
Chapter 7: Inheritance Chapter 7: Inheritance

Presentation slides forPresentation slides for

Java Software SolutionsJava Software Solutions
Foundations of Program DesignFoundations of Program Design

Second EditionSecond Edition

by John Lewis and William Loftusby John Lewis and William Loftus

Java Software Solutions is published by AddisonJava Software Solutions is published by Addison--WesleyWesley

Presentation slides are copyright 2000 by John Lewis and WilliamPresentation slides are copyright 2000 by John Lewis and William Loftus. All rights reserved.Loftus. All rights reserved.

Instructors using the textbook may use and modify these slides fInstructors using the textbook may use and modify these slides for pedagogical purposes.or pedagogical purposes.

2

InheritanceInheritance

 Another fundamental objectAnother fundamental object--oriented technique is called oriented technique is called
inheritance, which enhances software design and promotes inheritance, which enhances software design and promotes
reusereuse

 Chapter 7 focuses on:Chapter 7 focuses on:
•• deriving new classesderiving new classes

•• creating class hierarchies creating class hierarchies
•• the the protectedprotected modifiermodifier

•• polymorphism via inheritancepolymorphism via inheritance

•• inheritance used in graphical user interfacesinheritance used in graphical user interfaces

3

InheritanceInheritance

 InheritanceInheritance allows a software developer to derive a new allows a software developer to derive a new
class from an existing oneclass from an existing one

 The existing class is called the The existing class is called the parent class,parent class, oror superclasssuperclass, or , or
base classbase class

 The derived class is called the The derived class is called the child classchild class or or subclasssubclass..

 As the name implies, the child inherits characteristics of the As the name implies, the child inherits characteristics of the
parentparent

 That is, the child class inherits the methods and data That is, the child class inherits the methods and data
defined for the parent classdefined for the parent class

4

InheritanceInheritance

 Inheritance relationships are often shown graphically in a Inheritance relationships are often shown graphically in a
class diagramclass diagram, with the arrow pointing to the parent class, with the arrow pointing to the parent class

Inheritance should create an Inheritance should create an isis--a relationshipa relationship, meaning , meaning
the child the child is ais a more specific version of the parentmore specific version of the parent

Vehicle

Car

5

Deriving SubclassesDeriving Subclasses

 In Java, we use the reserved word In Java, we use the reserved word extendsextends to establish an to establish an
inheritance relationshipinheritance relationship

class Car extends Vehicleclass Car extends Vehicle

{{

// class contents// class contents

}}

 See See Words.java Words.java (page 324)(page 324)

 See See Book.java Book.java (page 325)(page 325)

 See See Dictionary.java Dictionary.java (page 326)(page 326)

6

Controlling InheritanceControlling Inheritance

 Visibility modifiers determine which class members get Visibility modifiers determine which class members get
inherited and which do notinherited and which do not

 Variables and methods declared with Variables and methods declared with publicpublic visibility are visibility are
inherited, and those with inherited, and those with privateprivate visibility are notvisibility are not

 But But publicpublic variables violate our goal of encapsulationvariables violate our goal of encapsulation

 There is a third visibility modifier that helps in inheritance There is a third visibility modifier that helps in inheritance
situations: situations: protectedprotected

7

The The protectedprotected ModifierModifier

 The The protectedprotected visibility modifier allows a member of a visibility modifier allows a member of a
base class to be inherited into the childbase class to be inherited into the child

 But But protectedprotected visibility provides more encapsulation visibility provides more encapsulation
than than publicpublic doesdoes

 However, However, protectedprotected visibility is not as tightly visibility is not as tightly
encapsulated as encapsulated as privateprivate visibilityvisibility

 The details of each modifier are given in Appendix FThe details of each modifier are given in Appendix F

8

The The supersuper ReferenceReference

 Constructors are not inherited, even though they have Constructors are not inherited, even though they have
public visibilitypublic visibility

 Yet we often want to use the parent's constructor to set up Yet we often want to use the parent's constructor to set up
the "parent's part" of the objectthe "parent's part" of the object

 The The supersuper reference can be used to refer to the parent reference can be used to refer to the parent
class, and is often used to invoke the parent's constructorclass, and is often used to invoke the parent's constructor

 See See Words2.java Words2.java (page 328)(page 328)

 See See Book2.java Book2.java (page 329)(page 329)

 See See Dictionary2.java Dictionary2.java (page 330)(page 330)

Single vs. Multiple InheritanceSingle vs. Multiple Inheritance

 Java supports Java supports single inheritancesingle inheritance, meaning that a derived , meaning that a derived
class can have only one parent classclass can have only one parent class

 Multiple inheritanceMultiple inheritance allows a class to be derived from two allows a class to be derived from two
or more classes, inheriting the members of all parentsor more classes, inheriting the members of all parents

 Collisions, such as the same variable name in two parents, Collisions, such as the same variable name in two parents,
have to be resolvedhave to be resolved

 In most cases, the use of interfaces gives us the best aspects In most cases, the use of interfaces gives us the best aspects
of multiple inheritance without the overheadof multiple inheritance without the overhead

10

Overriding MethodsOverriding Methods

 A child class can A child class can overrideoverride the definition of an inherited the definition of an inherited
method in favor of its ownmethod in favor of its own

 That is, a child can redefine a method that it inherits from That is, a child can redefine a method that it inherits from
its parentits parent

 The new method must have the same signature as the The new method must have the same signature as the
parent's method, but can have different code in the bodyparent's method, but can have different code in the body

 The type of the object executing the method determines The type of the object executing the method determines
which version of the method is invokedwhich version of the method is invoked

Overriding MethodsOverriding Methods

 See See Messages.java Messages.java (page 332)(page 332)

 See See Thought.java Thought.java (page 333)(page 333)

 See See Advice.java Advice.java (page 334)(page 334)

 Note that a parent method can be explicitly invoked using Note that a parent method can be explicitly invoked using
the the supersuper referencereference

 If a method is declared with the If a method is declared with the finalfinal modifier, it cannot modifier, it cannot
be overriddenbe overridden

 The concept of overriding can be applied to data (called The concept of overriding can be applied to data (called
shadowing variablesshadowing variables), there is generally no need for it), there is generally no need for it

12

Overloading vs. OverridingOverloading vs. Overriding

 Don't confuse the concepts of overloading and overridingDon't confuse the concepts of overloading and overriding

 Overloading deals with multiple methods in the same class Overloading deals with multiple methods in the same class
with the same name but different signatureswith the same name but different signatures

 Overriding deals with two methods, one in a parent class Overriding deals with two methods, one in a parent class
and one in a child class, that have the same signatureand one in a child class, that have the same signature

 Overloading lets you define a similar operation in different Overloading lets you define a similar operation in different
ways for different dataways for different data

 Overriding lets you define a similar operation in different Overriding lets you define a similar operation in different
ways for different object typesways for different object types

13

Class HierarchiesClass Hierarchies

 A child class of one parent can be the parent of another A child class of one parent can be the parent of another
child, forming child, forming class hierarchiesclass hierarchies

Business

RetailBusiness ServiceBusiness

KMart Macys Kinkos

14

Class HierarchiesClass Hierarchies

 Two children of the same parent are called Two children of the same parent are called siblingssiblings

 Good class design puts all common features as high in the Good class design puts all common features as high in the
hierarchy as is reasonablehierarchy as is reasonable

 An inherited member is continually passed down the lineAn inherited member is continually passed down the line

 Class hierarchies often have to be extended and modified to Class hierarchies often have to be extended and modified to
keep up with changing needskeep up with changing needs

 There is no single class hierarchy that is appropriate for all There is no single class hierarchy that is appropriate for all
situationssituations

15

The The ObjectObject ClassClass

 A class called A class called ObjectObject is defined in the is defined in the java.java.langlang
package of the Java standard class librarypackage of the Java standard class library

 All classes are derived from the All classes are derived from the ObjectObject classclass

 If a class is not explicitly defined to be the child of an If a class is not explicitly defined to be the child of an
existing class, it is assumed to be the child of the existing class, it is assumed to be the child of the ObjectObject
classclass

 The The ObjectObject class is therefore the ultimate root of all class class is therefore the ultimate root of all class
hierarchieshierarchies

The The ObjectObject ClassClass

 The The ObjectObject class contains a few useful methods, which are class contains a few useful methods, which are
inherited by all classesinherited by all classes

 For example, the For example, the toStringtoString method is defined in the method is defined in the
ObjectObject classclass

 Every time we have defined Every time we have defined toStringtoString, we have actually , we have actually
been overriding itbeen overriding it

 The The toStringtoString method in the method in the ObjectObject class is defined to class is defined to
return a string that contains the name of the object’s class return a string that contains the name of the object’s class
and a hash valueand a hash value

The The ObjectObject ClassClass

 That’s why theThat’s why the printlnprintln method can callmethod can call toStringtoString for for
any object that is passed to it any object that is passed to it –– all objects are guaranteed to all objects are guaranteed to
have ahave a toStringtoString method via inheritancemethod via inheritance

 See See Academia.java Academia.java (page 339)(page 339)
 See See Student.java Student.java (page 340)(page 340)
 See See GradStudentGradStudent.java .java (page 341)(page 341)

 The equals method of the Object class determines if two The equals method of the Object class determines if two
references are aliasesreferences are aliases

 You may choose to override You may choose to override equalsequals to define equality in to define equality in
some other way some other way

Abstract ClassesAbstract Classes

 An abstract class is a placeholder in a class hierarchy that An abstract class is a placeholder in a class hierarchy that
represents a generic conceptrepresents a generic concept

 An abstract class cannot be instantiatedAn abstract class cannot be instantiated

 We use the modifier We use the modifier abstractabstract on the class header to on the class header to
declare a class as abstractdeclare a class as abstract

 An abstract class often contains abstract methods (like an An abstract class often contains abstract methods (like an
interface does), though it doesn’t have tointerface does), though it doesn’t have to

Abstract ClassesAbstract Classes

 The child of an abstract class must override the abstract The child of an abstract class must override the abstract
methods of the parent, or it too will be considered abstractmethods of the parent, or it too will be considered abstract

 An abstract method cannot be defined as final (because it An abstract method cannot be defined as final (because it
must be overridden) or static (because it has no definition must be overridden) or static (because it has no definition
yet)yet)

 The use of abstract classes is a design decision; it helps us The use of abstract classes is a design decision; it helps us
establish common elements in a class that is to general to establish common elements in a class that is to general to
instantiateinstantiate

20

References and InheritanceReferences and Inheritance

 An object reference can refer to an object of its class, or to An object reference can refer to an object of its class, or to
an object of any class related to it by inheritancean object of any class related to it by inheritance

 For example, if the For example, if the HolidayHoliday class is used to derive a child class is used to derive a child
class called class called ChristmasChristmas, then a , then a HolidayHoliday reference could reference could
actually be used to point to a actually be used to point to a ChristmasChristmas objectobject

Holiday

Christmas

Holiday day;
day = new Christmas();

21

References and InheritanceReferences and Inheritance

 Assigning a predecessor object to an ancestor reference is Assigning a predecessor object to an ancestor reference is
considered to be a widening conversion, and can be considered to be a widening conversion, and can be
performed by simple assignmentperformed by simple assignment

 Assigning an ancestor object to a predecessor reference can Assigning an ancestor object to a predecessor reference can
also be done, but it is considered to be a narrowing also be done, but it is considered to be a narrowing
conversion and must be done with a castconversion and must be done with a cast

 The widening conversion is the most usefulThe widening conversion is the most useful

22

Polymorphism via InheritancePolymorphism via Inheritance

 We saw in Chapter 5 how an interface can be used to create We saw in Chapter 5 how an interface can be used to create
a a polymorphic polymorphic referencereference

 Recall that a Recall that a polymorphicpolymorphic reference is one which can refer reference is one which can refer
to different types of objects at different timesto different types of objects at different times

 Inheritance can also be used as a basis of polymorphismInheritance can also be used as a basis of polymorphism

 An object reference can refer to one object at one time, An object reference can refer to one object at one time,
then it can be changed to refer to another object (related by then it can be changed to refer to another object (related by
inheritance) at another timeinheritance) at another time

Polymorphism via InheritancePolymorphism via Inheritance

 Suppose the Suppose the HolidayHoliday class has a method called class has a method called
celebratecelebrate, and the , and the ChristmasChristmas class overrode itclass overrode it

 Now consider the following invocation:Now consider the following invocation:

day.celebrate();

 If If dayday refers to a refers to a HolidayHoliday object, it invokes the object, it invokes the HolidayHoliday
version of version of celebratecelebrate; if it refers to a ; if it refers to a ChristmasChristmas object, object,
it invokes the it invokes the ChristmasChristmas versionversion

24

Polymorphism via InheritancePolymorphism via Inheritance

 It is the type of the object being referenced, not the It is the type of the object being referenced, not the
reference type, that determines which method is invokedreference type, that determines which method is invoked

 Note that, if an invocation is in a loop, the exact same line ofNote that, if an invocation is in a loop, the exact same line of
code could execute different methods at different timescode could execute different methods at different times

 PolymorphicPolymorphic references are therefore resolved at runreferences are therefore resolved at run--time, time,
not during compilationnot during compilation

Polymorphism via InheritancePolymorphism via Inheritance

 Consider the following class hierarchy:Consider the following class hierarchy:

StaffMember

Volunteer Employee

Executive Hourly

Polymorphism via InheritancePolymorphism via Inheritance

 Now consider the task of paying all employeesNow consider the task of paying all employees

 See See Firm.java Firm.java (page 345)(page 345)

 See See Staff.java Staff.java (page 346)(page 346)

 See See StaffMemberStaffMember.java .java (page 348)(page 348)

 See See Volunteer.java Volunteer.java (page 349)(page 349)

 See See Employee.java Employee.java (page 351)(page 351)

 See See Executive.java Executive.java (page 352)(page 352)

 See See Hourly.java Hourly.java (page 353)(page 353)

27

Indirect AccessIndirect Access

 An inherited member can be referenced directly by name in An inherited member can be referenced directly by name in
the child class, as if it were declared in the child classthe child class, as if it were declared in the child class

 But even if a method or variable is not inherited by a child, But even if a method or variable is not inherited by a child,
it can still be accessed indirectly through parent methodsit can still be accessed indirectly through parent methods

 See See FoodAnalysisFoodAnalysis.java .java (page 355)(page 355)

 See See FoodItemFoodItem.java .java (page 356)(page 356)
 See See Pizza.java Pizza.java (page 357)(page 357)

Interface HierarchiesInterface Hierarchies

 Inheritance can be applied to interfaces as well as classesInheritance can be applied to interfaces as well as classes

 One interface can be used as the parent of anotherOne interface can be used as the parent of another

 The child interface inherits all abstract methods of the The child interface inherits all abstract methods of the
parentparent

 A class implementing the child interface must define all A class implementing the child interface must define all
methods from both the parent and child interfacesmethods from both the parent and child interfaces

 Note that class hierarchies and interface hierarchies are Note that class hierarchies and interface hierarchies are
distinct (the do not overlap)distinct (the do not overlap)

Applets and InheritanceApplets and Inheritance

 An applet is an excellent example of inheritanceAn applet is an excellent example of inheritance

 Recall that when we define an applet, we extend the Recall that when we define an applet, we extend the
AppletApplet classclass

 The The AppletApplet class already handles all the details about class already handles all the details about
applet creation and execution, including the interaction applet creation and execution, including the interaction
with a web browserwith a web browser

 Our applet classes only have to deal with issues that Our applet classes only have to deal with issues that
specifically relate to what our particular applet will dospecifically relate to what our particular applet will do

Extending Event Adapter ClassesExtending Event Adapter Classes

 In Chapter 5 we discussed the creation of listener classes by In Chapter 5 we discussed the creation of listener classes by
implementing a particular interface (such as implementing a particular interface (such as
MouseListenerMouseListener interface)interface)

 A listener can also be created by extending a special A listener can also be created by extending a special adapter adapter
classclass of the Java class libraryof the Java class library

 Each listener interface has a corresponding adapter class Each listener interface has a corresponding adapter class
(such as the (such as the MouseAdapterMouseAdapter class)class)

 Each adapter class implements the corresponding listener Each adapter class implements the corresponding listener
and provides empty method definitionsand provides empty method definitions

Extending Event Adapter ClassesExtending Event Adapter Classes

 When you derive a listener class from an adapter class, you When you derive a listener class from an adapter class, you
override any event methods of interest (such as theoverride any event methods of interest (such as the
mouseClickedmouseClicked method)method)

 Note that this avoids the need to create empty definitions Note that this avoids the need to create empty definitions
for unused eventsfor unused events

 See See OffCenterOffCenter.java .java (page 360)(page 360)

GUI ComponentsGUI Components

 A A GUI componentGUI component is an object that represents a visual is an object that represents a visual
entity in an graphical user interface (such as a button or entity in an graphical user interface (such as a button or
slider)slider)

 Components can generate events to which listener objects Components can generate events to which listener objects
can respondcan respond

 For example, an applet is a component that can generate For example, an applet is a component that can generate
mouse eventsmouse events

 An applet is also a special kind of component, called a An applet is also a special kind of component, called a
containercontainer, in which other components can be placed, in which other components can be placed

GUI ComponentsGUI Components

 See Fahrenheit.java (page 363)See Fahrenheit.java (page 363)

 Components are organized into an inheritance class Components are organized into an inheritance class
hierarchy so that they can easily share characteristicshierarchy so that they can easily share characteristics

 When we define certain methods, such as the When we define certain methods, such as the paintpaint
method of an applet, we are actually overriding a method method of an applet, we are actually overriding a method
defined in the defined in the ComponentComponent class, which is ultimately class, which is ultimately
inherited into the inherited into the AppletApplet classclass

 See See Doodle.java Doodle.java (page 367)(page 367)

 See See DoodleCanvasDoodleCanvas.java .java (page 369)(page 369)

