
Chapter 4: Writing Classes

Presentation slides for

Java Software Solutions
Foundations of Program Design

Second Edition

by John Lewis and William Loftus

Java Software Solutions is published by Addison-Wesley

Presentation slides are copyright 2000 by John Lewis and William Loftus. All rights reserved.
Instructors using the textbook may use and modify these slides for pedagogical purposes.

2

Writing Classes

b We've been using predefined classes. Now we will learn to
write our own classes to define new objects

b Chapter 4 focuses on:
• class declarations
• method declarations
• instance variables
• encapsulation
• method overloading
• graphics-based objects

3

Objects

b An object has:
• state - descriptive characteristics
• behaviors - what it can do (or be done to it)

b For example, consider a coin that can be flipped so that it's
face shows either "heads" or "tails"

b The state of the coin is its current face (heads or tails)
b The behavior of the coin is that it can be flipped
b Note that the behavior of the coin might change its state

4

Classes

b A class is a blueprint of an object

b It is the model or pattern from which objects are created

b For example, the String class is used to define String
objects

b Each String object contains specific characters (its state)

b Each String object can perform services (behaviors) such
as toUpperCase

Classes

b The String class was provided for us by the Java
standard class library

b But we can also write our own classes that define specific
objects that we need

b For example, suppose we wanted to write a program that
simulates the flipping of a coin

b We could write a Coin class to represent a coin object

Classes

b A class contains data declarations and method declarations

int x, y;
char ch;

Data declarations

Method declarations

Data Scope

b The scope of data is the area in a program in which that
data can be used (referenced)

b Data declared at the class level can be used by all methods
in that class

b Data declared within a method can only be used in that
method

b Data declared within a method is called local data

Writing Methods

b A method declaration specifies the code that will be executed
when the method is invoked (or called)

b When a method is invoked, the flow of control jumps to the
method and executes its code

b When complete, the flow returns to the place where the
method was called and continues

b The invocation may or may not return a value, depending
on how the method was defined

myMethod();

myMethodcompute

Method Control Flow

b The called method could be within the same class, in which
case only the method name is needed

doIt helpMe

helpMe();obj.doIt();

main

Method Control Flow

b The called method could be part of another class or object

The Coin Class

b In our Coin class we could define the following data:
• face, an integer that represents the current face
• HEADS and TAILS, integer constants that represent the two

possible states

b We might also define the following methods:
• a Coin constructor, to set up the object
• a flip method, to flip the coin
• a getFace method, to return the current face
• a toString method, to return a string description for printing

The Coin Class

b See CountFlips.java (page 179)
b See Coin.java (page 180)

b Once the Coin class has been defined, we can use it again
in other programs as needed

b Note that the CountFlips program did not use the
toString method

b A program will not necessarily use every service provided
by an object

Instance Data

b The face variable in the Coin class is called instance data
because each instance (object) of the Coin class has its own

b A class declares the type of the data, but it does not reserve
any memory space for it

b Every time a Coin object is created, a new face variable
is created as well

b The objects of a class share the method definitions, but they
have unique data space

b That's the only way two objects can have different states

Instance Data

b See FlipRace.java (page 182)

face 0

coin1

int face;

class Coin

face 1

coin2

15

Encapsulation

b You can take one of two views of an object:
• internal - the structure of its data, the algorithms used by its

methods

• external - the interaction of the object with other objects in the
program

b From the external view, an object is an encapsulated entity,
providing a set of specific services

b These services define the interface to the object

b Recall from Chapter 2 that an object is an abstraction,
hiding details from the rest of the system

16

Encapsulation

b An object should be self-governing

b Any changes to the object's state (its variables) should be
accomplished by that object's methods

b We should make it difficult, if not impossible, for one object
to "reach in" and alter another object's state

b The user, or client, of an object can request its services, but
it should not have to be aware of how those services are
accomplished

17

Encapsulation

b An encapsulated object can be thought of as a black box
b Its inner workings are hidden to the client, which only

invokes the interface methods

Client Methods

Data

18

Visibility Modifiers

b In Java, we accomplish encapsulation through the
appropriate use of visibility modifiers

b A modifier is a Java reserved word that specifies particular
characteristics of a method or data value

b We've used the modifier final to define a constant

b Java has three visibility modifiers: public, private,
and protected

b We will discuss the protected modifier later

19

Visibility Modifiers

b Members of a class that are declared with public visibility
can be accessed from anywhere

b Members of a class that are declared with private visibility
can only be accessed from inside the class

b Members declared without a visibility modifier have default
visibility and can be accessed by any class in the same
package

b Java modifiers are discussed in detail in Appendix F

20

Visibility Modifiers

b As a general rule, no object's data should be declared with
public visibility

b Methods that provide the object's services are usually
declared with public visibility so that they can be invoked
by clients

b Public methods are also called service methods

b A method created simply to assist a service method is called
a support method

b Since a support method is not intended to be called by a
client, it should not be declared with public visibility

Method Declarations Revisited

b A method declaration begins with a method header

char calc (int num1, int num2, String message)

method
name

return
type

parameter list

The parameter list specifies the type
and name of each parameter

The name of a parameter in the method
declaration is called a formal argument

Method Declarations

b The method header is followed by the method body

char calc (int num1, int num2, String message)
{

int sum = num1 + num2;
char result = message.charAt (sum);

return result;
}

The return expression must be
consistent with the return type

sum and result
are local data

They are created each
time the method is called,
and are destroyed when
it finishes executing

23

The return Statement

b The return type of a method indicates the type of value that
the method sends back to the calling location

b A method that does not return a value has a void return
type

b The return statement specifies the value that will be
returned

b Its expression must conform to the return type

Parameters

b Each time a method is called, the actual arguments in the
invocation are copied into the formal arguments

char calc (int num1, int num2, String message)
{

int sum = num1 + num2;
char result = message.charAt (sum);

return result;
}

ch = obj.calc (25, count, "Hello");

25

Constructors Revisited

b Recall that a constructor is a special method that is used to
set up a newly created object

b When writing a constructor, remember that:
• it has the same name as the class
• it does not return a value
• it has no return type, not even void
• it often sets the initial values of instance variables

b The programmer does not have to define a constructor for
a class

Writing Classes

b See BankAccounts.java (page 188)
b See Account.java (page 189)

b An aggregate object is an object that contains references to
other objects

b An Account object is an aggregate object because it
contains a reference to a String object (that holds the
owner's name)

b An aggregate object represents a has-a relationship
b A bank account has a name

Writing Classes

b Sometimes an object has to interact with other objects of
the same type

b For example, we might add two Rational number objects
together as follows:

r3 = r1.add(r2);

b One object (r1) is executing the method and another (r2) is
passed as a parameter

b See RationalNumbers.java (page 196)
b See Rational.java (page 197)

28

Overloading Methods

b Method overloading is the process of using the same method
name for multiple methods

b The signature of each overloaded method must be unique

b The signature includes the number, type, and order of the
parameters

b The compiler must be able to determine which version of
the method is being invoked by analyzing the parameters

b The return type of the method is not part of the signature

Overloading Methods

float tryMe (int x)
{

return x + .375;
}

Version 1

float tryMe (int x, float y)
{

return x*y;
}

Version 2

result = tryMe (25, 4.32)

Invocation

30

Overloaded Methods

b The println method is overloaded:

println (String s)
println (int i)
println (double d)

etc.

b The following lines invoke different versions of the
println method:

System.out.println ("The total is:");
System.out.println (total);

31

Overloading Methods

b Constructors can be overloaded
b An overloaded constructor provides multiple ways to set up

a new object

b See SnakeEyes.java (page 203)
b See Die.java (page 204)

The StringTokenizer Class

b The next example makes use of the StringTokenizer
class, which is defined in the java.util package

b A StringTokenizer object separates a string into
smaller substrings (tokens)

b By default, the tokenizer separates the string at white space

b The StringTokenizer constructor takes the original
string to be separated as a parameter

b Each call to the nextToken method returns the next token
in the string

Method Decomposition

b A method should be relatively small, so that it can be
readily understood as a single entity

b A potentially large method should be decomposed into
several smaller methods as needed for clarity

b Therefore, a service method of an object may call one or
more support methods to accomplish its goal

b See PigLatin.java (page 207)
b See PigLatinTranslator.java (page 208)

Applet Methods

b In previous examples we've used the paint method of the
Applet class to draw on an applet

b The Applet class has several methods that are invoked
automatically at certain points in an applet's life

b The init method, for instance, is executed only once when
the applet is initially loaded

b The Applet class also contains other methods that
generally assist in applet processing

Graphical Objects

b Any object we define by writing a class can have graphical
elements

b The object must simply obtain a graphics context (a
Graphics object) in which to draw

b An applet can pass its graphics context to another object
just as it can any other parameter

b See LineUp.java (page 212)
b See StickFigure.java (page 215)

