
MISTRAL: A Lattice Translation System for IWSLT 2007

Alexandre Patry, Philippe Langlais

RALI – DIRO
Université de Montréal

{patryale,felipe}@iro.umontreal.ca

Frédéric Béchet

LIA
University of Avignon

frederic.bechet@univ-avignon.fr

Abstract

This paper describes MISTRAL, the lattice translation system
that we developed for the Italian-English track of the Inter-
national Workshop on Spoken Language Translation 2007.

MISTRAL is a discriminative phrase-based system that
translates a source word lattice in two passes. The first pass
extracts a list of top ranked sentence pairs from the lattice
and the second pass rescores this list with more complex fea-
tures. Our experiments show that our system, when trans-
lating pruned lattices, is at least as good as a fair baseline
that translates the first ranked sentences returned by a speech
recognition system.

1. Introduction
While in textual translation the sentences to translate are
known for sure, in spoken language translation they must be
reconstructed from an audio signal. Instead of translating the
raw audio signal, spoken language translation systems usu-
ally start from the output of an automatic speech recognition
system, which usually takes the form of a word lattice.

A straightforward way to translate a word lattice is to
feed a textual translation system with the most probable sen-
tence. To overcome some recognition errors, one can in-
stead translate a set of n top ranked sentences extracted from
the lattice and select the best translation among the one re-
turned [1, 2]. Finally, a third approach is to translate directly
the lattice with a specialized decoder tightly coupled with the
speech recognition system [3, 4, 5, 6, 7].

In this paper, we present MISTRAL (Monotone yet Im-
perfect Statistical TRAnslation of Lattices), a discriminative
phrase-based system that translates lattices in two passes.
The first pass uses a beam-search decoder to extract a N-Best
list of source sentences and their translations from the lat-
tice and the second pass rescores this list with more complex
feature functions.

Different word-based lattice translation systems are pre-
sented in [3, 4, 5]. A generative phrase-based system is de-
scribed in [6]. This system translates the lattice with a se-
quence of weighted finite state machines applied in cascade
while our system is dedicated and traverses the lattice only
once. In [7], the authors present a discriminative phrase-
based system that translates confusion networks and offers

an elegant solution to word reordering.
The remaining of the article is organized as follow. The

next section presents the theoretical framework of spoken
language translation. We describe our decoder in section 3
and evaluate our complete system in section 4. We finally
conclude in section 5.

2. Lattice Translation
In textual translation, a source sentence (f) is known for a
fact, we thus seek to resolve:

e? = argmax
e

Pr(e|f) (1)

Since in spoken language translation only a word lattice is
known (o), the equation to resolve thus becomes:

e? = argmax
e

∑
f

Pr(e, f |o) (2)

If we pose the assumption that the target sentence and the
word lattice are conditionally independent given the source
sentence, Eq. (2) can be simplified to:

e? = argmax
e

∑
f

Pr(e|f) Pr(f |o) (3)

Most systems solving Eq. (3) proceed in two steps. They
first extract a N-Best list of source sentences from the lattice
and then use a textual translation system (Eq. (1)) to translate
them.

In this work, we describe a monotone decoder using a
discriminative phrase-based model to estimate Eq. (2) under
the so-called maximum approximation:

ê = argmax
e

max
f

Pr(e, f |o) (4)

3. Decoder
Our decoder uses the following process to generate a com-
plete translation from a word lattice:

1. Initialise n to the start node and the translation to an
empty sentence.

2. While n is not the end node

(a) Select a path p that starts at n and collect its
source words in w.

(b) Select an entry 〈s, t〉 in the translation table that
has w as its source phrase.

(c) Append t at the end of the translation and set n
to the destination of p.

This leaves us with two problems: evaluating Pr(e, f |o)
and exploring the search space efficiently.

3.1. Model

To approximate the value of Pr(e, f |o), we use an exponen-
tial model:

pλ(e, f |o) =
1

Z(o)
exp

(
R∑

r=1

λrhr(e, f ,o)

)
(5)

where Z(·) is a normalization factor, hr(·, ·, ·) are feature
functions returning real values and λr are free parameters
weighting the feature functions. Using Eq. (5), we can sim-
plify Eq. (4) to:

ê = argmax
e

max
f

R∑
r=1

λrhr(e, f ,o) (6)

The set of feature functions and the algorithm that was
used to tune their weights are detailed in section 3.4 and 4.2.

3.2. First Pass

Our decoder uses a beam-search algorithm to select the sub-
set of the search space to explore. This algorithm groups sim-
ilar incomplete translations together and explores the search
space one group at a time, pruning each group independently
of the others.

In textual translation, it is common to group translations
by the count of source words translated so far. Because this
count varies from one translation to another when working
with a lattice, we group the translations according to the
length of the audio signal they cover. We thus divide the
audio signal in slices of equal length and associate a stack
with each slice.

The stacks are explored in chronological order. Before
a stack is explored, it is pruned and the remaining hypothe-
ses are moved to a temporary stack. Once the hypotheses of
the temporary stack are expended, we verify if the stack of
the current time slice contains new hypotheses (which means
that at least one partial hypothesis was in the same time slice
before and after it has been updated). If it is the case, we
prune and explore it again, else we explore the next stack.

In this work, we empirically set the length of a slice to
one tenth of a second. Short slice lengths induce more stacks
and thus less pruning. On the other hand, long slice lengths
may be harmful without a good heuristic to approximate the
cost of completion of a hypothesis.

The pruning of a stack is done in two steps. In the first
step, we only keep the 50 best translations. The remaining
translations of the group are then checked for recombina-
tion1. A set of translations can be recombined if they cor-
respond to the same node in the lattice, their last two source
words are the same (because of the source trigram) and their
last two target words are the same (because of the target tri-
gram).

When the decoder encounters a node that is followed only
by unknown words, it considers that those words are trans-
lated by themselves.

3.3. Rescoring

The first pass is used to extract a N-Best list of 500 transla-
tions. This list is then reranked using an exponential model
with more sophisticated feature functions than in the first
pass.

3.4. Tuning

The weights of the first pass are tuned with the following
algorithm:

1. Initialise the weights.

2. Extract an N-Best list of 500 translations from each
lattice of the tuning corpus.

3. Tune the weights to optimise BLEU on those N-Best
lists using the downhill simplex algorithm [8].

4. If the weights were updated, go to 2.

To avoid overfitting, we test the weights obtained at each it-
eration on a validation corpus. The weights that scored best
on this validation corpus are kept.

The first pass is then used to extract the 500 best transla-
tions from a new corpus. Rescoring is optimised on this list
with the downhill simplex algorithm.

4. Experiments
4.1. Data

The corpus used for the shared task is composed of transcrip-
tions of spontaneous conversations in the travel domain. It
is divided in train (TRAIN) and development (DEV) sections
containing respectively 19,722 and 996 sentence pairs. We
also trained our models on the Italian-English section of the
proceedings of the European Parliament (EUROPARL), which
contains more than 928,000 sentence pairs [9].

The two corpora were converted to lower case and their
punctuation marks were removed. The lattices of DEV, which
were originally scored with a language model and an acoustic
model, were augmented with posterior probabilities using the
lattice-tool utility [10].

1Recombination is done after pruning because it is slower to execute. We
did not observe a degradation in translation quality by doing so.

We then trained a translation table on TRAIN and another
on EUROPARL. To do so, we used a script that was provided
for the shared task of the NAACL 2006 Workshop on Statis-
tical Machine Translation [11]. This script uses the heuristics
described in [12] to extract phrase pairs from a word align-
ment that was first produced by GIZA++ [13]. It then com-
putes five scores for each phrase pair: the posterior proba-
bility in each translation direction, the lexical probability in
each translation direction and a constant phrase penalty.

Knowing that the corpora contain many dates and num-
bers, we manually created a third translation table containing
122 entries translating days, months and numbers2.

The first 300 sentences of DEV were used to tune the co-
efficients of the first pass (200 for tuning and 100 for vali-
dation, see section 3.4) and the 300 following sentences to
tune the coefficients of the rescoring pass. The remaining
396 sentences were used to evaluate different system config-
urations.

4.2. System

The fifteen following feature functions were used in the first
pass:

• The posterior probability of the lattice path.

• Two Italian trigrams trained respectively on the TRAIN
and EUROPARL corpora.

• Two English trigrams trained respectively on the
TRAIN and EUROPARL corpora.

• The number of words in the source sentence.

• The number of words in the target sentence.

• The sum of the logarithm of each of the five scores in
the phrase table.

• Three binary functions associating a pair of phrases
with its translation tables.

and the eight following feature functions were added for the
rescoring pass:

• Two Italian 4-grams trained respectively on the TRAIN
and EUROPARL corpora.

• Two English 4-grams trained respectively on the
TRAIN and EUROPARL corpora.

• The lexical probabilities of the complete translations
according to four models trained on TRAIN and EU-
ROPARL in both translation directions.

When tuning the first pass, all the weights were initialised
to 0.1, except the weight of the posterior probability of the
lattice path, which was initialized to 10. The weights for
rescoring were initialized to those of the first pass or to 0.1 if
their feature function was not used in the first pass.

2Numbers from zero to 100, 1000 and one million.

System First Pass Rescoring
WER BLEU WER BLEU

Ref 0 20.09 0 21.27
Ref (MOSESm) 0 20.91 - -
Ref (MOSESd) 0 20.39 - -

1 best 11.90 17.97 11.90 19.37
1 best (MOSESm) 11.90 18.99 - -
1 best (MOSESd) 11.90 19.03 - -

BLEU 12.04 17.08 12.07 19.24
WER and BLEU 11.81 17.58 11.87 18.93
BLEU, pruned 10.96 19.21 11.04 20.28

Table 1: Word-error rates of speech recognition and BLEU
scores of translations. Values are multiplied by 100 through-
out the article to improve readability.

4.3. Results

The source sentences were evaluated with word-error
rate (WER) and the translations with BLEU [14]3. The bottom
section of Table 1 presents the results of different configura-
tions of MISTRAL.

To estimate an upper bound score for MISTRAL, we tuned
and tested it on the reference corpus, which yielded a BLEU
score of 21.27. We also tuned a baseline system on the best
sentence returned by the speech recognition system and ob-
tained a BLEU score of 19.37.

In a first experiment, we translated the lattice with a sys-
tem that was tuned on BLEU. This resulted in a system that
had a relative degradation of less than 1% in BLEU relative to
the baseline.

In a second experiment, we tried to reduce the WER by
optimizing our system on the harmonic mean of the word
recognition rate (1−WER) and BLEU. It did indeed improved
the WER, but at the expense of BLEU.

Finally, we ran a system optimized on BLEU, as in the
first experiment, but this time we pruned the lattices. We used
the lattice-tool utility [10] to remove all the edges whose pos-
terior probability was less than one percent of the posterior
probability of the best path. Doing so, we were able to get a
small improvement over the baseline of about 5% relative in
BLEU.

In the original lattices, there were 360 times more words
than the number of spoken words. Once the lattices were
pruned, this factor went down to 2.7 and the decoding time
was divided by seven.

To see if the low BLEU figures were due to an error in
our implementation, we compared our system with a mono-
tone (MOSESm) and a non-monotone (MOSESd) MOSES de-
coders [15]. Those two decoders were tuned on the first 300

3WER was computed with an in-house script and BLEU with the
multi-bleu.perl script available at http://www.statmt.org/wmt06/
shared-task/multi-bleu.perl

Task MISTRAL tuning MOSESm tuning
MISTRAL MOSESm MISTRAL MOSESm

Ref 20.09 20.83 19.52 20.91
1 best 17.97 18.62 17.22 18.99

Table 2: Performances of MOSES and MISTRAL when their
configurations are exchanged.

System BLEU
Before C P C + P

Official run 21.03 18.66 16.12 13.90
BLEU, pruned 23.81 20.75 17.60 16.17

Table 3: Results before and after case (C) and punctuation
(P) have been restored.

sentences of DEV using the mert-moses.pl utility provided
with MOSES (see Table 1).

Because BLEU scores of MOSES were low as well, we
think that the poor performance of MISTRAL are mainly due
to the models. Indeed, the corpora that were used to train the
translation tables are either small (TRAIN) or out of domain
(EUROPARL) and we took no special care to cope with that.

When looking at Table 1, we see that MOSES is system-
atically better than MISTRAL. To verify if this difference is
due to tuning, we ran MISTRAL on MOSESd configuration and
vice versa. Looking at Table 2, we see the difference is due
to our implementation.

4.4. Shared Task

The shared task was evaluated on a test corpus of 724 sen-
tences. Because the evaluation was case and punctuation
sensitive, we had to post-process the output of our system.

We treated the capitalization problem as a disambigua-
tion task where each word is ambiguously capitalized or not.
To do so, we trained a trigram on the capitalized TRAIN cor-
pus and then used the disambig utility [10].

To restore the punctuations, we used a naive Bayes classi-
fier looking at the first word of a sentence to decide whether it
should end with a period or a question mark. This algorithm
is very limited because it does not restore internal punctua-
tions like comas and has no way to detect when an utterance
is made of many sentences (e.g. “Globetrotter Travel. Good
morning.”). But we did not have time to investigate this com-
plex problem further.

Table 3 presents the performance of our official run after
all post-processing steps. BLEU brevity penalty is really pe-
nalizing our system because we added only one punctuation
per sentence while the test corpus contained an average of 2.4
punctuations per sentence. If the punctuation marks would
have no influence on the brevity penalty, the final BLEU score
of our official run would have been 15.87 instead of 13.90.

Our system was still in development when we submit-

ted our official translations. The results of our final system
translating pruned lattices are presented in the second row of
Table 3.

5. Conclusion
We presented and evaluated MISTRAL, the spoken language
translation system that we developed for IWSLT 2007. MIS-
TRAL is a phrase-based system dedicated at translating word
lattices.

Our system is deceiving in two ways. Its scores are low in
general and it does not clearly surpass a fair baseline. Given
that an external system produced translations of low quality
when trained on the same data, we think that low scores are
due to our models, which were not adapted to the task. We
are interested in testing MISTRAL on more data to see if it
could do better than the baseline.

On the other hand, MISTRAL is still young and there is
room for improvement. We will investigate why MOSES, on
the same configuration, outperforms our system. We also
plan to work on the integration of new features and the sup-
port for non-monotone translations.

6. References
[1] R. Zhang, G. Kikui, H. Yamamoto, T. Watanabe,

F. Soong, and W. K. Lo, “A unified approach in speech-
to-speech translation: integrating features of speech
recognition and machine translation,” in COLING ’04:
Proceedings of the 20th international conference on
Computational Linguistics. Morristown, NJ, USA:
Association for Computational Linguistics, 2004, p.
1168.

[2] H. Quan, M. Federico, and C. M., “Integrated n-best
re-ranking for spoken language translation,” in Inter-
speech 2005 - Eurospeech - 9th European Conference
on Speech Communication and Technology, 2005.

[3] S. Saleem, S.-C. Jou, S. Vogel, and T. Schultz, “Using
word lattice information for a tighter coupling in speech
translation systems,” in Proc. ICSLP, Jeju Island, Ko-
rea, Oct 2004.

[4] E. Matusov, S. Kanthak, and H. Ney, “On the inte-
gration of speech recognition and statistical machine
translation,” in Proceedings of the 9th European Con-
ference on Speech Communication and Technology (In-
terspeech), September 2005.

[5] R. Zhang, G. Kikui, H. Yamamoto, and W.-K. Lo,
“A decoding algorithm for word lattice translation
in speech translation,” in Proceedings of 2005 Inter-
national Workshop on Spoken Language Translation,
2005.

[6] L. Mathias and W. Byrne, “Statistical phrase-based
speech translation,” in IEEE Conference on Acoustics,
Speech and Signal Processing, 2006.

[7] N. Bertoldi, R. Zens, and M. Federico, “Speech trans-
lation by confusion network decoding,” in Proceedings
on the 32nd IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), Hon-
olulu, Hawaii, USA, April 2007.

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C: The Art of Scientific
Computing. New York, NY, USA: Cambridge Univer-
sity Press, 1992.

[9] P. Koehn, “Europarl: A parallel corpus for statistical
machine translation,” in 2nd. Workshop on EBMT of
MT-Summit X, 2005.

[10] A. Stolcke, “SRILM - an extensible language modeling
toolkit,” in Proceedings of ICSLP, Denver, Colorado,
Sept 2002.

[11] P. Koehn and C. Monz, “Manual and automatic eval-
uation of machine translation between european lan-
guages,” in Proceedings on the Workshop on Statistical
Machine Translation. New York City: Association for
Computational Linguistics, June 2006, pp. 102–121.

[12] P. Koehn, F. J. Och, and D. Marcu, “Statistical phrase-
based translation,” in NAACL ’03: Proceedings of the
2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human
Language Technology. Morristown, NJ, USA: Asso-
ciation for Computational Linguistics, 2003, pp. 48–54.

[13] F. J. Och and H. Ney, “Improved statistical alignment
models,” in Conference of the Association for Compu-
tational Linguistic (ACL), Hongkong, China, October
2000, pp. 440–447.

[14] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu:
a method for automatic evaluation of machine trans-
lation,” in ACL ’02: Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics.
Morristown, NJ, USA: Association for Computational
Linguistics, 2001, pp. 311–318.

[15] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst, “Moses: Open source toolkit for statisti-
cal machine translation,” in Proceedings of the 45th An-
nual Meeting of the Association for Computational Lin-
guistics Companion Volume Proceedings of the Demo
and Poster Sessions. Prague, Czech Republic: Asso-
ciation for Computational Linguistics, June 2007, pp.
177–180.

