
Chapter 8: Exceptions and I/O Streams

Presentation slides for

Java Software Solutions
Foundations of Program Design

Second Edition

by John Lewis and William Loftus

Java Software Solutions is published by Addison-Wesley

Presentation slides are copyright 2000 by John Lewis and William Loftus. All rights reserved.
Instructors using the textbook may use and modify these slides for pedagogical purposes.

2

Exceptions and I/O Streams

b We can now further explore two related topics: exceptions
and input / output streams

b Chapter 8 focuses on:
• the try-catch statement

• exception propagation

• creating and throwing exceptions

• types of I/O streams
• Keyboard class processing

• reading and writing text files

• object serialization

3

Exceptions

b An exception is an object that describes an unusual or
erroneous situation

b Exceptions are thrown by a program, and may be caught
and handled by another part of the program

b A program can therefore be separated into a normal
execution flow and an exception execution flow

b An error is also represented as an object in Java, but
usually represents a unrecoverable situation and should not
be caught

4

Exception Handling

b A program can deal with an exception in one of three ways:
• ignore it

• handle it where it occurs

• handle it an another place in the program

b The manner in which an exception is processed is an
important design consideration

5

Exception Handling

b If an exception is ignored by the program, the program will
terminate and produce an appropriate message

b The message includes a call stack trace that indicates on
which line the exception occurred

b The call stack trace also shows the method call trail that
lead to the execution of the offending line

b See Zero.java (page 379)

6

The try Statement

b To process an exception when it occurs, the line that throws
the exception is executed within a try block

b A try block is followed by one or more catch clauses, which
contain code to process an exception

b Each catch clause has an associated exception type

b When an exception occurs, processing continues at the first
catch clause that matches the exception type

b See ProductCodes.java (page 381)

7

The finally Clause

b A try statement can have an optional clause designated by
the reserved word finally

b If no exception is generated, the statements in the finally
clause are executed after the statements in the try block
complete

b Also, if an exception is generated, the statements in the
finally clause are executed after the statements in the
appropriate catch clause complete

8

Exception Propagation

b If it is not appropriate to handle the exception where it
occurs, it can be handled at a higher level

b Exceptions propagate up through the method calling
hierarchy until they are caught and handled or until they
reach the outermost level

b A try block that contains a call to a method in which an
exception is thrown can be used to catch that exception

b See Propagation.java (page 384)
b See ExceptionScope.java (page 385)

9

The throw Statement

b A programmer can define an exception by extending the
appropriate class

b Exceptions are thrown using the throw statement

b See CreatingExceptions.java (page 388)
b See OutOfRangeException.java (page 389)

b Usually a throw statement is nested inside an if statement
that evaluates the condition to see if the exception should be
thrown

10

Checked Exceptions

b An exception is either checked or unchecked

b A checked exception can only be thrown within a try block
or within a method that is designated to throw that
exception

b The compiler will complain if a checked exception is not
handled appropriately

b An unchecked exception does not require explicit handling,
though it could be processed that way

I/O Streams

b A stream is a sequence of bytes that flow from a source to a
destination

b In a program, we read information from an input stream
and write information to an output stream

b A program can manage multiple streams at a time

b The java.io package contains many classes that allow us to
define various streams with specific characteristics

I/O Stream Categories

b The classes in the I/O package divide input and output
streams into other categories

b An I/O stream is either a
• character stream, which deals with text data

• byte stream, which deal with byte data

b An I/O stream is also either a
• data stream, which acts as either a source or destination

• processing stream, which alters or manages information in the
stream

Standard I/O

b There are three standard I/O streams:
• standard input – defined by System.in

• standard output – defined by System.out

• standard error – defined by System.err

b We use System.out when we execute println
statements

b System.in is declared to be a generic InputStream
reference, and therefore usually must be mapped to a more
useful stream with specific characteristics

The Keyboard Class

b The Keyboard class was written by the authors of your
textbook to facilitate reading data from standard input

b Now we can examine the processing of the Keyboard class
in more detail

b The Keyboard class:
• declares a useful standard input stream

• handles exceptions that may be thrown

• parses input lines into separate values
• converts input stings into the expected type

• handles conversion problems

The Standard Input Stream

b The Keyboard class declares the following input stream:

InputStreamReader isr =

new InputStreamReader (System.in)

BufferedReader stdin = new BufferedReader (isr);

b The InputStreamReader object converts the original
byte stream into a character stream

b The BufferedReader object allows us to use the
readLine method to get an entire line of input

Text Files

b Information can be read from and written to text files by
declaring and using the correct I/O streams

b The FileReader class represents an input file containing
character data

b See Inventory.java (page 397)
b See InventoryItem.java (page 400)

b The FileWriter class represents a text output file

b See TestData.java (page 402)

Object Serialization

b Object serialization is the act of saving an object, and its
current state, so that it can be used again in another
program

b The idea that an object can “live” beyond the program
that created it is called persistence

b Object serialization is accomplished using the classes
ObjectOutputStream and ObjectInputStream

b Serialization takes into account any other objects that are
referenced by an object being serialized, saving them too

