Chapter 4. Wyiting Classes
—

Presentation slides for

Java Softwar e Solutions

Foundations of Program Design
Second Edition

by John Lewisand William L oftus

Java Softwar e Solutionsis published by Addison-Wesley

Presentation slides are copyright 2000 by John Lewisand William L oftus. All rightsreserved.
Instructor s using the textbook may use and modify these slides for pedagogical purposes.

WritingeClasses

% We've been using predefined classes. Now we will learn to
write our own classesto define new objects

Chapter 4 focuses on:
o classdeclarations
* method declarations
e Instancevariables
* encapsulation
 method overloading
 graphics-based objects

Iy
iy
2

Object®

% An object has:
o state - descriptive characteristics
* behaviors - what it can do (or be donetoit)

% For example, consider a coin that can beflipped sothat it's
face showseither " heads' or "tails"

% Thestate of the coin isitscurrent face (heads or tails)
% Thebehavior of thecoinisthat it can beflipped
% Notethat the behavior of the coin might change itsstate

Classes

% A classisablueprint of an object
|tisthemodel or pattern from which objects ar e created

For example, the St ri ng classisused todefineSt ri ng
objects

Each St ri ng object contains specific characters (its state)

% Each St ri1 ng object can perform services (behaviors) such
ast oUpper Case

Classe®
TheString classwasprovided for usby the Java

standard classlibrary
% But we can also write our own classes that define specific

objectsthat we need
For example, suppose we wanted to write a program that

simulatesthe flipping of a coin
Wecould writea Col n classto represent a coin object

Classe®
@ A class contains data declar ations and method declaratioﬁs
-)
Lnt X, ', Data declarations
char ch;
™

% M ethod declar ations

Y

Data Seope

% Thescope of dataistheareain aprogram in which that
data can be used (referenced)

% Datadeclared at the classlevel can be used by all methods
In that class

% Datadeclared within a method can only be used in that
method

% Data declared within a method is called local data

WritinggMethods

A method declaration specifies the code that will be executs
when the method isinvoked (or called)

When a method isinvoked, the flow of control jumpsto the
method and executesits code

When complete, the flow returnsto the place wherethe
method was called and continues

% Theinvocation may or may not return a value, depending
on how the method was defined

MethodControl Flow

T hecalled method could bewithin the same class, in which

case only the method name is needed

my Met hod

conput e
‘ >

|

my Met hod() ;
<
v

l /

MethodControl Flow

% The called method could be part of another classor object

~

-

mai n

|

obj . dolt();

<

|

The Com Class

% |nour Col n classwe could definethe following data:
 face, aninteger that representsthe current face
« HEADS and TAI LS, integer constantsthat represent the two
possible states

Wemight also define the following methods:
« a Col n constructor, to set up the object

« aflip method, toflip thecoin
e aget Face method, toreturn the current face
e atoStri ng method, toreturn astring description for printing

The Com Class

% See CountFlipsjava (page 179)
% See Coin.java (page 180)

Oncethe Col n class has been defined, we can useit again
In other programs as needed

% Notethat the Count Fl | ps program did not usethe
t oSt ri ng method

A program will not necessarily use every service provided
by an object

Instan€e Data

% Theface variablein the Coi n classis called instance atEa
because each instance (object) of the Coi n classhasitsown

A classdeclaresthetype of the data, but it does not reserve
any memory space for it

% Everytimea Col n object iscreated, anew f ace variable
IS created as well

% Theobjectsof aclass sharethe method definitions, but they
have unique data space

% That'sthe only way two objects can have different states

Instan€e Data

See FlipRace.java (page 182)

cl ass Coin coind
- p
I nt face: face 0
Coi n2
face 1
_ J

Encapsuolation

% You can take one of two views of an object:
e internal - thestructureof itsdata, thealgorithmsused by its
methods

 external - theinteraction of the object with other objectsin the
program

From the external view, an object is an encapsulated entity,
providing a set of specific services

% Theseservices definethe interface to the object

% Recall from Chapter 2 that an object isan abstraction,
“my- hiding details from therest of the system

15

Encapsuolation

An object should be salf-governing

Any changesto the object's state (its variables) should be
accomplished by that object's methods

Weshould makeit difficult, if not impossible, for one object
to"reach in" and alter another object's state

Theuser, or client, of an object can request its services, but
It should not haveto be awar e of how those services are

accomplished

Encapsuolation

An encapsulated object can be thought of as a black box

% |tsinner workingsare hidden to the client, which only
Invokesthe interface methods

Client @ :

o - 17

Visibility Modifiers

% |n Java, we accomplish encapsulation through the
appropriate use of visibility modifiers

A modifier isa Javareserved word that specifies particular
characteristics of a method or data value

We'veused the modifier f i1 nal to define a constant

Java hasthreevisbility modifiers. publ i c,pri vat e,
and pr ot ect ed

Wewill discussthe pr ot ect ed modifier later
[

uuuuuu 18

Visibility Modifiers

Membersof aclassthat are declared with public visibility

can be accessed from anywhere

Membersof aclassthat are declared with private visibility

can only be accessed from inside the class

% Members declared without a visibility modifier have default
visibility and can be accessed by any classin the same

package

% Java modifiersare discussed in detail in Appendix F

19

Visibility Modifiers

Asadgeneral rule, noobject's data should be declared wi
public visibility

:
th

% Methodsthat providethe object's services are usually
declared with public visibility so that they can be invoked
by clients

Public methods ar e also called service methods

% A method created smply to assist a service method is called
a support method

% Sinceasupport method isnot intended to be called by a
client, it should not be declared with public visibility

20

MethodDeclarations Revisited

% A method declaration begins with a method header

I nt nun®, String nessage)
_/

char calc (int nunil,
T N
——
T]Ztrizd parameter list
return The parameter list specifiesthetype
type and name of each parameter
The name of a parameter in the method
declaration is called a formal argument

MethodDeclarations

% Themethod header isfollowed by the method body
I nt nun®, String nessage)

char calc (int nunt,

{
I nt sum = nunl + nun®;
message. char At (sun);

char result =
return result:
) sumand resul t
T arelocal data
They are created each
time the method is called,

Thereturn expression must be
consistent with the return type

and are destroyed when
It finishes executing

The retorn Statement

% Thereturn type of a method indicates the type of value that
the method sends back to the calling location

% A method that doesnot return avaluehasa voi d return
type

% Thereturn statement specifiesthe value that will be
returned

|tsexpression must conform to thereturn type

Ml
|
| - |

Parameters
% Each timea method iscalled, the actual argumentsin the
Invocation ar e copied into the formal arguments

ch = obj.calc (25, count, "Hello");
B L |
v v v
I nt nun®, String nessage)

char calc (int nunt,

{
I nt sum = nunl + nun®;
result = nessage.charAt (sum;

char
return result:
1]

Construactors Revisited

% Recall that a constructor isa special method that isused to
set up a newly created object

% \When writing a constructor, remember that:

e it hasthe same name asthe class

e it doesnot return avalue
* it hasnoreturn type, not even voi d

It often setstheinitial values of instance variables

Theprogrammer does not haveto define a constructor for
aclass

WritingClasses

% See BankAccounts.java (page 188)
% See Account.java (page 189)

An aggregate object Isan object that containsreferencesto
other objects

% An Account object isan aggregate object because it
containsareferencetoa St ri ng object (that holdsthe

owner's name)
AN aggregate object represents a has-a relationship
A bank account hasa name

WritingClasses

Sometimes an object hasto interact with other objects of

the sametype
% For example, we might add two Rat | onal number objects

together asfollows:
r3 = rl.add(r2);

Oneobject (r 1) iIsexecuting the method and another (r 2) is
passed as a parameter

+ See RationalNumbers.java (page 196)
See Rational.java (page 197)

Overloawing Methods

% Method overloading isthe process of using the same methodg
name for multiple methods

Thesignature of each overloaded method must be unique

Thesgnatureincludesthe number, type, and order of the
parameters

% Thecompiler must be able to determine which version of
the method isbeing invoked by analyzing the parameters

% Thereturn type of the method isnot part of the signature

----- 28

Overloading Methods

Version 1 Version 2
float tryMe (int Xx) float tryMe (int x, float y)
{ {
return x + .375; return x*y;
} }
| nvocation

result = tryMe (25, 4.32)

Overloaned Methods

The println method isoverloaded:

println (String s)

println (int i)
println (double d)

etc.
Thefollowing linesinvoke different versions of the

printl n method:
1s:");

Systemout.println ("The total
. Systemout.println (total);

30

Overloawing Methods

% Constructorscan be overloaded
% An overloaded constructor provides multiple waysto set up
a new obj ect

% See ShakeEyes.ava (page 203)
See Diejava (page 204)

Iy
iy
31

The StringTokenizer Class

% Thenext example makesuse of the St ri ngTokeni zer
class, which isdefined in thej ava. uti | package

A StringTokeni zer object separatesa string into
smaller substrings (tokens)

% By default, thetokenizer separatesthe string at white space

TheStringTokeni zer constructor takestheoriginal
string to be separated as a parameter

Each call tothenext Token method returnsthe next token
In the string

Method:Decomposition

% A method should berelatively small, so that it can be
readily understood as a single entity

% A potentially large method should be decomposed into
several smaller methods as needed for clarity

% Therefore, a service method of an object may call one or
mor e support methods to accomplish its goal

% See PigL atin.java (page 207)
% SeePigLatinTrandator.java (page 208)

Applet Methods

% |n previous exampleswe've used the pai nt method of th
Appl et classtodraw on an applet

% The Appl et class hasseveral methodsthat areinvoked
automatically at certain pointsin an applet'slife

% Thel nit method, for instance, is executed only once when
theapplet isinitially loaded

TheAppl et classalso contains other methods that

generally assist in applet processing

Graphical Objects

% Any object we define by writing a class can have graphical
elements

% Theobject must smply obtain a graphics context (a
G aphi cs object) in which to draw

An applet can passits graphics context to another object
just asit can any other parameter

SeeLineUp.java (page 212)
See StickFigure.java (page 215)

