Chapter 7: dnhentance

Pr esentation slides for

Java Softwar e Solutrons

Feundations of Pregram Design
Second Edition

Py John L ewis and William: L oftus

Java Software Solutions is published by Addisen-\Wesley

Presentation slides are copyright 2000 by John Lewis and William L oftus. All rights reserved.
Instructors using the textbook may use and modify these siides for pedagogical pur poses.

Inheritance

Anether fundamental object-oriented techniguelscalled

Inheritance, Which enlhiances software design and promotes
reuse

Chapter 7 fecuses on:
deriving new: classes
creating|classhierarcnies
the pr ot ect ed modifier
polymerphism viainheritance
Inheritance usediin graphical user interfaces

Inheritance

Inhertanceallows a software developer to deriveanew
classifirem an existing one

TThe existing classiis called the parent ¢lass, or Supercliass, or
Pase class

Thederived classis called the child class or subclass.

Asthename implies, the child inherits characteristics of the
parent

That Is; the child classinheritsthe methods and data
defined for the parent class

Inheritance

Inheritance reiationships are eften snewn graphically inia
classidiagram, With thearrow pointing te the parent class

Vehi cl e

Car

Inheritance sapuld create aniis-a reatiensnip, meaning
thechild 1s.a more specific version of the parent

Deriving Sukclasses

IR Java, we use the reserved word ext ends to establish an
Inheritance relationship

cl ass Car extends Vehicle

{

/[class contents

J

See\Woerds.|ava (page 324)
See Book.|ava (page 325)
See Dictienary.[ava (page 326)

Contrelling Inheritance

Visibility moedifiers determine which class memiers get
Inherited anad whichi de not

\/ariables and methods declared with publi i ¢ visipility are
Inherited, andithese with pr If vat e visibility: arenot

But publ I ¢ variables violate eur goal off encapsulation

TThereisathiraivisibility modifier that helpsiniinhertance
stuatiens: pr ot ect ed

The pr et ect ed Vodifier

TThe pr ot ect ed visibility modifier allewsa memier of a
pase classte beinherited intethe chila

BUt pr ot ect ed visibility provides more encapsulation
than publ | ¢ dees

IHewever, pi ot ect ed visipility ISsnoet as tigntly
encapsulated aspir i vat e visibility,

Thedetalls of each modifier are given in Appendix E

Thesuper Reference

Constructorsare net inherited, even though they have
public visipility

Y el we eften want to use the parent’s constructor to set up
the™ parent’s part™ of the object

TThesuper reference can e used to refer tothe parent
class, and Iseften used toinvoke the parent’s constructor

See \Woerds2.|ava (page 328)
See Book2.|ava (page 529)
See Dictionary2.ava (page 330)

Singlevs, Multiple Inhertance

Java slipports singleinhertance, meaning that a derived
classican have only: ene parent class

Multipleinheritance allows a classite lhe derived frron two
OF more classes, inheriting the membersef all parents

Collisions, sucehl asthesame variiable namein two parents,
nave to e resolved

N most cases, the use of Interfaces gives us the best aspects
of multiple inheritance without the overhead

Overriding Methods

A childl cllass can override the definition of an inherited
method In faver of Itsown

T'hat Is; a child can redefine a method! that It Inherits from
its parent

TThe new method must have the same signatureasthe
parent’smethod, but can have different codeln the boeady

TThetype of the ohject executing the meihod determines
Whiich version ef the method Isinveked

Overriding Methods

See |Vl essages.|ava (page 332)
See [Thoeught.java (page 333)
See Advice|ava (page 334)

Note that a parent methed can be explicitly inveked using
thesuper reference

| @ method! s declared withithef 1 nal modifier, It cannot
peoverridden

Irhe concept of everriding can beapplied todata (callead
snadewing variables), therelsigenerally noneed for It

Overloading vs. Overrding

Don‘t confuse the concepts of everioading and everriding

Overleading deals withmultiple metheds in the'same class
With the'same name but different signatures

Overriding dealswith two methoeds, onein a parent class
andonein achild class, that havethe same signature

Overleading letsyou definea similiar operation In different
Ways for different data

Overriding letsyeu definea similar eperation in different
ways for different object types

Class Hierarchies

A chilidi class off one parent can e the parent off another
child, fiorming|classhierarchies

Busi ness

Class Hierarchies

Twe echildren of the same parent are called siblings

Good ¢lass design puts alll common fieatures as highiini the
nierarchy asisireasenanle

An Inherited member is continually passed down theline

Class hierar chies often have to e extended and modified to
Keep up withi changing needs

TThereisnoisingle classhierarchy that Is apprepriatefor all
Situations

The Qojpect Class

A classcalled @) ect Isdefinedin the| ava. IFang
package of the Java standard class|ihrary.

All classes are derived from the @) ect class

I aclassisnot explicitly defined te e the child of an
existing|cliass, It Isiassumed to e the child of the Ooj ect

class

TThe Cpj ect classisthereferethe ultimate root of all ¢lass
nierarchies

The Qojrect Class

TThe @b ect classcontainsafew useful methoeds, Which are
Inherited by alll classes

For example, thet oSt r I ng methed s defined in the
Qpj ect class

EVery timewe have defined t oSt i ng, wehave actually
een overriding It

TThet oSt ri ng methed in the o) ect classisdefinedto

Feturnia stiiing that contains the name ofi the ehj ect’s class
and ahasnvalue

The @opect Class

TThat’swhy the pri nt | nimethed can call t oSt I ng for

any ohj ect that Isipassed toilt — all ebjects are guarantesd 1o
have at oSt i ng method via inhertance

See Academialava (page 339)
See Siudent.java (page 340)
See Gradstudent.|ava (page 341)

TThe eguals method of the Object ¢lass determinesif two
feferencesare aliases

You may chposeteoveirideeqgual s to defineeqguality in
Seme ether way

Abstraat Classes

An alstract classisiaplacenhoelder in a classhaierarchy that
lfEepresents a generiic concept

An abstract class cannot be instantiated

\We usethemodifier abst r act on theclassheader to
declar e a class as abstract

An abstract class often contains abstract metheds (likean
Interface does), theughi it doeesn’t haveto

Abstraat Classes

Irhe child of anl albstract classmust everride the absiract
methoeds ofi the parent, or It tee will be considered alstract

An abstract methoed cannet e defined asifinal (lsecause it
must be everridden) or static (laecause it hasnoe definition

yet)

IThe use ofi abstract classes s a design decision; It helps us
estaklish common elementsinia class that Isto general to
instantiate

Referemces and Inheritance

Ani object reference can refer te an elject of Its class, or to
an| ol ect of any/ classrelated toilt by Inheritance

For example, If the Hol I day: classis used to derive achilid
classcalled Chr I st nas;, then a Hol 1 day reference could
actually e used to peint to a Car I st nes oh)ect

Hol i day

Hol | day day;
day = new Chri stmas();

Chri st nas

Referemces and Inheritance

AsSsIgnIng a predecessor ohject to an ancesior leferencels
considered te lbe a widening cenverision, and can be
perfermed by simplie assignment

Assigning an ancestor object te a predecessor reference can
alse lhe dene, but It I's considered to bea narroewing
conversion andimust bedoenewithia cast

TThewidening cenversion Is the mest usefiul

Polymoerphismivia lnheritance

We saw in Chapter 5 how an Interface can e usedito create
a pelymoerphic reference

Recall that a polymorphic referencelis ene whnich can refer
to different types of objectsat different times

Inheritance can alse e used as a basis of pelymerphaism

AN b ect refierence can rrefer to one ek ect at onetime,
then It can be changed te refer telanother object (related By
Inheritance) at another time

Polymoerphismvia lnheritance

Suppoesethe Hol I day: classhasiamethod called
cel ebr at e, and the Chr I st nas: class overrode it

INew: consider the fiollewing invoecation:

day. cel ebrate();

I day refersteal-Hol I day: olbject, It Invokesithe IHol I day
version ofi cel erat e; Ifi it referstoa Chr i St nas 00)ect,
It Invekesthe Chr | St nas version

Polymoerphismivia lnheritance

It ISthetype of the object baing referenced, not the
reference type, that determines which method Isinveked

INete that, Ifi an invecation Isin a loeep, the exact sameline of
code couldlexecute different methods at different tinmes

Pelymor phic refierences are therelere resolved at run-time,
Aot during compilation

Polymoerphismvia lnheritance

Consider the fiellewing class hierarchy:

St af f Menber

Polymoerphismvia lnheritance

INow! consider the task of payiing alll emplioyees

See Einm.java (page 345)

See Siaiif.|ava (page 346)

See SiaifilViember.|ava (page 348)
See \Volunteer.|ava (page 349)
See Employee|ava (page 351)
See Executive]ava (page 352)
See Hourly.[ava (page 353)

Indirect Access

An Inherited member can be referenced directly by namein
the child class, asif It were declared in the childl class

BUt even ifi a methoed or variablels net inherited by a child;
it can still be accessed Inairectly through parent metheds

See FoodAnalysisjava (page 355)
See Foodltem.|ava (page 356)
See Pizza.|ava (page 357)

Interfaee Hierarchies

Inheritance can e applied tointerfacesaswell as classes
Oneinterfiace can lhe used asthe parent off anether

T he child interface nnherits alll abstract methods of the
parent

A classimplementing the child interface must define all
methoeds firem both the parent and childiinterfaces

Notethat class hierarchies and interface hierarchies are
distinct (the de not overlap)

Appletssand Inkertance

An applét 1s.an excelllent example of Inheritance

Recall that when we define an applet, we extend the
Appll et class

TThe Appl et classalready handlesall the detaills aboeut

applet creation andlexecution, Including theinteraction
With awel browser

Our appliet classes only have to deallwith Issuesithat
specifically reate to what our particular applet will do

Extending Event Adapter Classes

In Chapter 5 we'discussed the creation ofi listener ¢lasses by
Implementing/a particular interfiace (such as
VouseLil st ener interface)

A listener can al'so e created by extending a special adapter
class ofi the Java classilibrary.

Eachilisiener interfiace nasia corresponding adapter ¢lass
(such asthe MbuseAdapt er c¢lass)

Each adapter classimplementsitiie corrresponding listener
and' provides empty method definitions

Extending Event Adapter Classes

Wihen yeu derivealistener classfrom an adapter class, you
oVerrideany event methods of interest (suchiasthe
mused I cked methed)

INoete that this avoeids the need to create empty definitions
fior unused events

See OffCenter.|ava (page 360)

GUI Compoenents

A GUI component IS an o] ect that representsa visual

entity 1in an graphical user interface (Suchiasa button or
slider)

Compoenents can generate eventste whichi listener el ects
can respond

For examplie, an applet Is a compenent that cani generaie
MOUSe events

An applet s also a speciall kind eff compenent, calledia
container, In which other compenentsican he placed

GUI Compoenents

See Fahrenhat.java (page 363)

Compoenents are organized inte an inhestance class
Rlerarchy seithat they can easily/ share characteristics

When we define certain metheds, such asithe pail nt

method ofi an applet, we areactually overriding a methoed
definediin the Conpenent class, whichiis ultinmately,

Inherited intethe Appll et class

See Doodlejava (page 367)
See DoopdleCanvas.|ava (page 369)

