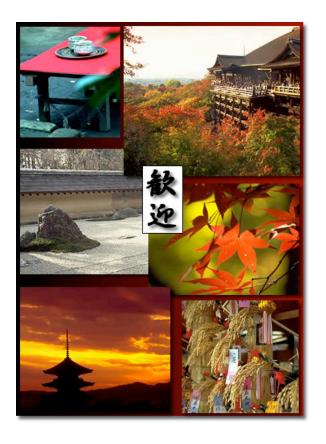
Monter un système de traduction automatique statistique basé sur les séquences de mots: Le cas de la campagne d'évaluation IWSLT

Philippe Langlais

RALI/DIRO Université de Montréal felipe@iro.umontreal.ca

En collaboration avec Michael Carl, IAI, Saarbrücken (carl@iai-uni-sb.de) et Oliver Streiter, National University of Kaohsiung, Taiwan (ostreiter@nuk.edu.tw)



Outline

- Overview of the IWSLT04 Evaluation Campaign
- Our participation at IWSLT04
 - Few words on the core engine we considered
 - Our phrase extractors
 - Experiments with phrase-based models (PBMs)
- Overview of the participating systems
- Conclusions

Part I
Overview of the IWSLT Evaluation Campaign

International Workshop on Spoken Language Translation

- Two goals:
 - evaluating the available translation technology
 - methodology for evaluating speech translation technologies
- Two pairs of languages: Chinese/English and Japanese/English
- Three tracks: Small, Additional and Unrestricted
- 14 institutions, 20 CE-MT systems, 8 JE ones

Online proceedings: http://www.slt.atr.co.jp/IWSLT2004/

The different Tracks

resources	small	additional	unrestricted
IWSLT 2004 corpus			
LDC resources, tagger, chunker, parser	×	$\sqrt{}$	$\sqrt{}$
other resources	×	×	$\sqrt{}$

Provided corpora

type	language	sent	avr. length	token	types
train	Chinese	20 000	9.1	182 904	7 643
	English	20 000	9.4	188 935	8 191
dev	Chinese	506	6.9	3 5 1 5	870
	English	506	7.5	67 410	2 435
test	Chinese	500	7.6	3 794	893

Translation Domain

The provided corpora were from the BTEC¹ corpus (http://cstar.atr.jp/cstar-corpus):

- it 's just down the hall . i 'll bring you some now . if there is anything else you need , just let me know .
- no worry about that . i 'll take it and you need not wrap it up .
- do you do alterations ?
- the light was red .
- we want to have a table near the window .

The Chinese part was tokenized by the organizers.

¹Basic Travel Expressions Corpus

Participants

SMT	7	ATR-SMT, IBM	1, IRST, ISI, ISL-SMT, RWTH, TALP
EBMT	3	HIT, ICT, UTok	куо
RBMT	1	CLIPS	
Hybrid	4	ATR-HYBRID	$\overline{\text{(SMT} + \text{EBMT)}}$
		IAI	(SMT + TM)
		ISL-EDTRL	(SMT + IF)
		NLPR	(RBMT + TM)
			,

Automatic Evaluation

- 5 automatic metrics computed:
 - NIST/BLEU, n-gram precision
 - mWER, edit distance to the closest reference
 - mPER, position indepedent mWER
 - GTM, unigram-based F-measure
- - translations were converted to lower case, punctuations removed

Automatic Evaluation: Results

	0 = p	erfect		0 = bad						
m۱	mWER mPER		BLEU		NIST		GTM			
0.455	RWTH	0.390	RWTH	0.454	ATR-S	8.55	RWTH	0.720	RWTH	
0.469	ATR-S	0.404	ISL-S	0.414	ISL-S	8.34	ISL-S	0.624	ISL-S	
0.471	ISL-S	0.420	ATR-S	0.408	RWTH	7.85	IAI	0.685	IAI	
0.488	ISI	0.425	ISI	0.374	ISI	7.74	ISI	0.672	ISI	
0.507	IRST	0.430	IRST	0.349	IRST	7.48	ATR-S	0.670	ATR-S	
0.532	IAI	0.451	IAI	0.346	IBM	7.12	IBM	0.665	IBM	
0.538	IBM	0.452	IBM	0.338	IAI	7.09	IRST	0.647	TALP	
0.556	TALP	0.465	TALP	0.278	TALP	6.77	TALP	0.644	IRST	
0.616	HIT	0.500	HIT	0.209	HIT	5.95	HIT	0.601	HIT	

- IAI was tuned on the NIST score only
- best run submitted with 8.00 NIST score

Human Evaluation

Fluency

- 5 Flawless English
- 4 Good English
- 3 Non-Native English
- 2 Disfluent English
- 1 Incomprehensible

Adequacy

- 5 All Information
- 4 Most Information
- 3 Much Information
- 2 Little Information
- 1 None

Human Evaluation: Results

Flu	iency	Adequacy		
3.820	ATR-S	3.338	RWTH	
3.356	RWTH	3.088	IRST	
3.332	ISL-S	3.084	ISI	
3.120	IRST	3.056	HIT	
3.074	ISI	3.048	ISL-S	
2.948	IBM	3.022	TALP	
2.914	IAI	2.950	ATR-S	
2.792	TALP	2.938	IAI	
2.504	HIT	2.906	IBM	

→ You won't miss much if you leave now!

Human Evaluation: a few Facts

- "This indicates that the quality of two systems whose difference in either fluency or adequacy is less than 0.8 cannot be distinguished.", (Akiba,2004).
- Another way of comparing the systems is also provided in the paper (with more or less the same ranking).
- BLEU correlates with fluency, NIST with adequacy (but both are supposed to correlate well with overall human jugements. . .).

Part II Our participation at IWSLT 2004

Motivations

- How far can we go in one month of work, starting from (almost) scratch and relying intensively on available packages?
- Interested by the perspective taken by the organizers: validation of existing evaluation methodologies. See also the CESTA project (TECHNOLANGUE):

http://www.technolangue.net/

To play safe, we participated in:

• the Chinese-to-English track using only the 20K sentences provided

The core engine

We used an off-the-shelf decoder: Pharaoh (Koehn, 2004), based on:

$$\hat{e} = \underset{e,I}{\operatorname{argmax}} \prod_{i=1}^{I} \phi(c_i|e_i)^{\lambda_{\phi}} d(a_i - b_{i-1})^{\lambda_d} p_{lm}(e)^{\lambda_{lm}} \omega^{|e| \times \lambda_{\omega}}$$

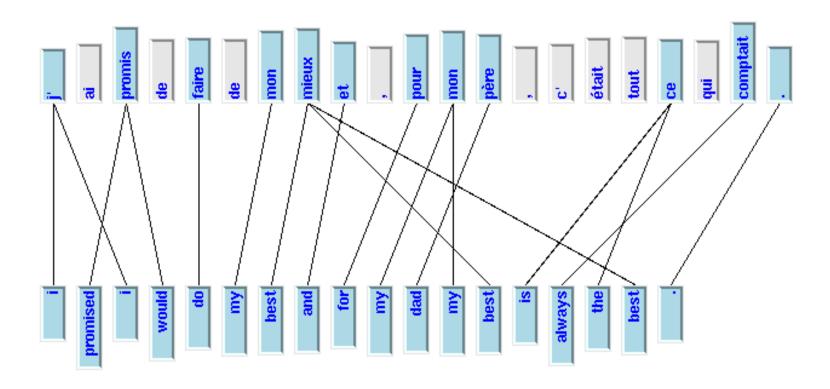
- a flat PBM (e.g small boats \leftrightarrow bateau de plaisance 0.82)
- we used SRILM (Stolcke,2002) to produce a 3-gram
 ngram-count -interpolate -kndiscount1 -kndiscount2 -kndiscount3
- a set of parameters (one for the PBM, one for the language model, one for the length penalty and one for the built-in distorsion model)

Our phrase-based extractors

We tried two different methods of extraction:

WABE: Word-Alignment Based Extractor

— Relying on viterbi alignments computed from IBM model 3


We used Giza++ (Och and Ney, 2000) to obtain them

SBE: String-Based Extractor

— Capitalizing on redundancies in the training corpus at the sentence level

An example of word Alignment

Does not work perfectly (see http://www.cs.unt.edu/~rada/wpt/), but nothing to code if you use giza++!

WABE: Word-alignment based extractor

Yet another version of (Koehn et al.,2003; Tillmann,2003) and others. Basically:

- Considers the intersection of the word links obtained by viterbi alignment in both directions (C-E, E-C)
- (more or less) carefully extends this set of links with links belonging to the union of both sets (C-E,E-C)

A few meta-parameters control the phrases acquired in this way:

```
length-ratio : ratio = 2
```

min-max src/tgt length: min=1, max=8

WABE: An example

•													Χ
SUNNY												Χ	
MAINLY											Χ	-	
OTHERWISE										Χ			
PATCHES	١.						Χ	_					
FOG	١.				Χ			. `					
MORNING		١.							Χ				
				Χ									
TODAY	.	X	_										
NULL													
	N	Α	Н		В	D	В	Е	М	Р	G	Е	
	U	lυ	U		Α	Ε	R	Ν	Α	U	Ε	Ν	
	L	J	Ī		Ν		0		Т	Ī	Ν	S	
	<u>-</u>	0	•		C		Ü		i	S	E	0	
	_	Ü			S		ĺ		N	J	R	L	
		R			J		i		E		A	E	
		D					L		E		L	-	
		"					_		_				
							A				E	L	
							R				M	L	
							D				Е	Е	
											N		
											Т		


```
WABE: An example
FOG | | | BANCS | | | 1
MAINLY SUNNY . | | GENERALEMENT ENSOLEILLE . | | 1
OTHERWISE MAINLY SUNNY | | | PUIS GENERALEMENT ENSOLEILLE | | | 1
OTHERWISE | | PUIS | | 1
MORNING FOG PATCHES OTHERWISE MAINLY | | BROUILLARD EN MATINEE PUIS GENERALEMENT | | 1
MORNING FOG PATCHES ||| BROUILLARD EN MATINEE ||| 1
TODAY .. MORNING FOG | | AUJOURD HUI .. BANCS | | 1
. | | | . | | | 1
MORNING FOG PATCHES OTHERWISE MAINLY SUNNY . | | MATINEE PUIS GENERALEMENT ENSOLEILLE . | | 1
MORNING FOG PATCHES OTHERWISE | | BROUILLARD EN MATINEE PUIS | | 1
MORNING FOG PATCHES OTHERWISE MAINLY SUNNY . | | | BROUILLARD EN MATINEE PUIS GENERALEMENT ENSOLEILLE . | | 1
.. | | | .. | | | 1
OTHERWISE MAINLY || PUIS GENERALEMENT || 1
MORNING FOG PATCHES OTHERWISE | | | MATINEE PUIS | | | 1
TODAY .. | | AUJOURD HUI .. | | 1
OTHERWISE MAINLY SUNNY . | | | PUIS GENERALEMENT ENSOLEILLE . | | 1
TODAY | | AUJOURD HUI | | 1
SUNNY | | ENSOLEILLE | | 1
PATCHES | | BROUILLARD EN | | 1
MORNING FOG PATCHES OTHERWISE MAINLY | | | MATINEE PUIS GENERALEMENT | | | 1
SUNNY . | | ENSOLEILLE . | | 1
MORNING FOG PATCHES OTHERWISE MAINLY SUNNY || BROUILLARD EN MATINEE PUIS GENERALEMENT ENSOLEILLE || 1
.. MORNING FOG | | | .. BANCS | | | 1
MORNING | | MATINEE | | 1
MORNING FOG PATCHES OTHERWISE MAINLY SUNNY | | | MATINEE PUIS GENERALEMENT ENSOLEILLE | | 1
MAINLY | | GENERALEMENT | | 1
```


SBE: String-based extractor

If two strings are in a relation of translation and if part of them also are, then we can induce a specific translation relation between the other parts.

SHOWERS BEGINNING THIS EVENING AVERSES DE PLUIE DEBUTANT CE SOIR

SHOWERS BEGINNING THIS EVENING AND ENDING OVERNIGHT.

AVERSES DE PLUIE DEBUTANT CE SOIR ET CESSANT AU COURS DE LA NUIT.

AND ENDING OVERNIGHT.
ET CESSANT AU COURS DE LA NUIT.

54 461 parameters out of 20K sentences

Word-based translation versus PB translation

engine	NIST	Bleu%	MWER	MSER
ibm2+3g	5.0726	26.57	60.56	94.47
Pharaoh	5.5646	26.16	59.70	94.27
wbm by Pharaoh	4.8417	15.54	64.95	97.63

- ibm2+3g is an extension of the decoder described by (Niessen et al., 1998)
- Pharaoh was run with its default setting; each parameter of the FPBM was scored by relative frequency

Tuning the decoder

$\overline{\lambda_d}$	λ_{ϕ}	λ_w	λ_{lm}	Nist	Bleu%	MWER	MSER
				5.5646		59.70	94.27
1	1	-1.5		6.3470		58.93	94.27
.2	.9	-1.5	.8	6.8401	28.44	56.25	94.07

 λ_d , distorsion weight ([0,1]) λ_ϕ , transfer weight ([0,1]) λ_w , word penalty ([-3,3]) λ_{lm} , language model weight ([0,1])

We applied a poor man's strategy (sampling uniformly the parameter ranges)

- \hookrightarrow a relative gain over the default configuration (line 1) of 23%
- \hookrightarrow 61% of this gain obtained by tuning only the word penalty parameter

Merging different FPBMs

config	p	Nist	Bleu%	MWER	MSER
WABE		6.8401	28.44	56.25	94.07
+ WBM		7.0766	31.38	54.88	93.28
+ SBE		7.0926	31.78	54.56	92.69

Merging 2 models was done crudely by:

- copying $p_i(s|t), \forall s$ whenever t has not been seen in one model,
- ullet averaging them in case both $p_1(s|t)$ and $p_2(s|t)$ exist,
- normalizing

 \hookrightarrow a relative gain of 3.7%

The weakness of relative frequency

_	min	max	model	%f1	%f2	%f3+	%p = 1
_	1	8	166 481	90.6	4.9	4.5	74.6
	2	8	153 512	92.7	4.3	3.0	78.5
	2	4	73 369	87.0	7.1	5.9	68.7

- %f1, %f2 and %f3+ stand for the percentage of parameters (pairs of phrases) seen 1, 2 or at least 3 times in the TRAIN corpus.
- \bullet %p=1 stands for the percentage of parameters that have a relative frequency of 1.

Scoring phrases with IBM model 1

model	Nist	Bleu%	MWER	MSER
relfreq	7.0926	31.78	54.56	92.69
ibm	7.3067	32.98	53.86	92.49
relfreq&ibm	7.3118	34.48	52.73	91.90
relfreq&pn-ibm	7.4219	34.6	53.02	91.70

- baseline model (line 1) = merged FPBM of 306 585 parameters trained by relative frequency.
- ullet rating these parameters by IBM model 1 yields a relative improvement in the NIST score of 3%
- pn-ibm: do not normalize parameters where $|\{s:p(s|t)\exists\}|=1$ holds

Specific models

config	Nist	Bleu%	MWER	MSER
relfreq&ibm	7.3118	34.48	52.73	91.90
A	7.1862	34.21	53.12	91.18
Q	6.4995	34.92	52.12	93.00
specific-lm	7.4702	33.64	53.27	91.90
A	7.3229	33.66	53.08	90.85
Q	6.7010	33.58	53.55	93.50

- around 40% of the training sentences were interrogatives
- ⇒ specific language model combined with the general one (specific tuning over 6 parameters)

(we did not observe improvements by modelling specific FPBMs)

Translations we submitted before the deadline

ibm2+3g word-based translation engine,

straight a WABE FPBM

merge the best model obtained by merging word and phrase associations

QA the one submitted for manual evaluation

manual to measure the usefulness of the automatic translations for human post-editing

Task: selecting one translation among the generated ones and enhancing its quality through slight modifications

The manual experiment

- 423 (84.6%) were just selections of one of the automatic translations.
- Out of these 423 translations, 85 (20%) were produced by the word-based engine (ibm2+3g).

```
trans1 take a bath for a twin room.
trans2 please take a bath for a double.
trans3 take a bath of double.
trans4 take one twin room with bath.
trans5 have a bath for double.
trans6 have a twin room with bath, please.
trans7 have a double room with bath, please.
manual please, a twin room with bath.
```


Translations we submitted before the deadline

config	BLEU%	Nist	GTM	Wer	PER
$\frac{1}{ibm2+3q}$	27.27	6.55		58.12	
straight	30.92	7.52	66.93	56.05	
U	35.32	8.00		51.74	
merge	33.89	7.85		53.24	
QA					
$\underline{\hspace{1cm}}$ $\hspace{$	36.93	8.13	08.42	49.62	42.53

 \hookrightarrow the ordering of the variants was (almost) consistent with the one observed on the CSTAR corpus

Part III Overview of the participating systems

Systems' overview: EBMT-like approaches

ATR-HYBRID 2 EBMT systems (syst1: edit-distance-based, syst2: grammar-based) + selection of the best output

Sumita, Akiba, Doi, Finch, Imakura, Okuma, Paul, Shimohata, Watanabe

HIT extraction of patterns from word-alignment (via bilingual lexicon) + segmentation + statistically flavored selection

Yang, Zhao, Liu, Shi, Jiang

ICT EBMT, many resources used (taggers, training corpora, bilingual word and phrases): closest sentence identification + source segmentation + target material selection + recursively finding non aligned parts

Hou, Deng, Zou, Yu, Liu, Xiong, Liu

UTokyo EBMT with Japanese and English parsers, alignment via bilingual dictionnaries Aramaki, Kurohashi

Systems' overview: AT-like approaches

ISI-USC Och's NIST 2004 system (alignment template model, discriminative training, 12 features)

Ettelaie, Knight, Marcu, Munteanu, Och, Thayer, Tipu

ITC-IRST Chinese segmentation + pre/post processing (week days, numbers, etc.) + maxent

Bertoldi, Cattoni, Cettolo, Federico

RWTH maxent + simplex (word 3g, word-class 5g, etc.)

Bender, Zens, Matusov, Ney

Systems' overview: FPBM-like approaches

ATR-SMT: HMM phrase-based SMT (PBM analog in spirit to IBM model 4 + log-linear decoder + Simplex)

Sumita, Akiba, Doi, Finch, Imakura, Okuma, Paul, Shimohata, Watanabe

IAI PBM + Pharaoh decoder Langlais, Carl , Streiter

IBM Extension of Tillmann's engine (R-alignments, reordering of source sentences, unknown Chinese word segmentation, decoder with skip, etc.)

Lee, Roukos

ISL-SMT PB-SMT, online phrase acquisition based on a sentence segmentation process based on a variant of IBM-1

Vogel, Hewavitharana, Kolss, Waibel

Systems' overview: others

- **CLIPS** Systran web 5.0 and Systran premium 5.0!

 Blanchon, Boitet, Brunet-Manquat, Tomokiyo, Hamon, Hung, Bey
- **NLPR** 3 systems (template based, SMT, and interlingua based) + adhoc selection of their output Zuo, Zhou, Zong
- **ISL-EDTRL** statistical transfer rules (unclear how they were trained), simplified English as an Interlingua (ex: please give me \rightarrow give me . . . please; he had spoken \rightarrow he spoke) Reichert, Waibel
- **TALP** X-grams transductors (X-gram: bilette/ticket, clase/second-class ticket) + pre/post-processing (weekdays, cities, dates, etc.)

 De Gispert, B. Marino

Human Evaluation: The full picture

U-FI	U-Fluency		U-Adequacy		
3.776	IRST	3.662	ISL-S		
3.776	ISL-S	3.526	IRST		
3.400	NLPR	3.254	ISL-E		
3.036	IBM	3.188	HIT		
2.954	ISI	3.082	ICT		
2.934	ISL-E	2.996	IBM		
2.718	ICT	2.960	CLIPS		
2.648	HIT	2.800	NLPR		
2.570	CLIPS	2.784	ISI		

S-Fluency		S-Adequacy		
3.820	ATR-S	3.338	RWTH	
3.356	RWTH	3.088	IRST	
3.332	ISL-S	3.084	ISI	
3.120	IRST	3.056	HIT	
3.074	ISI	3.048	ISL-S	
2.948	IBM	3.022	TALP	
2.914	IAI	2.950	ATR-S	
2.792	TALP	2.938	IAI	
2.504	HIT	2.906	IBM	

3.256 IRST 3.110 IRST 2.846 ISI 2.725 ISI

Conclusions

- Is phrase-based translation \equiv Pharaoh(Giza++ $^{\lambda_g}$ × SRILM $^{\lambda_s}$)?
 - → at least a decent system can be obtained this way
- Things we tried that did not work better:
 - splitting the training sentences into shorter ones
 - replacing proper names by NAME
- Many factors to be tried:
 - word alignment procedure (Simard and Langlais, 2003)
 - other scoring functions (Zao et al., 2004)
- Unclear why we had a low adequacy score, but a high NIST one.

felipe@ rali

References

- [1] Y. Akiba, M. Federico, N. Kando, H. Nakaiwa, M. Paul and J. Tsujii "Overview of the IWSLT04 Evaluation Campaign", In Proceedings of Internation Workshop on Spoken Language Translation (IWSLT), Kyoto, Japan, pp. 1–12
- [2] Koehn P., "Pharaoh: a Beam Search Decoder for Phrase-Based SMT", To appear in Proceedings of the Conference of the Association for Machine Translation in the Americas (AMTA), 2004
- [3] Stolcke A., "SRILM An Extensible Language Modeling Toolkit", In Proceedings of the International Conference for Speech and Language Processing (ICSLP), Denver, Colorado, September 2002
- [4] Och F.J. and Ney H., "Improved Statistical Alignment Models", in Proceedings of the Conference of the Association for Computational Linguistic (ACL), Hongkong, China, pp. 440–447, 2000
- [5] Koehn P., Och F.J. and Marcu D., "Statistical Phrase-Based Translation", In

Proceedings of the Human Language Technology Conference (HLT), pp. 127–133, 2003

- [6] Tillmann C., "A Projection Extension Algorithm for Statistical Machine Translation", In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2003
- [7] Niessen S., Vogel S. Ney H. and Tillmann C., "A DP based Search Algorithm for Statistical Machine Translation", in Proceedings of the International Conference On Computational Linguistics (COLING), pp. 960–966, 1998
- [8] Simard M. and Langlais P., "Statistical Translation alignment with Compositionnality Constraints", HLT-NAACL Workshop: Building and Using Parallel Texts: Data Driven Machine Translation and Beyond, Edmonton, Canada, May 31, pp.19–22, 2003
- [8] Zhao B., Vogel S. and Waibel A., "Phrase Pair Rescoring with Term Weightings for Statistical Machine Translation", In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), Barcelona, Spain, July 2004

WABE

Require: P, R, minLength, maxLength, ratioEnsure: res contains all the pairs of phrases

```
1: Initialization
 2: res \leftarrow \{\}
 3: for all x:1 \rightarrow |S| do T[x] \leftarrow \{\}
 4: for all y:1 \rightarrow |T| do S[y] \leftarrow \{\}
 5:
 6: Step1: \mathcal{P}-projection
 7: for all (x,y) \in \mathcal{P} do add(x,y)
 8:
 9: Step2: Extension
10: for p:1 \to 2 do
       repeat
11:
      a \leftarrow \{\}
12:
       for s:1 \rightarrow |S| do
```

felipe@ rali

```
for all t \in T[s] do
14:
               if p=2 then
15:
                  neighbor(x-1,y-1); neighbor(x+1,y-1);
16:
                 neighbor(x-1,y+1); neighbor(x+1,y-1);
17:
               else
18:
                  neighbor(x-1,y); neighbor(x+1,y);
19:
                  neighbor(x,y-1); neighbor(x,y+1);
20:
         for all (x, y) \in a do add(x, y)
21:
      until |a| = 0
22:
23:
24: Step3: Collect independent boxes
25: b \leftarrow \{\}
26: for x : 1 \to |S| do
      X \leftarrow \{x\}; Y \leftarrow \{\}
      repeat
28:
         X_m \leftarrow X; Y_m \leftarrow Y
29:
```



```
for all x \in X do Y \leftarrow Y \cup T[x]
30:
            if Y \mathrel{!=} Y_m then
31:
                for all y \in Y do X \leftarrow X \cup S[y]
32:
        until X = X_m and Y = Y_m
33:
        b \leftarrow b \cup \left\{ \begin{array}{l} (min\{x : x \in X\}, max\{x : x \in X\}), \\ (min\{y : y \in Y\}, max\{y : y \in Y\}) \end{array} \right\}
34:
        x \leftarrow max\{x : x \in X\} + 1
35:
36:
37: Step4: Combine boxes
38: for i: 1 \to |b| do
        let ((x_{m_i}, x_{M_i}), (y_{m_i}, y_{M_i})) = b_i
       add(x_{m_i}, x_{M_i}, y_{m_i}, y_{M_i})
40:
        for i:i+1 \rightarrow |b| do
41:
           let ((x_{m_i}, x_{M_i}), (y_{m_i}, y_{M_i})) = b_i
42:
            if x_{M_i} + 1 = x_{m_i} then
43:
               add(x_{m_i}, x_{M_i}, y_{m_i}, y_{M_i})
44:
```

