
ÿþýüûúùø÷öõøøData Structures

Presentation slides for

Java Software Solutions
Foundations of Program Design

Second Edition

by John Lewis and William Loftus

Java Software Solutions is published by Addison-Wesley

Presentation slides are copyright 2000 by John Lewis and William Loftus. All rights reserved.

Instructors using the textbook may use and modify these slides for pedagogical purposes.



2

Data Structures

ÿ We can now explore some advanced techniques for
organizing and managing information

ÿ Chapter 12 focuses on:
• dynamic structures
• Abstract Data Types (ADTs)
• linked lists
• queues
• stacks



3

Static vs. Dynamic Structures

ÿ A staticdata structure has a fixed size

ÿ This meaning is different than those associated with the
static modifier

ÿ Arrays are static; once you define the number of elements
it can hold, it doesn’t change

ÿ A dynamicdata structure grows and shrinks as required by
the information it contains



4

Object References

ÿ Recall that an object referenceis a variable that stores the
address of an object

ÿ A reference can also be called apointer

ÿ They are often depicted graphically:

student
John Smith

40725
3.57



5

References as Links

ÿ Object references can be used to createlinks between
objects

ÿ Suppose aStudent class contained a reference to another
Student object

John Smith
40725
3.57

Jane Jones
58821
3.72



6

References as Links

ÿ References can be used to create a variety of linked
structures, such as alinked list:

studentList



7

Abstract Data Types

ÿ An abstract data type(ADT) is an organized collection of
information and a set of operations used to manage that
information

ÿ The set of operations define theinterfaceto the ADT

ÿ As long as the ADT accurately fulfills the promises of the
interface, it doesn't really matter how the ADT is
implemented

ÿ Objects are a perfect programming mechanism to create
ADTs because their internal details areencapsulated



8

Abstraction

ÿ Our data structures should be abstractions

ÿ That is, they should hide details as appropriate

ÿ We want to separate the interface of the structure from its
underlying implementation

ÿ This helps manage complexity and makes the structures
more useful



9

Intermediate Nodes

ÿ The objects being stored should not have to deal with the
details of the data structure in which they may be stored

ÿ For example, theStudent class stored a link to the next
Student object in the list

ÿ Instead, we can use a separate node class that holds a
reference to the stored object and a link to the next node in
the list

ÿ Therefore the internal representation actually becomes a
linked list of nodes



Book Collection

ÿ Let’s explore an example of a collection ofBook objects

ÿ The collection is managed by theBookList class, which
has an private inner class calledBookNode

ÿ Because theBookNode is private to BookList , the
BookList methods can directly accessBookNode data
without violating encapsulation

ÿ SeeLibrary.java (page 500)
ÿ SeeBookList.java (page 501)
ÿ SeeBook.java (page 503)



11

Other Dynamic List Implementations

ÿ It may be convenient to implement as list as adoubly linked
list, with next and previous references:

list



12

Other Dynamic List Implementations

ÿ It may also be convenient to use a separate header node,
with references to both the front and rear of the list

count: 4
front
rear

list



13

Queues

ÿ A queueis similar to a list but adds items only to the end of
the list and removes them from the front

ÿ It is called a FIFO data structure: First-In, First-Out

ÿ Analogy: a line of people at a bank teller’s window

enqueue dequeue



14

Queues

ÿ We can define the operations on a queue as follows:
• enqueue - add an item to the rear of the queue
• dequeue - remove an item from the front of the queue
• empty - returns true if the queue is empty

ÿ As with our linked list example, by storing genericObject
references, any object can be stored in the queue

ÿ Queues are often helpful in simulations and any processing
in which items get “backed up”



15

Stacks

ÿ A stackADT is also linear, like a list or queue

ÿ Items are added and removed from only one end of a stack

ÿ It is therefore LIFO: Last-In, First-Out

ÿ Analogy: a stack of plates



16

Stacks

ÿ Stacks are often drawn vertically:

poppush



17

Stacks

ÿ Some stack operations:
• push - add an item to the top of the stack
• pop - remove an item from the top of the stack
• peek - retrieves the top item without removing it
• empty - returns true if the stack is empty

ÿ The java.util package contains aStack class, which is
implemented using aVector

ÿ SeeDecode.java (page 508)



Collection Classes

ÿ The Java 2 platform contains a Collections API

ÿ This group of classes represent various data structures used
to store and manage objects

ÿ Their underlying implementation is implied in the class
names, such asArrayList and LinkedList

ÿ Several interfaces are used to define operations on the
collections, such asList , Set , SortedSet , Map, and
SortedMap


