
ÿþýüûúùø÷÷öøøRecursion

Presentation slides for

Java Software Solutions
Foundations of Program Design

Second Edition

by John Lewis and William Loftus

Java Software Solutions is published by Addison-Wesley

Presentation slides are copyright 2000 by John Lewis and William Loftus. All rights reserved.

Instructors using the textbook may use and modify these slides for pedagogical purposes.



2

Recursion

ÿ Recursion is a fundamental programming technique that
can provide an elegant solution certain kinds of problems

ÿ Chapter 11 focuses on:
• thinking in a recursive manner
• programming in a recursive manner
• the correct use of recursion
• recursion examples



3

Recursive Thinking

ÿ A recursive definitionis one which uses the word or concept
being defined in the definition itself

ÿ When defining an English word, a recursive definition is
often not helpful

ÿ But in other situations, a recursive definition can be an
appropriate way to express a concept

ÿ Before applying recursion to programming, it is best to
practice thinking recursively



4

Recursive Definitions

ÿ Consider the following list of numbers:

24, 88, 40, 37

ÿ Such a list can be defined as

A LIST is a: number

or a: number comma LIST

ÿ That is, a LIST is defined to be a single number, or a
number followed by a comma followed by a LIST

ÿ The concept of a LIST is used to define itself



5

Recursive Definitions

ÿ The recursive part of the LIST definition is used several
times, terminating with the non-recursive part:

number comma LIST

24 , 88, 40, 37

number comma LIST

88 , 40, 37

number comma LIST

40 , 37

number

37



6

Infinite Recursion

ÿ All recursive definitions have to have a non-recursive part

ÿ If they didn't, there would be no way to terminate the
recursive path

ÿ Such a definition would causeinfinite recursion

ÿ This problem is similar to an infinite loop, but the non-
terminating "loop" is part of the definition itself

ÿ The non-recursive part is often called thebase case



7

Recursive Definitions

ÿ N!, for any positive integer N, is defined to be the product
of all integers between 1 and N inclusive

ÿ This definition can be expressed recursively as:

1! = 1

N! = N * (N-1)!

ÿ The concept of the factorial is defined in terms of another
factorial

ÿ Eventually, the base case of 1! is reached



8

Recursive Definitions

5!

5 * 4!

4 * 3!

3 * 2!

2 * 1!

1

2

6

24

120



9

Recursive Programming

ÿ A method in Java can invoke itself; if set up that way, it is
called arecursive method

ÿ The code of a recursive method must be structured to
handle both the base case and the recursive case

ÿ Each call to the method sets up a new execution
environment, with new parameters and local variables

ÿ As always, when the method completes, control returns to
the method that invoked it (which may be an earlier
invocation of itself)



10

Recursive Programming

ÿ Consider the problem of computing the sum of all the
numbers between 1 and any positive integer N

ÿ This problem can be recursively defined as:

i = 1

N

i = 1

N-1

i = 1

N-2

= N + = N + (N-1) +

= etc.



11

Recursive Programming

main

sum

sum

sum

sum(3)

sum(1)

sum(2)

result = 1

result = 3

result = 6



12

Recursive Programming

ÿ Note that just because we can use recursion to solve a
problem, doesn't mean we should

ÿ For instance, we usually would not use recursion to solve
the sum of 1 to N problem, because the iterative version is
easier to understand

ÿ However, for some problems, recursion provides an elegant
solution, often cleaner than an iterative version

ÿ You must carefully decide whether recursion is the correct
technique for any problem



13

Indirect Recursion

ÿ A method invoking itself is considered to bedirect recursion

ÿ A method could invoke another method, which invokes
another, etc., until eventually the original method is
invoked again

ÿ For example, methodm1could invoke m2, which invokes
m3, which in turn invokes m1again

ÿ This is called indirect recursion, and requires all the same
care as direct recursion

ÿ It is often more difficult to trace and debug



14

Indirect Recursion

m1 m2 m3

m1 m2 m3

m1 m2 m3



Maze Traversal

ÿ We can use recursion to find a path through a maze

ÿ From each location, we can search in each direction

ÿ Recursion keeps track of the path through the maze

ÿ The base case is an invalid move or reaching the final
destination

ÿ SeeMazeSearch.java (page 472)
ÿ SeeMaze.java (page 474)



Towers of Hanoi

ÿ The Towers of Hanoiis a puzzle made up of three vertical
pegs and several disks that slide on the pegs

ÿ The disks are of varying size, initially placed on one peg
with the largest disk on the bottom with increasingly
smaller ones on top

ÿ The goal is to move all of the disks from one peg to another
under the following rules:
• We can move only one disk at a time
• We cannot move a larger disk on top of a smaller one



Towers of Hanoi

ÿ An iterative solution to the Towers of Hanoi is quite
complex

ÿ A recursive solution is much shorter and more elegant

ÿ SeeSolveTowers.java (page 479)
ÿ SeeTowersOfHanoi.java (page 480)



18

Mirrored Pictures

ÿ Consider the task of repeatedly displaying a set of images in
a mosaic that is reminiscent of looking in two mirrors
reflecting each other

ÿ The base case is reached when the area for the images
shrinks to a certain size

ÿ SeeMirroredPictures.java (page 483)



Fractals

ÿ A fractal is a geometric shape made up of the same pattern
repeated in different sizes and orientations

ÿ The Koch Snowflakeis a particular fractal that begins with
an equilateral triangle

ÿ To get a higher order of the fractal, the sides of the triangle
are replaced with angled line segments

ÿ SeeKochSnowflake.java (page 486)
ÿ SeeKochPanel.java (page 489)


