
&KDSWHU�����$UUD\V�DQG�9HFWRUV�

Presentation slides for

Java Software Solutions
Foundations of Program Design

Second Edition

by John Lewis and William Loftus

Java Software Solutions is published by Addison-Wesley

Presentation slides are copyright 2000 by John Lewis and William Loftus. All rights reserved.

Instructors using the textbook may use and modify these slides for pedagogical purposes.

�

$UUD\V�DQG�9HFWRUV

❂ Arrays and vectors are objects that help us organize large
amounts of information

❂ Chapter 6 focuses on:
• array declaration and use
• arrays of objects
• sorting elements in an array
• multidimensional arrays
• the Vector class

• using arrays to manage graphics

�

$UUD\V

❂ An array is an ordered list of values

0 1 2 3 4 5 6 7 8 9

79 87 94 82 67 98 87 81 74 91

An array of size N is indexed from zero to N-1

scores

The entire array
has a single name

Each value has a numeric index

This array holds 10 values that are indexed from 0 to 9

�

$UUD\V

❂ A particular value in an array is referenced using the array
name followed by the index in brackets

❂ For example, the expression

scores[2]

refers to the value 94 (which is the 3rd value in the array)

❂ That expression represents a place to store a single integer,
and can be used wherever an integer variable can

❂ For example, it can be assigned a value, printed, or used in
a calculation

�

$UUD\V

❂ An array stores multiple values of the same type

❂ That type can be primitive types or objects

❂ Therefore, we can create an array of integers, or an array
of characters, or an array of String objects, etc.

❂ In Java, the array itself is an object

❂ Therefore the name of the array is a object reference
variable, and the array itself is instantiated separately

�

'HFODULQJ�$UUD\V

❂ The scores array could be declared as follows:

int[] scores = new int[10];

❂ Note that the type of the array does not specify its size, but
each object of that type has a specific size

❂ The type of the variable scores is int[] (an array of
integers)

❂ It is set to a new array object that can hold 10 integers

❂ See BasicArray.java (page 270)

�

'HFODULQJ�$UUD\V

❂ Some examples of array declarations:

float[] prices = new float[500];

boolean[] flags;

flags = new boolean[20];

char[] codes = new char[1750];

�

%RXQGV�&KHFNLQJ

❂ Once an array is created, it has a fixed size

❂ An index used in an array reference must specify a valid
element

❂ That is, the index value must be in bounds (0 to N-1)

❂ The Java interpreter will throw an exception if an array
index is out of bounds

❂ This is called automatic bounds checking

%RXQGV�&KHFNLQJ

❂ For example, if the array codes can hold 100 values, it can
only be indexed using the numbers 0 to 99

❂ If count has the value 100, then the following reference
will cause an ArrayOutOfBoundsException:

System.out.println (codes[count]);

❂ It’s common to introduce off-by-one errors when using
arrays

for (int index=0; index <= 100; index++)
codes[index] = index*50 + epsilon;

problem

��

%RXQGV�&KHFNLQJ

❂ Each array object has a public constant called length that
stores the size of the array

❂ It is referenced using the array name (just like any other
object):

scores.length

❂ Note that length holds the number of elements, not the
largest index

❂ See ReverseNumbers.java (page 272)
❂ See LetterCount.java (page 274)

��

$UUD\�'HFODUDWLRQV�5HYLVLWHG

❂ The brackets of the array type can be associated with the
element type or with the name of the array

❂ Therefore the following declarations are equivalent:

float[] prices;

float prices[];

❂ The first format is generally more readable

��

,QLWLDOL]HU /LVWV

❂ An initializer list can be used to instantiate and initialize an
array in one step

❂ The values are delimited by braces and separated by
commas

❂ Examples:

int[] units = {147, 323, 89, 933, 540,

269, 97, 114, 298, 476};

char[] letterGrades = {’A’, ’B’, ’C’, ’D’, ’F’};

��

,QLWLDOL]HU /LVWV

❂ Note that when an initializer list is used:
• the new operator is not used

• no size value is specified

❂ The size of the array is determined by the number of items
in the initializer list

❂ An initializer list can only be used in the declaration of an
array

❂ See Primes.java (page 278)

��

$UUD\V�DV�3DUDPHWHUV

❂ An entire array can be passed to a method as a parameter

❂ Like any other object, the reference to the array is passed,
making the formal and actual parameters aliases of each
other

❂ Changing an array element in the method changes the
original

❂ An array element can be passed to a method as well, and
will follow the parameter passing rules of that element’s
type

��

$UUD\V�RI�2EMHFWV

❂ The elements of an array can be object references

❂ The following declaration reserves space to store 25
references to String objects

String[] words = new String[25];

❂ It does NOT create the String objects themselves

❂ Each object stored in an array must be instantiated
separately

❂ See GradeRange.java (page 280)

&RPPDQG�/LQH�$UJXPHQWV

❂ The signature of the main method indicates that it takes an
array of String objects as a parameter

❂ These values come from command-line arguments that are
provided when the interpreter is invoked

❂ For example, the following invocation of the interpreter
passes an array of three String objects into main:

> java DoIt pennsylvania texas california

❂ These strings are stored at indexes 0-2 of the parameter

❂ See NameTag.java (page 281)

��

$UUD\V�RI�2EMHFWV

❂ Objects can have arrays as instance variables

❂ Therefore, fairly complex structures can be created simply
with arrays and objects

❂ The software designer must carefully determine an
organization of data and objects that makes sense for the
situation

❂ See Tunes.java (page 282)
❂ See CDCollection.java (page 284)
❂ See CD.java (page 286)

��

6RUWLQJ

❂ Sorting is the process of arranging a list of items into a
particular order

❂ There must be some value on which the order is based

❂ There are many algorithms for sorting a list of items

❂ These algorithms vary in efficiency

❂ We will examine two specific algorithms:
• Selection Sort
• Insertion Sort

��

6HOHFWLRQ�6RUW

❂ The approach of Selection Sort:
• select one value and put it in its final place in the sort list
• repeat for all other values

❂ In more detail:
• find the smallest value in the list
• switch it with the value in the first position
• find the next smallest value in the list
• switch it with the value in the second position
• repeat until all values are placed

��

6HOHFWLRQ�6RUW

❂ An example:

original: 3 9 6 1 2

smallest is 1: 1 9 6 3 2

smallest is 2: 1 2 6 3 9

smallest is 3: 1 2 3 6 9

smallest is 6: 1 2 3 6 9

❂ See SortGrades.java (page 289)
❂ See Sorts.java (page 290) -- the selectionSort

method

��

,QVHUWLRQ�6RUW

❂ The approach of Insertion Sort:
• Pick any item and insert it into its proper place in a sorted sublist
• repeat until all items have been inserted

❂ In more detail:
• consider the first item to be a sorted sublist (of one item)
• insert the second item into the sorted sublist, shifting items as

necessary to make room to insert the new addition
• insert the third item into the sorted sublist (of two items), shifting as

necessary
• repeat until all values are inserted into their proper position

��

,QVHUWLRQ�6RUW

❂ An example:

original: 3 9 6 1 2

insert 9: 3 9 6 1 2

insert 6: 3 6 9 1 2

insert 1: 1 3 6 9 2

insert 2: 1 2 3 6 9

❂ See Sorts.java (page 290) -- the insertionSort
method

��

6RUWLQJ�2EMHFWV

❂ Integers have an inherent order, but the order of a set of
objects must be defined by the person defining the class

❂ Recall that a Java interface can be used as a type name and
guarantees that a particular class has implemented
particular methods

❂ We can use the Comparable interface to develop a generic
sort for a set of objects

❂ See SortPhoneList.java (page 294)

❂ See Contact.java (page 295)
❂ See Sorts.java (page 290)

��

&RPSDULQJ�6RUWV

❂ Both Selection and Insertion sorts are similar in efficiency

❂ The both have outer loops that scan all elements, and inner
loops that compare the value of the outer loop with almost
all values in the list

❂ Therefore approximately n2 number of comparisons are
made to sort a list of size n

❂ We therefore say that these sorts are of order n2

❂ Other sorts are more efficient: order n log2 n

��

7ZR�'LPHQVLRQDO�$UUD\V

❂ A one-dimensional array stores a simple list of values

❂ A two-dimensional array can be thought of as a table of
values, with rows and columns

❂ A two-dimensional array element is referenced using two
index values

❂ To be precise, a two-dimensional array in Java is an array
of arrays

❂ See TwoDArray.java (page 299)

��

0XOWLGLPHQVLRQDO�$UUD\V

❂ An array can have as many dimensions as needed, creating
a multidimensional array

❂ Each dimension subdivides the previous one into the
specified number of elements

❂ Each array dimension has its own length constant

❂ Because each dimension is an array of array references, the
arrays within one dimension could be of different lengths

��

7KH�Vector &ODVV

❂ An object of class Vector is similar to an array in that it
stores multiple values

❂ However, a vector
• only stores objects
• does not have the indexing syntax that arrays have

❂ The methods of the Vector class are used to interact with
the elements of a vector

❂ The Vector class is part of the java.util package

❂ See Beatles.java (page 304)

��

7KH�Vector &ODVV

❂ An important difference between an array and a vector is
that a vector can be thought of as a dynamic, able to change
its size as needed

❂ Each vector initially has a certain amount of memory space
reserved for storing elements

❂ If an element is added that doesn’t fit in the existing space,
more room is automatically acquired

��

7KH�9HFWRU�&ODVV

❂ The Vector class is implemented using an array

❂ Whenever new space is required, a new, larger array is
created, and the values are copied from the original to the
new array

❂ To insert an element, existing elements are first copied, one
by one, to another position in the array

❂ Therefore, the implementation of Vector in the API is not
very efficient for inserting elements

3RO\JRQV�DQG�3RO\OLQHV

❂ Arrays are often helpful in graphics processing

❂ Polygons and polylines are shapes that are defined by
values stored in arrays

❂ A polyline is similar to a polygon except that its endpoints
do not meet, and it cannot be filled

❂ See Rocket.java (page 307)

❂ There is also a separate Polygon class that can be used to
define and draw a polygon

6DYLQJ�'UDZLQJ�6WDWH

❂ Each time the repaint method is called on an applet, the
window is cleared prior to calling paint

❂ An array or vector can be used to store the objects drawn,
and redraw them as necessary

❂ See Dots2.java (page 310)

