
TALN 2010, Montréal, 19–23 juillet 2010

Automatic Question Generation from Sentences

Husam Ali Yllias Chali Sadid A. Hasan
University of Lethbridge
Lethbridge, AB, Canada

{ali,chali,hasan}@cs.uleth.ca

Abstract. Question Generation (QG) and Question Answering (QA) are some of the many chal-
lenges for natural language understanding and interfaces. As humans need to ask good questions, the
potential benefits from automated QG systems may assist them in meeting useful inquiry needs. In this pa-
per, we consider an automatic Sentence-to-Question generation task, where given a sentence, the Question
Generation (QG) system generates a set of questions for which the sentence contains, implies, or needs
answers. To facilitate the question generation task, we build elementary sentences from the input complex
sentences using a syntactic parser. A named entity recognizer and a part of speech tagger are applied on
each of these sentences to encode necessary information. We classify the sentences based on their subject,
verb, object and preposition for determining the possible type of questions to be generated. We use the
TREC-2007 (Question Answering Track) dataset for our experiments and evaluation.

Mots-clés : Génération de questions, Analyseur syntaxique, Phrases élémentaires, POS Tagging.

Keywords: Question Generation, Syntactic Parsing, Elementary Sentence, POS Tagging.

1 Introduction

Ideal learners are often curious question generators who actively self-regulate their learning. That is, they
identify their own knowledge deficits, ask questions that focus on these deficits, and answer the questions
by exploring reliable information sources. Unfortunately, this idealistic vision of intelligent inquiry is ra-
rely met, as most learners have trouble identifying their own knowledge deficits (Rus & Graesser, 2009).
Question asking and Question Generation (QG) are important components in advanced learning techno-
logies such as intelligent tutoring systems, and inquiry-based environments. QG is an essential element
of learning environments, help systems, information seeking systems, and a myriad of other applications
(Lauer et al., 1992). A QG system would be useful for building an automated trainer for learners to ask
better questions, and for building better hint and question asking facilities in intelligent tutoring systems
(Graesser et al., 2001). Another benefit of QG is that it can be a good tool to help improve the quality of the
Question Answering (QA) systems. Available studies revealed that humans are not very skilled in asking
good questions. Therefore, they would benefit from automated QG systems to assist them in meeting their
inquiry needs (Rus & Graesser, 2009).

In this paper, we consider a form of Text-to-Question generation task, where the input text are sentences.
The QG system would then generate a set of questions for which the sentence contains, implies, or needs



answers. We experiment with the TREC-2007 (Question Answering Track) 1 dataset. The scenario for
the main task in the TREC 2007 QA track was that an adult, native speaker of English is looking for
information about a target of interest (Dang et al., 2007). The target could be a person, organization,
thing, or event. The user was assumed to be an “average” reader of U.S. newspapers. The main task
required systems to provide answers to a series of related questions. A question series, which focused on
a target, consisted of several factoid questions, one or two list questions, and exactly one Other question.
We use these data to act oppositely in this research. That is, using the given target, we filter out the
important sentences from the large sentence pool and generate possible questions from them. So, we call
our Sentence-to-Question generation system as target-driven. For this research we consider the factoid type
questions only. A factoid question can be any of these types : “What...”, “Where...”, “When...”, “Who...”,
and “How many / How much...”. For example, considering “WWE” as target, we can generate these
questions : “Who is the chairman of WWE ?”, “Where is WWE headquartered ?”, “What is “WWE” short
for ?”, “WWE evolved from what earlier organization ?”, “What cable network airs WWE ?”.

The rest of the paper is organized as follows : Section 2 describes the related work on Question Generation
followed by Section 3 that discusses the details of our QG system. Section 4 shows the evaluation results.
Finally, in Section 5 we give conclusion and future directions.

2 Related Work

Recently, tackling Question Generation (QG) in the field of computational linguistics has got immense
attention from the researchers. Twenty years ago it would take hours or weeks to receive answers to the
same questions as a person hunted through documents in a library. In the future, electronic textbooks and
information sources will be mainstream and they will be accompanied by sophisticated question asking
and answering facilities. As a result, it is believed that the Google generation is meant to have a much
more inquisitive mind than the generations that relied on passive reading and libraries (Rus & Graesser,
2009). In the last few years, new preoccupations appear for automatic question generation. In (Andrenucci
& Sneiders, 2005), they introduced a template-based approach to generate questions on four types of
entities. The authors in (McGough et al., 2001) used WTML (Web Testing Markup Language), which is
an extension of HTML, to solve the problem of presenting students with dynamically generated browser-
based exams with significant engineering mathematics content. In (Wang et al., 2008), they generated the
questions automatically based on question templates that are created by training on many medical articles.
In (Brown et al., 2005), an interesting approach was described to automatically generating questions for
vocabulary assessment.

3 Sentence-to-Question Generation

In this section, we describe the overall framework of our Question Generation (QG) system. We discuss all
the modules in detail. As we said before, we consider the question generation task given a target. We use
the TREC-2007 (Question Answering Track) dataset for this purpose. There are 70 topics in the dataset
with 50 files for each topic. A target and a set of related questions for each topic are given. When the
results were released, they also provided the actual answers and the file names that contain the answers.

1. http ://trec.nist.gov/data/qamain.html



FIGURE 1 – Basic architecture of our QG system

Initially, we clean up the data in order to get rid of unnecessary information. We use the actual answers and
the targets to find the sentences that are relevant to the target or the answer or both. The sentences might
have complex structure with multiple clauses. So, it would be difficult to generate accurate questions from
the complex sentences. Therefore, we simplify the process by extracting elementary sentences from the
complex sentences using syntactic information. We classify the sentences based on their subject, verb, ob-
ject and preposition for determining the possible type of questions to be generated. The basic architecture
of our QG system is depicted in Figure 1. We divide the whole task into three modules :

3.1 Data Preprocessing

Cleaning and processing of raw data is the important initial part of any NLP task. We remove the redundant
tags and text from all the documents and the questions provided in the TREC dataset. We use the Oak
system 2 to tokenize the sentences and the questions. The text file given in the dataset has the information
about the actual answers for the questions. It is parsed to extract the topic number, the answer, and the
file name that contains the answers to the questions. The system opens the file that contains the answer,
and searches for the relevant sentences that contain the answer or the target or both. Thus, we reduce the
number of sentences to be processed. Then, we pass the relevant sentences to the Named Entity (NE) tagger
and the Parts of Speech (POS) tagger. We use the Oak system to generate the POS tagged sentence. The
POS tagged sentences will provide us with the information about the verbs and their tenses. We extract
all the verbs from a sentence based on this information. Again, we employ the Oak system to generate
the NE tagged sentences. A sentence may include a certain Named Entity types (among the 150 NEs
possible) such as : PERSON, LOCATION, ORGANIZATION, GPE (Geo-Political Entity), FACILITY,
DATE, MONEY, PERCENT, TIME, etc.

2. http ://nlp.cs.nyu.edu/oak/



3.2 Elementary Sentence Construction

Sentences in the dataset may have complex grammatical structure with multiple embedded clauses. The-
refore, we extract elementary sentences from the complex sentences with the intention to generate more
accurate questions. We syntactically parse each complex sentence to accomplish this. We perform this by
using the Charniak parser 3. This module constructs a syntactic tree representation, from the bracketed
representation of the parsed sentence. While building the tree process, we construct 3 arrays, one for the
Noun Phrases (NPs), one for the Verb Phrases (VPs) and one for the Prepositions (PPs) with their location
in the tree, a fourth array is generated, from the tree to represent the depth first sequence of the tree nodes
and leaves structure. We combine the NPs with the VPs and PPs by reading the NPs till the scope of the
VPs and the PPs that are in the VPs scope and thus, we get the elementary sentences.

3.3 Sentence Classification and Question Generation

Elementary sentences are the inputs of this module. Based on the associated POS and NE tagged informa-
tion, we get the subject, object, preposition and verb for each elementary sentence. We use this information
to classify the sentences. We follow a two-layered taxonomy to represent a natural semantic classification
for the sentences. Our sentence classifier module makes use of a sequence of two simple classifiers. The
first classifies the sentences into fine classes (Fine Classifier) and the second into coarse classes (Coarse
Classifier). This is a similar but opposite approach to the one described in (Li & Roth, 2002). The se-
cond classifier influences the first in that its candidate labels are generated by reducing the set of retained
fine classes from the first into a set of coarse classes. This set is treated as the confusion set for the first
classifier, the confusion set keep shrinking till we find the Coare classes that the word belongs to. OAK
System has 150 types that can be tagged. They are included in a hierarchy. This information is used to
make candidate fine and coarse classes. We define the five coarse classes as :

1. Human : Any subject or object that is a name of a person.

2. Entity : Includes animals, plant, mountains and any object.

3. Location : Words that represent locations, such as country, city, school, etc.

4. Time : Words that represent time, date or period such as year, Monday, 9 am, last week, etc.

5. Count : Hold all the counted elements, such as 9 men, measurements like weight etc.

We process each sentence in a top-down manner to get it classified. Let, the confusion set of any sentence
be C0 = {c1, c2, · · · , cn}, , the set of all the coarse classes. Initially, the fine classifier determines the
fine classes. Then, the set of fine classes is reduced to a coarse class determined by the class hierarchy.
That is, the set {fi1, fi2, · · · , fim} of fine classes is mapped into the coarse class ci. Based on the coarse
classification, we consider the relationship between the words in the sentence. For example, if a sentence
has the structure : “Human Verb Human”, it will be classified as “whom and who” question types. If it is
followed by a preposition that represents time, then we add the “When” question type to its classification.
We check the coarse classes according to the word-to-word interaction rules. The rule check will produce
the type of questions that can be generated while considering the verb tense and stem. Indeed, the output
of the system will be the questions of the type that is suggested here. In this research, we define a set of 90
interaction rules like “Human Verb Human”, “Human Verb Entity”, “Human Verb Human Time” ... etc.

3. available at ftp ://ftp.cs.brown.edu/pub/nlparser/



Type Qg Qa Recall Type Qg Qa Recall
What 7 52 0.135 Which 3 10 0.300

Who/Whom 11 20 0.550 How many/much 3 13 0.231
Where 4 8 0.500 When 1 2 0.500

Over all 29 105 0.276

TABLE 1 – Individual factoid types and Over all Recall

Type Qg Qr Precision Type Qg Qr Precision
What 105 43 0.410 Which 57 23 0.404

Who/Whom 144 106 0.736 How many/much 43 17 0.395
Where 117 89 0.761 When 71 37 0.521

Over all 537 315 0.587

TABLE 2 – Individual factoid types and Over all Precision

4 Evaluation Results and Discussion

TREC-2007 provides the dataset along with the questions and their corresponding answers. We use this
information to evaluate our system. In this research we employ the widely used evaluation measures :
Recall and Precision of our system. We define Recall and Precision as follows :

Recall =
Qg

⋂
Qa

Qa

(1)

Precision =
Qg

⋂
Qr

Qr

(2)

where, Qg is the number of questions generated by our QG system, Qa is the number of actual questions
given for each topic in the TREC dataset and Qr is the number of related questions generated by the system
excluding questions with gramatical error.

For Recall evaluation we experiment with 70 topics from the TREC 2007 dataset. For 20 topics, our
system could generate the questions given the target. However, for the other topics our system was unable
to generate any questions. We get a Recall of 0.000 for the other topics. From Table 1 we see that for the
“When”, “Where” and “Who” type questions, the Recall is similar. For the type “What”, we get the lowest
Recall of 0.135. We also show the overall Recall considering all the question types.

For Precision evaluation we experiment with 5 topics from the 20 topics that we could generate question
from, from TREC 2007 dataset. In this analysis we rejected the grammatically incorrect generated question
from the relevant set. Table 2 shows that the precision was high for the types “Who and Where“, the
type “When“ was still above 0.5, the other types was hovering around 0.4, the reason for that is not
considering the grammatically wrong constructed questions as a valid relevant questions, we believe that
if the system included a semantic analysis for the sentence and its components the results will be higher,
and the grammatically wrong sentences to decrease in number.



5 Conclusion and Future Work

In this paper, we proposed an approach to automatically generate questions given sentences. We used the
dataset provided by the TREC 2007 Question Answering Track and evaluated the performance of our
system using Recall and Precision. We filtered out important sentences from the dataset by following a
target-driven method. We simplified the process by extracting elementary sentences from the complex
sentences using syntactic information. After classifying the sentences based on their subject, verb, object
and preposition, we generated the questions automatically from them using a predefined set of interaction
rules. We plan to extend the number of interaction rules in the future. We will also focus on the sentence
classification module to make it more robust. Since human generated questions always tend to have words
with different meanings and senses, the system can be improved with the inclusion of semantic information
and word sense disambiguation. We hope to carry on these ideas and develop additional mechanisms to
question generation based on the dependency features of the answers and answer finding (Li & Roth, 2006;
Pinchak & Lin, 2006).

Références

ANDRENUCCI A. & SNEIDERS E. (2005). Automated Question Answering : Review of the Main Ap-
proaches. In Proceedings of the 3rd International Conference on Information Technology and Applica-
tions (ICITA’05), Sydney, Australia.
BROWN J. C., FRISHKOFF G. A. & ESKENAZI M. (2005). Automatic Question Generation for Voca-
bulary Assessment. In Proceedings of the conference on Human Language Technology and Empirical
Methods in Natural Language Processing, Vancouver, British Columbia, Canada.
DANG H. T., KELLY D. & LIN J. (2007). Overview of the TREC 2007 Question Answering Track. In
Proceedings of the 16th Text REtreival Conference, Gaithersburg, Maryland.
GRAESSER A. C., VANLEHN K., ROSE C. P., JORDAN P. W. & HARTER D. (2001). Intelligent Tuto-
ring Systems with Conversational Dialogue. AI Magazine, 22(4), 39–52.
LAUER T. W., PEACOCK E. & GRAESSER A. C. (1992). Questions and Information Systems.
LI X. & ROTH D. (2002). Learning Question Classifiers. In Proceedings of the 19th International
Conference on Computational Linguistics, p. 1–7, Morristown, NJ, USA : Association for Computational
Linguistics.
LI X. & ROTH D. (2006). Learning Question Classifiers : The Role of Semantic Information. Journal
of Natural Language Engineering, 12(3), 229–249.
MCGOUGH J., MORTENSEN J., JOHNSON J. & FADALI S. (2001). A Web-based Testing System with
Dynamic Question Generation. In ASEE/IEEE Frontiers in Education Conference.
PINCHAK C. & LIN D. (2006). A Probabilistic Answer Type Model. In Proceedings of the 11th Confe-
rence of the European Chapter of the Association for Computational Linguistics, p. 393–400.
RUS V. & GRAESSER A. C. (2009). The Question Generation Shared Task and Evaluation Challenge.
In Workshop on the Question Generation Shared Task and Evaluation Challenge, Final Report, The
University of Memphis : National Science Foundation.
WANG W., TIANYONG H. & WENYIN L. (2008). Automatic Question Generation for Learning Evalua-
tion in Medicine. In LNCS Volume 4823.


