Presentation slides for

Java Softwar e Solutions

Foundations of Program Design
Second Edition

by John Lewisand William L oftus

Java Softwar e Solutionsis published by Addison-Wesley

Presentation dides ar e copyright 2000 by John Lewisand William L oftus. All rightsreserved.
Instructorsusing the textbook may use and modify these slides for pedagogical pur poses.

4 A
]

0 We can now explore various aspects of classes and objects
In mor e detail

0 Chapter 5 focuseson:
* oObject referencesand aliases
e passing objects as parameters
» thestatic modifier
e nested classes
 Interfacesand polymorphism
 eventsand listeners
e animation

4 A
]

0 Recall from Chapter 2 that an object reference holdsthe
memory address of an object

0 Rather than dealing with arbitrary addresses, we often
depict a reference graphically as a “pointer” to an object

ChessPi ece bi shopl = new ChessPi ece();

bi shopl
4>1

Assignment Revisited
s

0 Theact of assignment takes a copy of a value and storesit
In avariable

0 For primitivetypes.

nun? = nuni;
Before After
numnl nun numnl nun
5 12 5 5
L |

0 For object references, assignment copiesthe memory
location:

bl shop2 bi shopl;
Before After
bi shopl bishop2 bi shopl

bi shop?2

‘140

Lo

Aliases>

0 Two or morereferencesthat refer tothe sameobject are
called aliases of each other

0 Oneobject (and itsdata) can be accessed using different
variables

0 Aliases can be useful, but should be managed car efully

0 Changing the object’s state (its variables) through one
reference changes it for all of its aliases

0 When an object no longer hasany valid referencestoit, |
can no longer be accessed by the program

~

0 It isuseless, and therefore called garbage

0 Java performs automatic garbage collection periodically,

returning an object’smemory to the system for future use

0 In other languages, the programmer hasthe responsibility

for performing garbage collection

.

Passing0hjects to Methods

0 Parametersin a Java method are passed by value

0 Thismeansthat a copy of the actual parameter (thevalue
passed in) isstored into the formal parameter (in the
method header)

0 Passing parametersis essentially an assignment

0 When an object ispassed to a method, the actual parameter

and the formal parameter become aliases of each other

{

Passing0hjects to Methods

0 What you do to a parameter inside a method may or may
not have a permanent effect (outside the method)

0 See Parameter Passing.java (page 226)
0 See Parameter Tester.|ava (page 228)
0 See Num.java (page 230)

0 Notethedifference between changing the reference and

changing the object that thereference pointsto

The static Modifier

0 In Chapter 2 we discussed static methods (also called class
methods) that can be invoked through the class name
rather than through a particular object

0 For example, the methods of the Vat h class are static

0 Tomakeamethod static, we apply thest at | ¢ modifier to

the method definition

0 Thest ati ¢ modifier can be applied to variables as well

0 It associates a variable or method with the classrather than

an object

10

cl ass Hel per

4 I

public static int triple (int num

{
I nt result;
result = num* 3;
return result;

}
\)

val ue

Because it is gtatic, the method could be invoked as:

Hel per.triple (5);

11

0 Theorder of the modifierscan beinterchanged, but by
convention visibility modifiers come fir st

0 Recall that the mai n method isstatic; it isinvoked by the

system without creating an object

0 Static methods cannot refer ence instance variables, because

Instance variablesdon’t exist until an object exists

0 However, they can reference static variables or |ocal

variables

12

Static ariables

0 Static variables are sometimes called class variables

0 Normally, each object hasits own data space

0 If avariableisdeclared as static, only one copy of the
variable exists
private static float price;

classin which it isdeclared isloaded

0 Memory spacefor a static variableis created as soon asthe

13

0 All objectscreated from the class share accessto the static
variable

0 Changing the value of a static variable in one object

changesit for all others

0 Static methods and variables often work together

0 See Countlnstances.java (page 233)
0 See MyClass.|ava (page 234)

Nested€lasses

0 In addition to a class containing data and methods, it can
also contain other classes

0 A class declared within another classis called a nested class

4 N
Outer Class
4)
Nested
Class
- J
_
i
i

/

Nested€lasses

0 A nested class has accessto the variables and methods of
the outer class, even if they aredeclared private

0 In certain situationsthis makes the implementation of the
classes easier because they can easily share information

0 Furthermore, the nested class can be protected by the outer
classfrom external use

0 Thisisa special relationship and should be used with care

Nested€lasses

0 A nested class produces a separ ate bytecode file

0 If anested classcalled Insideisdeclared in an outer class
called Outside, two bytecode fileswill be produced:

Qut si de. cl ass
Qut si de$%l nsi de. cl ass

0 Nested classes can be declared as static, in which casethey
cannot refer to instance variables or methods

0 A nonstatic nested classis called an inner class

0 A Javainterfaceisa collection of abstract methods and
constants

0 An abstract method 1s a method header without a method

body

0 An abstract method can be declared using the modifier

abstract , but because all methodsin an interfaceare
abstract, it isusually left off

0 Aninterfaceisused to formally define a set of methods that

a class will implement

interfaceisareserved word

1 None of the methodsin an
interface are given

public interface Doable a definition (body)
{

public void doThis();

public int doThat();

public void doThis2 (float val ue, char ch);

publ i ¢ bool ean doTheQt her (int num;
}

/

A semicolon immediately
follows each method header

0 An interface cannot be instantiated

0 Methodsin an interface have public visibility by default

0 A classformally implements an interface by
e dtating soin the class header

 providing implementationsfor each abstract method in the
interface

0 If aclassassertsthat it implementsan interface, it must
define all methodsin the interface or the compiler will
produceerrors.

L

public class CanDo i npl enments Doabl e

{ ~

public void doThis ()

{ Implementsisa
/1 what ever reserved word
}
. = \
public void doThat () Each method listed
{ A > inDoableis
atever given a definition
} P
/] etc.

0 A classthat implements an interface can implement other
methods as well

0 See Speaker.java (page 236)
0 See Philosopher.java (page 237)
0 See Dog.java (page 238)

0 A class can implement multiple interfaces

0 Theinterfacesarelisted in the implements clause,
separated by commas

0 Theclassmust implement all methodsin all interfaces
listed in the header

.

Polymorphism via Interfaces

0 An interface name can be used asthe type of an object
reference variable

Doabl e obj ;

0 Theobj reference can beused to point to any object of any
classthat implementsthe Doabl e interface

0 Theversion of doThi s that the following lineinvokes
depends on thetype of object that obj isreferringto:

obj . doThi s();

{

Polymorphism via Interfaces

0 That reference is polymorphic, which can be defined as
" having many for ms"

0 That line of code might execute different methods at
different timesif the object that obj pointsto changes

0 See Talking.java (page 240)

0 Notethat polymorphic references must be resolved at run

time; thisiscalled dynamic binding

0 Careful use of polymorphic references can lead to elegant,

robust software designs

0 TheJava standard classlibrary contains many interfaces

that are helpful in certain situations

0 TheConpar abl e interface contains an abstract method

called conpar eTo, which isused to compare two objects

0 TheStri ng classimplements Conpar abl e which gives

usthe ability to put stringsin alphabetical order

0 Thel t er at or interface contains methodsthat allow the

user to move through a collection of objects easily

Eventso

0 An event isan object that represents some activity to which
we may want to respond

0 For example, we may want our program to perform some
action when the following occurs:

 themouseis moved

e amouse button isclicked
 themouseisdragged

» agraphical buttonisclicked
 akeyboard key ispressed
o atimer expires

0 Often events correspond to user actions, but not always

Eventso

0 TheJava standard classlibrary contains several classes
that represent typical events

0 Certain objects, such asan applet or a graphical button,
generate (fire) an event when it occurs

0 Other objects, called listeners, respond to events

0 Wecan writelistener objectsto do whatever we want when
an event occurs

Events and Listeners
1

Event

Generator

Listener

This object may
generate an event

This object waitsfor and
respondsto an event

When an event occurs, the generator calls
the appropriate method of thelistener,
i

L

passing an object that describesthe event
i

Listenevinterfaces

0 Wecan createalistener object by writing a class that
Implements a particular listener interface

0 TheJava standard classlibrary contains several interfaces
that correspond to particular event categories

0 For example, the Mouseli st ener interface contains
methods that correspond to mouse events

0 After creating thelistener, we add thelistener to the
component that might generate the event to set up aformal
relationship between the generator and listener

Mouse Events

0 Thefollowing are mouse events:

mouse pressed - the mouse button is pressed down
mouse released - the mouse button isreleased
mouse clicked - the mouse button is pressed and released

mouse entered - the mouse pointer ismoved over a particular
component

mouse exited - the mouse pointer ismoved off of a particular
component

0 Any given program can listen for some, none, or all of these

0 See Dots.|ava (page 246)

0 See DotsMousel istener.java (page 248)

0 Thefollowing are called mouse motion events:
* mouse moved - the mouse is moved

* mouse dragged - the mouse is moved while the mouse button is held
down

0 Thereisacorresponding MouseMbt | onLi st ener
Interface

0 Oneclass can serveasboth agenerator and a listener
0 Oneclasscan serveasalistener for multiple event types

0 See RubberLines.ava (page 249)

Key Events

0 Thefollowing are called key events:

» keypressed - a keyboard key is pressed down
 keyreleased - a keyboard key isreleased
» keytyped - akeyboard key ispressed and released

0 TheKeylLi st ener interface handles key events

0 Listener classes are often implemented asinner classes,
nested within the component that they arelistening to

0 See Direction.java (page 253)

0 An animation isa constantly changing series of picturesor
Images that createtheilluson of movement

0 We can create animationsin Java by changing a picture
dightly over time

0 The speed of a Java animation isusually controlled by a
Ti mer object

0 TheTi mer classisdefined in thej avax. sw ng package

0 A Ti mer object generatesan Acti onEvent everyn
milliseconds (wheren is set by the object creator)

0 TheActi onLi st ener Interface containsan
acti onPer f or mred method

0 Whenever thetimer expires(generating an Act 1 onEvent)
the animation can be updated

0 See Rebound.|ava (page 258)

