
&KDSWHU�����(QKDQFLQJ�&ODVVHV�

Presentation slides for

Java Software Solutions
Foundations of Program Design

Second Edition

by John Lewis and William Loftus

Java Software Solutions is published by Addison-Wesley

Presentation slides are copyright 2000 by John Lewis and William Loftus. All rights reserved.

Instructors using the textbook may use and modify these slides for pedagogical purposes.

�

(QKDQFLQJ�&ODVVHV

❂ We can now explore various aspects of classes and objects
in more detail

❂ Chapter 5 focuses on:
• object references and aliases
• passing objects as parameters
• the static modifier
• nested classes
• interfaces and polymorphism
• events and listeners
• animation

�

5HIHUHQFHV

❂ Recall from Chapter 2 that an object reference holds the
memory address of an object

❂ Rather than dealing with arbitrary addresses, we often
depict a reference graphically as a “pointer” to an object

ChessPiece bishop1 = new ChessPiece();

bishop1

�

$VVLJQPHQW�5HYLVLWHG

❂ The act of assignment takes a copy of a value and stores it
in a variable

❂ For primitive types:

num2 = num1;

Before

num1

5

num2

12

After

num1

5

num2

5

�

5HIHUHQFH�$VVLJQPHQW

❂ For object references, assignment copies the memory
location:

bishop2 = bishop1;

Before

bishop1 bishop2

After

bishop1 bishop2

�

$OLDVHV

❂ Two or more references that refer to the same object are
called aliases of each other

❂ One object (and its data) can be accessed using different
variables

❂ Aliases can be useful, but should be managed carefully

❂ Changing the object’s state (its variables) through one
reference changes it for all of its aliases

�

*DUEDJH�&ROOHFWLRQ

❂ When an object no longer has any valid references to it, it
can no longer be accessed by the program

❂ It is useless, and therefore called garbage

❂ Java performs automatic garbage collection periodically,
returning an object’s memory to the system for future use

❂ In other languages, the programmer has the responsibility
for performing garbage collection

3DVVLQJ�2EMHFWV�WR�0HWKRGV

❂ Parameters in a Java method are passed by value

❂ This means that a copy of the actual parameter (the value
passed in) is stored into the formal parameter (in the
method header)

❂ Passing parameters is essentially an assignment

❂ When an object is passed to a method, the actual parameter
and the formal parameter become aliases of each other

3DVVLQJ�2EMHFWV�WR�0HWKRGV

❂ What you do to a parameter inside a method may or may
not have a permanent effect (outside the method)

❂ See ParameterPassing.java (page 226)
❂ See ParameterTester.java (page 228)
❂ See Num.java (page 230)

❂ Note the difference between changing the reference and
changing the object that the reference points to

��

7KH�VWDWLF�0RGLILHU

❂ In Chapter 2 we discussed static methods (also called class
methods) that can be invoked through the class name
rather than through a particular object

❂ For example, the methods of the Math class are static

❂ To make a method static, we apply the static modifier to
the method definition

❂ The static modifier can be applied to variables as well

❂ It associates a variable or method with the class rather than
an object

��

6WDWLF�0HWKRGV

public static int triple (int num)
{

int result;
result = num * 3;
return result;

}

class Helper

Because it is static, the method could be invoked as:

value = Helper.triple (5);

��

6WDWLF�0HWKRGV

❂ The order of the modifiers can be interchanged, but by
convention visibility modifiers come first

❂ Recall that the main method is static; it is invoked by the
system without creating an object

❂ Static methods cannot reference instance variables, because
instance variables don’t exist until an object exists

❂ However, they can reference static variables or local
variables

��

6WDWLF�9DULDEOHV

❂ Static variables are sometimes called class variables

❂ Normally, each object has its own data space

❂ If a variable is declared as static, only one copy of the
variable exists

private static float price;

❂ Memory space for a static variable is created as soon as the
class in which it is declared is loaded

6WDWLF�9DULDEOHV

❂ All objects created from the class share access to the static
variable

❂ Changing the value of a static variable in one object
changes it for all others

❂ Static methods and variables often work together

❂ See CountInstances.java (page 233)
❂ See MyClass.java (page 234)

1HVWHG�&ODVVHV

❂ In addition to a class containing data and methods, it can
also contain other classes

❂ A class declared within another class is called a nested class

Outer Class

Nested
Class

1HVWHG�&ODVVHV

❂ A nested class has access to the variables and methods of
the outer class, even if they are declared private

❂ In certain situations this makes the implementation of the
classes easier because they can easily share information

❂ Furthermore, the nested class can be protected by the outer
class from external use

❂ This is a special relationship and should be used with care

1HVWHG�&ODVVHV

❂ A nested class produces a separate bytecode file

❂ If a nested class called Inside is declared in an outer class
called Outside, two bytecode files will be produced:

Outside.class

Outside$Inside.class

❂ Nested classes can be declared as static, in which case they
cannot refer to instance variables or methods

❂ A nonstatic nested class is called an inner class

,QWHUIDFHV

❂ A Java interface is a collection of abstract methods and
constants

❂ An abstract method is a method header without a method
body

❂ An abstract method can be declared using the modifier
abstract, but because all methods in an interface are
abstract, it is usually left off

❂ An interface is used to formally define a set of methods that
a class will implement

,QWHUIDFHV

public interface Doable
{

public void doThis();
public int doThat();
public void doThis2 (float value, char ch);
public boolean doTheOther (int num);

}

interface is a reserved word
None of the methods in an

interface are given
a definition (body)

A semicolon immediately
follows each method header

,QWHUIDFHV

❂ An interface cannot be instantiated

❂ Methods in an interface have public visibility by default

❂ A class formally implements an interface by
• stating so in the class header
• providing implementations for each abstract method in the

interface

❂ If a class asserts that it implements an interface, it must
define all methods in the interface or the compiler will
produce errors.

,QWHUIDFHV

public class CanDo implements Doable
{

public void doThis ()
{

// whatever
}

public void doThat ()
{

// whatever
}

// etc.
}

implements is a
reserved word

Each method listed
in Doable is

given a definition

,QWHUIDFHV

❂ A class that implements an interface can implement other
methods as well

❂ See Speaker.java (page 236)
❂ See Philosopher.java (page 237)
❂ See Dog.java (page 238)

❂ A class can implement multiple interfaces
❂ The interfaces are listed in the implements clause,

separated by commas
❂ The class must implement all methods in all interfaces

listed in the header

3RO\PRUSKLVP�YLD�,QWHUIDFHV

❂ An interface name can be used as the type of an object
reference variable

Doable obj;

❂ The obj reference can be used to point to any object of any
class that implements the Doable interface

❂ The version of doThis that the following line invokes
depends on the type of object that obj is referring to:

obj.doThis();

3RO\PRUSKLVP�YLD�,QWHUIDFHV

❂ That reference is polymorphic, which can be defined as
"having many forms"

❂ That line of code might execute different methods at
different times if the object that obj points to changes

❂ See Talking.java (page 240)

❂ Note that polymorphic references must be resolved at run
time; this is called dynamic binding

❂ Careful use of polymorphic references can lead to elegant,
robust software designs

,QWHUIDFHV

❂ The Java standard class library contains many interfaces
that are helpful in certain situations

❂ The Comparable interface contains an abstract method
called compareTo, which is used to compare two objects

❂ The String class implements Comparable which gives
us the ability to put strings in alphabetical order

❂ The Iterator interface contains methods that allow the
user to move through a collection of objects easily

(YHQWV

❂ An event is an object that represents some activity to which
we may want to respond

❂ For example, we may want our program to perform some
action when the following occurs:
• the mouse is moved
• a mouse button is clicked
• the mouse is dragged
• a graphical button is clicked
• a keyboard key is pressed
• a timer expires

❂ Often events correspond to user actions, but not always

(YHQWV

❂ The Java standard class library contains several classes
that represent typical events

❂ Certain objects, such as an applet or a graphical button,
generate (fire) an event when it occurs

❂ Other objects, called listeners, respond to events

❂ We can write listener objects to do whatever we want when
an event occurs

(YHQWV�DQG�/LVWHQHUV

Generator

This object may
generate an event

Listener

This object waits for and
responds to an event

Event

When an event occurs, the generator calls
the appropriate method of the listener,

passing an object that describes the event

/LVWHQHU�,QWHUIDFHV

❂ We can create a listener object by writing a class that
implements a particular listener interface

❂ The Java standard class library contains several interfaces
that correspond to particular event categories

❂ For example, the MouseListener interface contains
methods that correspond to mouse events

❂ After creating the listener, we add the listener to the
component that might generate the event to set up a formal
relationship between the generator and listener

0RXVH�(YHQWV

❂ The following are mouse events:
• mouse pressed - the mouse button is pressed down
• mouse released - the mouse button is released
• mouse clicked - the mouse button is pressed and released
• mouse entered - the mouse pointer is moved over a particular

component
• mouse exited - the mouse pointer is moved off of a particular

component

❂ Any given program can listen for some, none, or all of these

❂ See Dots.java (page 246)
❂ See DotsMouseListener.java (page 248)

0RXVH�0RWLRQ�(YHQWV

❂ The following are called mouse motion events:
• mouse moved - the mouse is moved
• mouse dragged - the mouse is moved while the mouse button is held

down

❂ There is a corresponding MouseMotionListener
interface

❂ One class can serve as both a generator and a listener
❂ One class can serve as a listener for multiple event types

❂ See RubberLines.java (page 249)

.H\�(YHQWV

❂ The following are called key events:
• key pressed - a keyboard key is pressed down
• key released - a keyboard key is released
• key typed - a keyboard key is pressed and released

❂ The KeyListener interface handles key events

❂ Listener classes are often implemented as inner classes,
nested within the component that they are listening to

❂ See Direction.java (page 253)

$QLPDWLRQV

❂ An animation is a constantly changing series of pictures or
images that create the illusion of movement

❂ We can create animations in Java by changing a picture
slightly over time

❂ The speed of a Java animation is usually controlled by a
Timer object

❂ The Timer class is defined in the javax.swing package

$QLPDWLRQV

❂ A Timer object generates an ActionEvent every n
milliseconds (where n is set by the object creator)

❂ The ActionListener interface contains an
actionPerformed method

❂ Whenever the timer expires (generating an ActionEvent)
the animation can be updated

❂ See Rebound.java (page 258)

