations, you might consider two floating point
numbers to be "close enough" even if they aren't exactly
equal

b Therefore, to determine the equality of two floats, you may
want to use the following technique:

if (Math.abs (f1 - f2) < 0.00001)
System.out.println ("Essentially equal.");

16

The switch Statement

b The switch statement provides another means to decide
which statement to execute next

b The switch statement evaluates an expression, then
attempts to match the result to one of several possible cases

b Each case contains a value and a list of statements

b The flow of control transfers to statement list associated
with the first value that matches

The switch Statement

b The general syntax of a switch statement is:

switch (expression)
{

case value1 :
statement-list1

case value2 :
statement-list2

case value3 :
statement-list3

case ...

}

switch
and
case
are

reserved
words

If expression
matches value2,
control jumps
to here

The switch Statement

b Often a break statement is used as the last statement in each
case's statement list

b A break statement causes control to transfer to the end of
the switch statement

b If a break statement is not used, the flow of control will
continue into the next case

b Sometimes this can be helpful, but usually we only want to
execute the statements associated with one case

The switch Statement

b A switch statement can have an optional default case

b The default case has no associated value and simply uses
the reserved word default

b If the default case is present, control will transfer to it if no
other case value matches

b Though the default case can be positioned anywhere in the
switch, it is usually placed at the end

b If there is no default case, and no other value matches,
control falls through to the statement after the switch

The switch Statement

b The expression of a switch statement must result in an
integral data type, like an integer or character; it cannot be
a floating point value

b Note that the implicit boolean condition in a switch
statement is equality - it tries to match the expression with
a value

b You cannot perform relational checks with a switch
statement

b See GradeReport.java (page 121)

21

Logical Operators

b Boolean expressions can also use the following logical
operators:

! Logical NOT
&& Logical AND
|| Logical OR

b They all take boolean operands and produce boolean
results

b Logical NOT is a unary operator (it has one operand), but
logical AND and logical OR are binary operators (they each
have two operands)

22

Logical NOT

b The logical NOT operation is also called logical negation or
logical complement

b If some boolean condition a is true, then !a is false; if a is
false, then !a is true

b Logical expressions can be shown using truth tables

a

true
false

!a

false
true

23

Logical AND and Logical OR

b The logical and expression

a && b

is true if both a and b are true, and false otherwise

b The logical or expression

a || b

is true if a or b or both are true, and false otherwise

Truth Tables

b A truth table shows the possible true/false combinations of
the terms

b Since && and || each have two operands, there are four
possible combinations of true and false

a

true
true
false
false

b

true
false
true
false

a && b

true
false
false
false

a || b

true
true
true
false

25

Logical Operators

b Conditions in selection statements and loops can use logical
operators to form complex expressions

if (total < MAX && !found)
System.out.println ("Processing…");

b Logical operators have precedence relationships between
themselves and other operators

26

Truth Tables

b Specific expressions can be evaluated using truth tables

total < MAX

false
false
true
true

found

false
true
false
true

!found

true
false
true
false

total < MAX
&& !found

false
false
true
false

27

More Operators

b To round out our knowledge of Java operators, let's
examine a few more

b In particular, we will examine the:

• increment and decrement operators
• assignment operators
• conditional operator

28

Increment and Decrement Operators

b The increment and decrement operators are arithmetic and
operate on one operand

b The increment operator (++) adds one to its operand
b The decrement operator (--) subtracts one from its operand
b The statement

count++;

is essentially equivalent to

count = count + 1;

29

Increment and Decrement Operators

b The increment and decrement operators can be applied in
prefix form (before the variable) or postfix form (after the
variable)

b When used alone in a statement, the prefix and postfix
forms are basically equivalent. That is,

count++;

is equivalent to

++count;

30

Increment and Decrement Operators

b When used in a larger expression, the prefix and postfix
forms have a different effect

b In both cases the variable is incremented (decremented)
b But the value used in the larger expression depends on the

form:

Expression

count++
++count
count--
--count

Operation

add 1
add 1

subtract 1
subtract 1

Value of Expression

old value
new value
old value
new value

31

Increment and Decrement Operators

b If count currently contains 45, then

total = count++;

assigns 45 to total and 46 to count

b If count currently contains 45, then

total = ++count;

assigns the value 46 to both total and count

32

Assignment Operators

b Often we perform an operation on a variable, then store the
result back into that variable

b Java provides assignment operators to simplify that process
b For example, the statement

num += count;

is equivalent to

num = num + count;

33

Assignment Operators

b There are many assignment operators, including the
following:

Operator

+=
-=
*=
/=
%=

Example

x += y
x -= y
x *= y
x /= y
x %= y

Equivalent To

x = x + y
x = x - y
x = x * y
x = x / y
x = x % y

34

Assignment Operators

b The right hand side of an assignment operator can be a
complete expression

b The entire right-hand expression is evaluated first, then the
result is combined with the original variable

b Therefore

result /= (total-MIN) % num;

is equivalent to

result = result / ((total-MIN) % num);

35

The Conditional Operator

b Java has a conditional operator that evaluates a boolean
condition that determines which of two other expressions is
evaluated

b The result of the chosen expression is the result of the entire
conditional operator

b Its syntax is:

condition ? expression1 : expression2

b If the condition is true, expression1 is evaluated; if it is
false, expression2 is evaluated

36

The Conditional Operator

b The conditional operator is similar to an if-else statement,
except that it is an expression that returns a value

b For example:

larger = (num1 > num2) ? num1 : num2;

b If num1 is greater that num2, then num1 is assigned to
larger; otherwise, num2 is assigned to larger

b The conditional operator is ternary, meaning that it
requires three operands

37

The Conditional Operator

b Another example:

System.out.println ("Your change is " + count +
(count == 1) ? "Dime" : "Dimes");

b If count equals 1, then "Dime" is printed
b If count is anything other than 1, then "Dimes" is

printed

Repetition Statements

b Repetition statements allow us to execute a statement
multiple times repetitively

b They are often simply referred to as loops

b Like conditional statements, they are controlled by boolean
expressions

b Java has three kinds of repetition statements: the while
loop, the do loop, and the for loop

b The programmer must choose the right kind of loop for the
situation

39

The while Statement

b The while statement has the following syntax:

while (condition)
statement;while is a

reserved word

If the condition is true, the statement is executed.
Then the condition is evaluated again.

The statement is executed repetitively until
the condition becomes false.

Logic of a while loop

statement

true

condition
evaluated

false

41

The while Statement

b Note that if the condition of a while statement is false
initially, the statement is never executed

b Therefore, the body of a while loop will execute zero or
more times

b See Counter.java (page 133)

b See Average.java (page 134)

b See WinPercentage.java (page 136)

42

Infinite Loops

b The body of a while loop must eventually make the
condition false

b If not, it is an infinite loop, which will execute until the user
interrupts the program

b See Forever.java (page 138)

b This is a common type of logical error

b You should always double check to ensure that your loops
will terminate normally

Nested Loops

b Similar to nested if statements, loops can be nested as well

b That is, the body of a loop could contain another loop

b Each time through the outer loop, the inner loop will go
through its entire set of iterations

b See PalindromeTester.java (page 137)

The do Statement

b The do statement has the following syntax:

do
{

statement;
}
while (condition)

Uses both
the do and
while

reserved
words

The statement is executed once initially, then the condition is evaluated

The statement is repetitively executed until the condition becomes false

Logic of a do loop

true

condition
evaluated

statement

false

The do Statement

b A do loop is similar to a while loop, except that the
condition is evaluated after the body of the loop is executed

b Therefore the body of a do loop will execute at least one
time

b See Counter2.java (page 143)

b See ReverseNumber.java (page 144)

Comparing the while and do loops

statement

true

condition
evaluated

false

while loop

true

condition
evaluated

statement

false

do loop

The for Statement

b The for statement has the following syntax:

for (initialization ; condition ; increment)
statement;

Reserved
word

The initialization portion
is executed once

before the loop begins

The statement is
executed until the

condition becomes false

The increment portion is executed at the end of each iteration

The for Statement

b A for loop is equivalent to the following while loop
structure:

initialization;
while (condition)
{

statement;
increment;

}

Logic of a for loop

statement

true

condition
evaluated

false

increment

initialization

The for Statement

b Like a while loop, the condition of a for statement is tested
prior to executing the loop body

b Therefore, the body of a for loop will execute zero or more
times

b It is well suited for executing a specific number of times
that can be determined in advance

b See Counter3.java (page 146)

b See Multiples.java (page 147)

b See Stars.java (page 150)

The for Statement

b Each expression in the header of a for loop is optional

• If the initialization is left out, no initialization is performed
• If the condition is left out, it is always considered to be true, and

therefore creates an infinite loop
• If the increment is left out, no increment operation is performed

b Both semi-colons are always required in the for loop header

53

Program Development

b The creation of software involves four basic activities:

• establishing the requirements
• creating a design
• implementing the code
• testing the implementation

b The development process is much more involved than this,
but these basic steps are a good starting point

54

Requirements

b Requirements specify the tasks a program must accomplish
(what to do, not how to do it)

b They often include a description of the user interface
b An initial set of requirements are often provided, but

usually must be critiqued, modified, and expanded
b It is often difficult to establish detailed, unambiguous,

complete requirements
b Careful attention to the requirements can save significant

time and money in the overall project

55

Design

b An algorithm is a step-by-step process for solving a problem
b A program follows one or more algorithms to accomplish

its goal
b The design of a program specifies the algorithms and data

needed
b In object-oriented development, the design establishes the

classes, objects, and methods that are required
b The details of a method may be expressed in pseudocode,

which is code-like, but does not necessarily follow any
specific syntax

56

Implementation

b Implementation is the process of translating a design into
source code

b Most novice programmers think that writing code is the
heart of software development, but it actually should be the
least creative step

b Almost all important decisions are made during
requirements analysis and design

b Implementation should focus on coding details, including
style guidelines and documentation

b See ExamGrades.java (page 155)

57

Testing

b A program should be executed multiple times with various
input in an attempt to find errors

b Debugging is the process of discovering the cause of a
problem and fixing it

b Programmers often erroneously think that there is "only
one more bug" to fix

b Tests should focus on design details as well as overall
requirements

More Drawing Techniques

b Conditionals and loops can greatly enhance our ability to
control graphics

b See Bullseye.java (page 157)

b See Boxes.java (page 159)

b See BarHeights.java (page 162)

