
Issues in Analogical Inference Over Sequences
of Symbols: A Case Study on Proper Name
Transliteration

Philippe Langlais and François Yvon

Abstract Formal analogies, that is, proportional analogies involving relations at
a formal level (e.g. cordially is to cordial as appreciatively is to appreciative) have
a long history in Linguistics. They can accommodate a wide variety of linguistic data
without resorting to ad hoc representations and are inherently good at capturing long
range dependencies between data. Unfortunately, applying analogical learning on top
of formal analogy to current Natural Language Processing (NLP) tasks, which often
involve massive amount of data, is quite challenging. In this chapter, we draw on
our previous works and identify some issues that remain to be addressed for formal
analogy to stand by itself in the landscape of NLP. As a case study, we monitor our
current implementation of analogical learning on a task of transliterating English
proper names into Chinese.

1 Introduction

A proportional analogy is a relationship between four objects, denoted [x : y :: z : t],
which reads as “x is to y as z is to t”.While some studies have been devoted to handle
semantic relationships [1, 2], we focus in this work on formal proportional analo-
gies (hereafter formal analogies or simply analogies), that is, proportional analogies
involving relationships at the formal level, such as [miracle : miraculous :: fable :
fabulous]. This is different from analogies considered by computational models of
analogy-making such as Copycat [3] and Metacat [4, 5]. Those systems do learn to
solve puzzles on letters such as [abc : abd :: mrrjj : ?]. In these studies, letters are

P. Langlais (B)

Université de Montreal, Montreal, Canada
e-mail: felipe@iro.umontreal.ca

F. Yvon
LIMSI/CNRS, Université Paris Sud, Orsay, France
e-mail: yvon@limsi.fr

H. Prade and G. Richard (eds.), Computational Approaches to Analogical 59
Reasoning: Current Trends, Studies in Computational Intelligence 548,
DOI: 10.1007/978-3-642-54516-0_3, © Springer-Verlag Berlin Heidelberg 2014

60 P. Langlais and F. Yvon

nothing more than abstractions with a few meaningful relations (i.e., successorship,
predecessorship and sameness) with which the system reasons.

Early work on formal analogies for Natural Language Processing (NLP) was
devoted to propose computational definitions of proportional analogies. Yvon [6]
proposed a definition where a prefixation or a suffixation operation was allowed
between forms. In [7], Lepage proposed a richer model allowing at the same time,
prefixation, suffixation, as well as infixation operations. His model is characterized
in terms of the edit-distance that must verify four entities in (formal) analogical
relation. Later on, Yvon et al. [8, 9] proposed a model of analogy which generalizes
the model of [7] thanks to finite-state machines. In particular, this model can account
for inversions (i.e.Paul gave an apple to Mary is toMary received an apple from Paul
as Paul gave a letter to Mary is to Mary received a letter from Paul). Stroppa and
Yvon [10] further extended this model to various algebraic structures, notably trees,
which are ubiquitous in NLP. Also, Miclet et al. [11] built on the definition of [9] and
defined the notion of analogical dissimilarity on forms. Presumably, allowing near
analogies might be of interest in several AI applications. An extension of analogical
dissimilarity to tree structures has been recently proposed in [12].

Another thread of studies is devoted to applications of analogical learning to NLP
tasks. Lepage [7] early proposed an analogicalmodel of parsingwhichuses a treebank
(a database of syntactically analyzed sentences). He conducted proof-of-concept
experiments. Yvon [6] addressed the task of grapheme-to-phoneme conversion, a
problem which continues to be studied thoroughly (e.g. [13]). In [14], the authors
address the task of identifying morphologically related word forms in a lexicon,
the main task of the MorphoChallenge evaluation campaign [15]. Their approach,
which capitalizes on formal analogy to learn relations between words proved to be
competitivewith state-of-the-art approaches (e.g. [16]) and rankedfirst on the Finnish
language according the EMMA metric (see [17]) which is now the official metric
since Morphochallenge 2010. Stroppa and Yvon [18] applied analogical learning to
the computation of morphosyntactic properties associated with a word form (lemma,
part-of-speech, and additional features such as number, gender, case, tense, mood,
etc.). The performance of the analogical learner on the Dutch language was as good
as or better than the one reported in [19].

Lepage and Denoual [20] pioneered the application of analogical learning to
Machine Translation. Different variants of the system they proposed have been tested
in a number of evaluation campaigns (see for instance [21]). Langlais and Patry
[22] investigated the more specific task of translating unknown words, a problem
simultaneously studied in [23]. In [24], the authors applied analogical learning to
translating terms of the medical domain in different language directions, including
some that do not share the same scripts (e.g. Russian/English). The precision of
the analogical engine was higher than the one of a state-of-the-art phrase-based
statistical engine [25] trained at the character level, but the recall was lower. A
simple combination of both systems outperformed significantly both engines. See
[26] for a technical discussion of those works. Very recently, Gosme et Lepage [27]
studied the use of formal analogy for smoothing n-gram language models.

Issues in Analogical Inference Over Sequences 61

Analogical learning has also been applied to various other purposes, amongwhich
terminology management [28], query expansion in Information Retrieval [29], clas-
sification of nominal and binary data, handwritten character recognition [11], as well
as for solving Raven IQ tests [30]. All these studies witness that analogical learn-
ing based on formal analogies can lead to state-of-the-art performance in a number
of applications. Still, it encompasses a number of issues that seriously hinder its
widespread use in NLP [26]. This motivates the present chapter.

In the remainder of this chapter, we first describe in Sect. 2 the principles behind
analogical learning. Then, we provide in Sect. 3 an account of the issues involved in
deploying analogical inference over strings in typical NLP tasks. Section 4 reports
our experiments in applying analogical learning on the task of transliterating English
proper names into Chinese. In Sect. 5, we conclude our work and identify a number
of avenues that deserve further investigations.

2 Principles

In order to understand the methodology, we first clarify the process of analogical
learning. LetL = {(i(xk), o(xk))k} be a training set gathering pairs of input i(xk) and
outputo(xk) representations for instances xk .We call input set, denotedI = ⋃

k i(xk),
the set of input-space representations in the training set. Given an element t for which
only i(t) (or alternatively o(t)) is known, analogical learning works by:

1. building Ei(t) = {(x, y, z) ∈ L3 | [i(x) : i(y) :: i(z) : i(t)]}, the set of triplets in
the training set that stand in analogical proportion with t in the input space,

2. building Eo(t) = {u | [o(x) : o(y) :: o(z) : u] and (x, y, z) ∈ Ei(t)}, the set of
solutions to the analogical equations obtained in the output space,

3. aggregating the solutions in Eo(t) in order to select o(t).

In this description, [x : y :: z : t] is our notation for a (formal) proportional analogy1;
and [x : y :: z : ?] is called an analogical equation and represents the set of it solutions.
In the sequel, we call x-form, y-form, z-form and t-form the first, second, third and
fourth forms respectively of [x : y :: z : t]. Also, we sometime refer the two first
steps of the inference procedure as the generator, while we call the third one the
aggregator.

Let us illustrate this on a tiny example where the task is to associate a sequence
of part-of-speech (POS) tags to any given sentence, viewed as a sequence of words.
Let L = {(he loves her, prp vbz prp), (she loved him, prp vbd prp), (he smiles at
her, prp vbz in prp)} be our training set which maps sequences of words (input) to
sequences of POS tags (output). Tagging a (new) sentence such as she smiled at him,
involves: (i) identifying analogies in the input space: [he loves her : she loved him ::
he smiles at her : she smiled at him] would be found, (ii) solving the corresponding

1 We also use [x : y :: z : t] as a predicate.

62 P. Langlais and F. Yvon

equations in the output space:[prp vbz prp : prp vbd prp :: prp vbz in prp : ?]
would be solved, and (iii) selecting the solution. Here, prp vbd in prp would be
the only solution produced.

There are three important aspects to consider when deploying the above learning
procedure. First, the search stage (step-1) has a time complexity which is prohibitive
in most applications of interest (cubic in the size of I). Second, the aggregation
(step-3) of the possibly numerous spurious2 solutions produced during step-2 is
difficult. Last, itmight happen that the overall approach does not produce any solution
at all, simply because no input analogy is identified during step-1, or because the
input analogies identified do not lead to analogies in the output space (failure of the
inductive bias).

3 Issues with Analogical Learning

From now on, we focus our discussion to the case of formal analogies over strings.
Section 5 expands the discussion to (formal) analogies over other structures, such as
trees.

3.1 Formal Analogy

We mentioned that several definitions of formal analogy have been proposed. Two
of them seem to stand above the others, in the sense that they can account for a larger
variety of relations than the others: the proposal of [7] and the one introduced in
[8], then generalized in [9]. The latter, which encompasses the former, is defined in
terms of d-factorization. A d-factorization of a string x over an alphabet Σ , noted fx,
is a sequence of d factors fx ≡ (f 1x , . . . , f d

x), where f i
x ∈ Σ∗ for all i, and such that

f 1x � f 2x � f d
x ≡ x; � denotes the concatenation operator. In [9], the authors define

an analogy as follows.

Definition: ∀ x, y, z and t ∈ Σ�, [x : y :: z : t] iff there exists a 4-uple of
d-factorizations (fx, fy, fz, ft) of x, y, z and t respectively, such that ∀i ∈ [1, d],
(f i

y , f i
z) ∈ {

(f i
x , f i

t), (f
i
t , f i

x)
}
. The smallest d for which this definition holds is called

the degree of the analogy.

For instance, [This guy drinks too much : This boat sinks :: These guys drank too
much : These boats sank] is true, because of the following 4-uple of 6-factorizations,
whose factors are aligned column-wise for clarity, and where spaces (underlined) are
treated as regular characters:

2 A solver typically produces several analogical solutions, among which a few are valid.

Issues in Analogical Inference Over Sequences 63

fx ≡ (This, _guy, ε, _dr, inks, _too_much)
fy ≡ (This, _boat_, ε, s, inks, ε)
fz ≡ (These, _guy, s, _dr, ank, _too_much)
ft ≡ (These, _boat_, s, s, ank, ε)

There is no 4-uple of d-factorizations, with d smaller than 6. Therefore, the degree
of this analogy is 6. Note that there are many 4-uple of 6-factorizations that verify
the definition, as well as many 4-uple of d-factorizations for d greater than 6.

Although the choice of the definition to work with has some practical impact
(the more general the definition, the more complex the machinery to recognize an
analogy), we will use the definition given above. Still, the discussion in this chapter
generally applies for all sensible definitions we know.

3.2 Searching in the Input Space

Identifying analogies in the input space (step-1) has a cubic complexitywith respect to
the size of I. Clearly, a brute-force approach would be manageable for toy problems
only. This explains why several authors have worked out alternative strategies, as
briefly discussed in this section. We refer the reader to [31] for a comparison of those
strategies.

A Quadratic Search Procedure The search for input analogies can be transformed
into a quadratic number of equation solving [20] thanks to the symmetry property
of analogical relations ([x : y :: z : t] ⇔ [y : x :: t : z]). Unfortunately, this solution
barely scales to sets of a few thousands of representatives and is not practical: per-
forming analogies on words for realistic NLP applications typically requires to work
with vocabularies in the order of 105 words. A possible work around is to use sam-
pling techniques.

More precisely, when performing inference for t, we solve analogical equations
[y : x :: i(t) : ?] only for some pairs 〈x, y〉 belonging to the neighborhood of i(t).
Solutions belonging to the input space are the z-forms we are looking for. This
strategy reduces the search procedure to the resolution of a number of analogical
equations which grows quadratically with the size of the neighbor set N :

EI(t) = { 〈x, y, z〉 | 〈x, y〉 ∈ N (i(t)) × N (i(t)),
[y : x :: i(t) : z] }

For instance, in [22] the authors deal with an input space in the order of tens
of thousand forms by sampling x and y among the closest neighbors of t, where
neighborhood are defined in terms of the standard edit-distance.

Exhaustive Tree-Count Search In [31], the authors developed an alternative
approach for scaling up the search procedure. The main idea is to exploit a property
of formal analogies [7]:

64 P. Langlais and F. Yvon

[x : y :: z : t] ⇒ |x|c + |t|c = |y|c + |z|c ∀c ∈ Σ (1)

where Σ is the alphabet on which the forms are built, and |x|c stands for the number
of occurrences of character c in x. In the sequel, we denote C(〈x, t〉) = {〈y, z〉 ∈
I2 | ∀c ∈ �, |x|c + |t|c = |y|c + |z|c} the set of pairs satisfying the count property
with respect to 〈x, t〉.

Their strategy consists in first selecting an x-form in the input space. This enforces
a set of necessary constraints on the counts of characters that any two forms y and
z must satisfy for [x : y :: z : t] to hold. By considering all forms x in turn,3 one can
collect a set of candidate triplets for t. A verification of those triplets that actually
define an analogy with t must then be carried out. Formally, they build:

EI(t) = {〈x, y, z〉 | x ∈ I,

〈y, z〉 ∈ C(〈x, i(t)〉),
[x : y :: z : i(t)]}

This strategy will only work if (i) the number of quadruplets to check is much
smaller than the number of triplets we can form in the input space (which happens
to be the case in practice), and if (ii) we can efficiently identify the pairs 〈y, z〉 that
satisfy a set of constraints on character counts. To this end, the authors proposed to
organize the input space thanks to a data structure they call a tree-count (hence the
name of the search procedure), which is easy to build and supports efficient runtime
retrieval.4

Sampled Tree-Count Search The tree-count search strategy enables to exhaustively
solve step 1 for reasonably large input spaces (tens of thousands of forms). However,
computing analogies in very large input spaces (hundreds of thousands of forms)
remains computationally demanding, as the retrieval algorithm must be carried out
o(I) times. In this case, in [31], the authors proposed to sample the x-forms:

EI(t) = { 〈x, y, z〉 | x ∈ N (i(t)),
〈y, z〉 ∈ C(〈x, i(t)〉),
[x : y :: i(t) : z] }

The sampling strategy selects x-forms that share with t some sequences of sym-
bols. To this end, input forms are represented in a κ-dimensional vector space, whose
dimensions are frequent symbol n-grams, where n ∈ [min;max]. A form is thus
encoded as a binary vector of dimension κ, in which the ith component indicates
whether the form contains an occurrence of the ith n-gram. At runtime, the sampling
selects the η forms that are the closest to t, according to some distance measure (e.g.
the cosine).5

3 Anagram forms do not have to be considered separately.
4 Possibly involving filtering.
5 Typical values are min = max = 3, κ=20000, and η=5000.

Issues in Analogical Inference Over Sequences 65

Checking for Analogies Some of the aforementioned search strategies require to
verify whether each quadruplet in the candidate lists actually defines an analogical
relation. Stroppa [32] proposed a dynamic programming algorithm for checking [x
: y :: z : t] when the definition in [9] is used. The complexity of this algorithm is in
o(|x|×|y|×|z|×|t|). Since a large number of calls to the analogy checking algorithm
must be performed during step 1 of analogical learning, the following property may
come at help [31]:

[x : y :: z : t] ⇒
(x[1] ∈ {y[1], z[1]}) ∨ (t[1] ∈ {y[1], z[1]})
(x[$] ∈ {y[$], z[$]}) ∨ (t[$] ∈ {y[$], z[$]})

(2)

where s[$] indicates the last symbol of s, and s[1] the first. A simple trick consists
in checking the proportionality condition only for quadruplets that pass this test.

Open Issues One can already go a long way with the sampled tree-count approach
described above. Still, it is unclear which sampling strategy should be considered for
a given application. The vector space model proposed in [31] seems to work well in
practice, but more experiments are needed to confirm this.

More fundamentally, none of the search procedures proposed so far takes into
account the fact that many analogies might be redundant. For instance, to relate
the masculine French noun directeur to its feminine form directrice, it is enough
to consider [recteur : rectrice ::directeur : directrice]. Other analogies (i.e. [fon-
dateur : fondatrice ::directeur : directrice]) would simply confirm this relation. In
[32], Stroppa formalizes this redundancy by the concept of analogical support set.
Formally, A is an analogical support set of E iff:

{[x : y :: z : ?] : 〈x, y, z〉 ∈ A3} ⊇ E

This raises the question of whether it would be possible to identify a minimal
subset of the training set, such that analogical learning would perform equally well
in this subset. Determining such a subset would reduce computation time drastically.
Also, it would be invaluable for modelling how forms in an input system are related
to forms in an output one. We are not aware of studies addressing this issue.

3.3 Solving Equations

Algorithms for solving analogical equations have been proposed for both definitions
of interest mentioned above. For the definition of [9], it can be shown [8] that the set
of solutions to an analogical equation is a rational language:

Theorem 3.1 t is a solution to [x : y :: z : ?] iff t belongs to {y ◦ z}\x.

The shuffle of two stringsw and v, notedw◦v, is the rational language containing
all strings obtained by selecting (without replacement) sequences of characters in a

66 P. Langlais and F. Yvon

left-to-right manner alternatively in w and v. For instance, spondyondontilalgiatis
and ondspondonylaltitisgia are two strings in the set spondylalgia ◦ ondontitis. The
complementary set ofw with respect to v, notedw \v, is the set of strings formed by
removing fromw, in a left-to-rightmanner, the symbols in v. For instance, spondylitis
and spydoniltis are belonging to spondyondontilalgiatis\ondontalgia. This operation
can be straightforwardly extended to complement a rational set. The pseudo-code of
our implementation of these two operations is provided in Algorithm 1.

function shuffle(y,z)
Require: y, and z two forms
Ensure: a random word in y ◦ z

if y = ε then
return z

else
n ← rand(1,|y|)
return y[1:n] . shuffle(z,y[n+1:])

function complementary(m,x)
Require: m and x, two forms
Ensure: the set m \ x

return complement(m,x,ε)

function complement(m,x,r)
if (m = ε) then

if (x = ε) then
return {r}

else
s1 ← complement(m[2:],x,r.m[1])
if m[1] = x[1] then

s2 ← complement(m[2:],x[2:],r)
return s1 ∪ s2

return φ

Algorithm 1:Simulationof the two rational operations requiredby the solver. x[a : b]
denotes the sequence of symbols x starting from index a to index b inclusive. x[a :]
denotes the suffix of x starting at index a. rand(a, b) returns a random integer
between a and b (included).

Since these two operations preserve rationality, it is possible to build a finite-state
machine for encoding those solutions In practice however, the automaton is highly
non deterministic, and in theworst case, enumerating the solutions can be exponential
in the length of the sequences involved in the equation. The solution proposed in [24]
consists in sampling this automaton without building it. The more we sample this
automaton the more solutions we produce. In our implementation, we call sampling
rate (ρ) the number of samples in y ◦ z that are considered. This is formalized in
Algorithm 2.

It is important to note that typically, a solver produces several solutions to an
equation, most of them spurious, which means that even though they obey the defin-
ition of formal analogy, they are not linguistically valid. To illustrate this, Fig. 1
reports solutions produced to the equation [even : usual ::unevenly : ?] by our
implementation of Algorithm 2. As can be observed, most solutions are not valid
forms in English: indeed, this definition recognizes no less than 72 different
legitimate solutions, which we were able to produce with enough sampling (ρ =
2000) in less than a few tenth of a millisecond.6

6 The time measurements reported in this study have been made on an ordinary desktop computer,
and are provided for illustration purposes only.

Issues in Analogical Inference Over Sequences 67

function solver(〈x, y, z〉, ρ)
Require: 〈x, y, z〉, a triplet, ρ the sampling rate
Ensure: a set of solutions to [x : y :: z : ?]

sol ← φ
for i ← 1 to ρ do

〈a, b〉 ← odd(rand(0, 1)) ? 〈z, y〉 : 〈y, z〉
m ← shuffle(a, b)

c ← complementary(m,x)
sol ← sol ∪ c

return sol

Algorithm 2: A Stroppa & Yvon flavored solver. rand(a, b) returns a random
integer between a and b (included). The ternary operator ?: is to be understood as
in the C language.

Fig. 1 3-most frequent solutions to [even : usual ::unevenly : ?] along with their frequency, as
produced by our solver, as a function of the sampling rate ρ. nb stands for the total number of
solutions produced

The problem of multiple solutions to an equation is exacerbated when we deal
with longer forms. In such cases, the number of spurious solutions can become quite
large. As a simple illustration of this, consider the equation e = [this guy drinks too
much : this boat sinks :: those guys drink too much : ?] where forms are considered as
strings of characters (the space character does not have any special meaning here).
Figure 2 reports the number of solutions produced as a function of the sampling
rate. For small values of ρ, the solution might be missed by the solver (i.e. ρ ≤ 20).
For larger sampling rates, the expected solution typically appears (with frequent
exceptions) among the most frequently generated ones. Note that the number of
solutions generated also increases drastically. Clearly, enumerating all the solutions
is not a good idea: too many solutions, too time consuming.

The fact that a solver can (and typically does) produce spurious solutions means
that we must devise a way to distinguish “good” solutions from spurious ones. We
defer this issue to the next section. Yet, we want to stress that currently, our sampling
of the automaton that recognizes the solutions to an equation is completely random. It
would bemuchmore efficient to learn to sample the automaton, such that more likely
solutions are enumerated first. Several algorithms might be applied for this task,
among which the Expectation-Maximization algorithm for transducers described
in [33].

68 P. Langlais and F. Yvon

Fig. 2 3-most frequent solutions produced by our solver at different sampling rates for the equation
e. r indicates the position of the expected solution in the list if present (φ otherwise). nb indicates
the number of solutions produced, and t the time counted in seconds taken by the solver. For
readability, spaces are represented with the symbol _.

3.4 Aggregating Solutions

Step-3 of analogical learning consists in aggregating all the solutions produced. We
saw in the previous section that the number of solutions to an analogical equation can
be quite large. Also, there might be quite a large number of analogical equations to
solve during step-2,which simply increases the number of solutions gathered inEo(t).
In many works we know, this problem is not discussed; yet, our experiments indicate
that this is a important issue. In [34], Lepage and Lardilleux filter out solutions
containing sequences of symbols not seen in the output space of the training set.
This typically leaves many solutions alive, including spurious ones. In [20], Lepage
and Denoual propose to keep the most frequently generated solutions. The rationale
being that forms that are generated by various analogical equations are more likely
to be good ones. Also, Ando and Lepage [35] show that the closeness of objects in
analogical relations is another interesting feature for ranking candidate solutions.

In [24], the authors investigate the use of a classifier trained in a supervised fashion
to recognize correct solutions from bad ones. This approach improved the selection
mechanism over several baselines (such as selecting the most frequently generated
solution), but proved to be difficult to implement, in part becausemany examples have
to be classified, which is time consuming, but also because most of the solutions in
Eo(t) are spurious ones, leaving us with a very unbalanced task, which is challenging.
Last but not least, the best classifiers trained were using features computed on the
whole set Eo(t), such as the frequency with which a solution is proposed. This means
that it cannot be used to filter the unlikely solutions generated for a test form t in the
early stages.

Improving the classifier paradigmdeserves further investigations.Notably, in [24],
only a small number of features have been considered. Better feature engineering,
as well as more systematic tests on different tasks must be carried out to better
understand the limitations of the approach.

Issues in Analogical Inference Over Sequences 69

As discussed in [35], it is intuitively more suited to see the problem of separating
correct from spurious solutions as a ranking problem. Ranking is an active research
topic in machine learning. We refer the reader to the LETOR (LEarning TO Rank)
website for an extensive list of resources on this subject.7 Ranking the solutions
proposed by the two-first steps of analogical learning must be investigated as a
replacement of the classification solution proposed in [24].

3.5 Dealing with Silence

Inmost experimentsweconducted,we faced theproblem that the learningmechanism
might fail to produce a solution for a given test form.This canhappenbecause no input
analogy is found, or because the input analogies identified yield output equations that
have no solution. Depending on the nature of the input space and the trainingmaterial
available, this problem can be rather important.

On a task of translatingmedical terms [24], the authors submitted the silent cases to
another approach (in their case a statistical translation engine). Combining analogical
learning with statistical machine translation has also been investigated in [36]. In
[20], the authors proposed to split the form to treat in two parts and apply analogical
learning to solve those two subforms. This raises a number of issues which do not
seem to have received a lot of attention. Knowing where to split the input form in
order to maximize the chance of being able to solve the two new sub-problems is
one of those.

4 Case Study

4.1 Settings

In order to illustrate some of the elements discussed in previous sections,
we applied analogical learning to the task of transliterating English proper names
into Chinese. The task we study is part of the NEWS evaluation campaign con-
ducted in 2009 [37]. Transliteration is generally defined as the phonetic transcription
of names across languages, and is often thought as a critical technology in many
domains, such as machine translation and cross-language information retrieval or
extraction [37].

Examples of transliterations from English proper names into Chinese
are reported in Table 1. The segmentations (represented by + signs) are ours, and
were produced by inspection of theEnglish-into-Chinese transcription table available

7 http://research.microsoft.com/en-us/um/beijing/projects/letor/.

http://research.microsoft.com/en-us/um/beijing/projects/letor/

70 P. Langlais and F. Yvon

Table 1 Examples of
transliterations of English
proper names into Chinese
taken from the NEWS 2009
English-Chinese corpus

The segmentations (shown with + signs) are ours, and are
intended to illustrate the matching between English and Chi-
nese sequences of characters

Table 2 Main characteristics of the English-into-Chinese data provided in NEWS 2009

train dev train + dev test

Examples 31961 2896 34857 2896
en symbols 52 51 52 51
ch symbols 370 275 371 283
Avr. en-length 6.8 6.8 6.8 6.9
Min en-length 2 3 2 3
Max en-length 15 15 15 13
Avr. ch-length 9.5 9.5 9.5 9.6
Min ch-length 3 3 3 3
Max ch-length 21 21 21 21

on Wikipedia.8 As can be observed, the transcription is written with monosyllabic
characters which may not correspond exactly to syllables in English. A Chinese
character may correspond to different English ones, and vice versa. For instance, the
character A is transcribed into in Acoca, but not in Alessendroni (where the sound
“ya” is assumed). Note also that special rules are used to encode initial characters,
therefore, it is not advisory to convert English names into lower case, as was done
in [38]. Also, a transcription sometimes reflects the meaning as well as the sound of
the transcribed word. For instance, the common ending -va in Slavic female family
names is usually transcribed as (girl), as in Navratilova.

The organizers of the NEWS campaign kindly provided us with the data that was
distributed to the participants of the English-into-Chinese transliteration task. Its
main characteristics are reported in Table 2. The distribution of Chinese characters
is typically Zipfian, and 116 out of the 370 different characters seen in the training
set appear less than 10 times (39 characters appear only once).

In order to transliterate the English proper names of the test set, we gathered a
training set L1 = train + dev by concatenating the training set and the development

8 http://en.wikipedia.org/wiki/Template:Transcription_into_Chinese. We could not segment lessan
with this table.

http://en.wikipedia.org/wiki/Template:Transcription_into_Chinese

Issues in Analogical Inference Over Sequences 71

set that were released, that is, 34,857 pairs of English and Chinese proper names.
Including the development set in the trainingmaterial is fine, since there is no training
involved when generating the set of solutions. In parallel to this, we also generated
solutions for the development set (dev), using the trainingmaterial only (L2 = train);
the solutions produced were used for training a classifier to recognize good from
spurious solutions. This classifier was then applied to the solutions produced for the
test set (test) thanks to L1.

Wemainly ran two configurations of our generator. The first one, named full- tc,
corresponds to the exhaustive tree-count setting described in Sect. 3.2. The second
one, named samp- tc, corresponds to the sampled version described in Sect. 3.2,
where the η = 1,000 closest input forms to each English test form were considered,
based on a vector space representing the κ = 5,000 most frequent 3-grams of
characters observed in I, and the cosine distance. In both cases, the solver was run
with a sampling rate of ρ = 400. We decided to keep up to the 100-most frequently
generated solutions for a given test form. A solution is typically generated several
times per equation (the frequency of which depends of ρ), and by several equations.

Regarding the classifier, we followed [24] and trained a voted-perceptron [39].
We computed a total of 33 (partly redundant) features including the frequency of
a solution, its rank in the list, average degrees of the input and output analogies
leading to a solution, likelihoods of several n-gram language models trained at the
(Chinese) character level, etc. We trained the classifier over 5,000 epochs. A greedy
search over the feature set revealed that half of these features are enough for optimal
performance.

4.2 Monitoring Analogical Inference

In the following, we describe in details the full- tc configuration, while Table 3
reports the figures of interest for both configurations we tested. For the exhaustive
configuration,most of the time is spent during the search for input analogies. Roughly
8 s is spent on average per input form in order to identify an average of 4,097 analogies
(and a maximum of 47,176 ones). For some forms, the time for identifying input
analogies can be as long as 37 s. This suggests a timeout strategy when too many
candidate analogies are observed. Also, it is likely not necessary to consider all input
analogies, which raises the issue of ranking analogies to be treated first. For 37 of the
test forms, we could not identify any input analogy, leading to no response in those
cases. Solving all output equations led to an average of 278 solutions per test form
(minimum 0, maximum 1,918). Note that many equations solved led to no solution,
which explains why on average, the number of solutions is lower than the number of
equations solved. The average time for solving the equations per formwas 0.7 s, with
a worst case of 7.3 s (because many equations needed to be solved). It is interesting
to note the discrepancy between the number of input analogies identified and the
number of output equations effectively solved, which is much lower. This indicates
either that the input analogies were in large part fortuitous, or that the inference bias

72 P. Langlais and F. Yvon

Table 3 Details of the two configurations tested

full- tc samp- tc
Avr. Min. Max. Avr. Min. Max.

Candidates analogies 42122 1 544849 1374 0 14657
Candidates to check 30629 0 381762 1001 0 0595
Avr. input analogies 4097 0 47176 179 0 1223
Output equations 512 0 47176 28 0 239
Solutions 278 0 1918 40 0 402

w/o input analogy 37 (1.3%) 114 (3.9%)
w/o solution 69 (2.4%) 223 (7.7%)

Locate time 4.2 s 0.7 s 11.6 s 0.02 s 0 0.7 s
Check time 3.6 s 0 25.5 s 0.03 s 0 0.3 s
Solving time 0.7 s 0 7.3 s 0.01 s 0 0.1 s
Total time 8.5 s 0.9 s 38.3 s 0.05 s 0 0.7 s

(one analogy in the input space corresponds to an analogy in the output space) does
not apply well for this task. In the end, our inference procedure remained silent for
106 input forms (3.7%).

As expected, the samp- tc configuration runs much faster, identifying far less
input analogies (179 on average) and leaving 337 input forms (11.6%) without
answer. This shows that while effective at reducing computation time, the tree-count
search strategy described in Sect. 3.2 is perfectible.

4.3 Evaluation

In this section, we analyze the different variants of the analogical devices we devel-
oped. We start by a detailed analysis of the core variants that were tested, followed
by a broader evaluation conducted thanks to the evaluation scripts available on the
NEWS 2009 website. In both cases, let us consider a transliteration experiment as a
set of N (here, N = 2896) triplets, (ei, ri, ai

1,...,ni
≡ {ci

1, . . . , ci
ni
})i∈[1,N], where ei is

the ith test form, ri its reference transliteration,9 and ai
1,...,ni

the ranked list of the ni

(here, 0 ≤ ni ≤ 100) solutions proposed by analogical learning, where solutions are
ranked in decreasing order of likeliness.

Detailed Evaluation Let nk be the number of test forms for which the reference
solution is seen in the k-first solutions proposed: nk ≡ ∑N

i=1 δ({ri} ∩ ai
1,...,k �= φ),

where δ(x) is the Kronecker function the value of which is 1 if x is true, and 0
otherwise. We define ratiok as the ratio of test forms with a sanctioned solution
ranked in the k-first solutions, to the number of test forms with a sanctioned solution.

9 For the English-into-Chinese transliteration task we consider, there is only one reference for each
test form.

Issues in Analogical Inference Over Sequences 73

Table 4 Quality of the 100-top frequent solutions proposed by the full- tc and the samp- tc
configurations

full- tc samp- tc
ratiok preck reck ratiok preck reck

k nb (%2377) (%2790) (%2896) nb (%1693) (%2559) (%2896)

1 1258 52.9 45.1 43.4 792 46.8 28.4 27.4
2 1548 65.1 55.5 53.5 1046 61.8 37.5 36.1
3 1706 71.8 61.2 58.9 1207 71.3 43.3 41.7
4 1819 76.5 65.2 62.8 1328 78.4 47.6 45.9
5 1904 80.1 68.2 65.8 1420 83.9 50.9 49.0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

26 2304 96.9 82.6 79.6 1693 100.0 60.7 58.5
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

86 2377 100.0 85.2 82.1 1693 100.0 60.7 58.5

nb indicates the number of correct transliterations at a given rank k. Read the text for more

We define preck as the percentage of test forms with at least k candidate translations
out of which at least one is a sanctioned solution and reck the percentage of test forms
with a sanctioned transliteration proposed in the k-first positions. Formally:

ratiok = nk/
∑N

i=1 δ({ri} ∩ ai
1,...,ni

�= φ)

preck = nk/
∑N

i=1 δ(ni > 0)
reck = nk/N

Intuitively, preck is a measure of precision, and reck a measure of recall, while
ratio provides the distribution of the rank of the correct solutions identified. Those
figures (expressed as percentage) are reported in Table 4 for the two configurations
of the generator we tested: full- tc and samp- tc. The first line of the first column
indicates for instance that 45.1% of the test forms with at least one solution have
the sanctioned transliteration produced in the first position. This represents 52.9%
of the test forms with a sanctioned solution, and 43.4% of the total test forms.

This table calls for several comments.Wenoted earlier that the inferenceprocedure
leaves some forms without solution (3.7% for full- tc and 11.6% for samp- tc).
Furthermore, we observe that the recall is reaching a limit of 82.1% for full- tc
and 58.5% for samp- tc. Therefore, there is a fair number of cases which are not
handled appropriately by the inference mechanism. For the samp- tc configuration,
this simply shows the shortcomings of a too aggressive sampling strategy. For the
full- tc variant, and while part of this recall failure can be explained by the fact that
we only consider the 100-most frequent solutions generated, it simply illustrates the
silence issue discussed in Sect. 3.

74 P. Langlais and F. Yvon

Table 5 Impact of the classifier applied in the aggregation step of the full- tc configuration

full- tc + classifier
ratiok preck reck

k nb (%1667) (%2790) (%2896)

1 1577 (↑ 319) 94.6 (↑ 41.8) 56.5 (↑ 11.4) 54.5 (↑ 11.1)
2 1652 (↑ 104) 99.1 (↑ 34.0) 59.2 (↑ 3.7) 57.0 (↑ 3.5)
3 1661 (↓ 45) 99.6 (↑ 25.1) 59.5 (↓ 1.7) 57.4 (↓ 1.5)
4 1662 (↓ 157) 99.7 (↑ 23.2) 59.6 (↓ 5.6) 57.4 (↓ 5.4)
5 1662 (↓ 242) 99.7 (↑ 19.6) 59.6 (↓ 8.6) 57.4 (↓ 8.4)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

16 1667 (↓ 545) 100.0 (↑ 6.9) 59.7 (↓ 19.6) 57.6 (↓ 18.8)

Considering only the most frequently generated solution,10 recall drops to 43.4
and 27.4% respectively. This shows that being able to distinguish good from spurious
solutions has the potential to improve the overall approach by more than 30 absolute
points in both configurations.

The effect of applying the classifier described above is analyzed in Table 5 for the
full- tc configuration (the most effective one). It is noticeable that the number of
test forms with the sanctioned solution ranked first increases significantly, which is
good: another 319 forms are rankedfirst,which translates into an increase of precision
and recall at rank 1 of above 11 absolute points. Precision and recall at rank 2 also
gain over 3 absolute points. This illustrates that classifying solutions is feasible and
leads to better performance than simply picking the most frequently generated form.
It must be noted however, that this gain comes at the cost of precision and recall at
higher ranks: some correct solutions are actually being removed by our classifier.

NEWS 2009 Table 6 reports the results of several of the transliteration devices we
devised, as measured by the official metrics of the NEWS 2009 evaluation campaign
[37]. Since the MAPref metric reported always equals ACC in our experiments, we
only report the three first metrics output by the evaluation script11 we used: ACC
which corresponds to rec1,12 F-score which gives a partial credit proportional to
the longest subsequence between the reference transliteration and the first candidate
one, and the Mean Reciprocal Rank (MRR), where 100/MRR roughly indicates the
average rank of the correct solution over the session. See [37] for the details of their
computation. Those figures are expressed as percentage.

Table 6 also calls for several comments. First, we tested different variants of the
samp- tc strategy (lines 1–6). The dimension κ of the space into which the (input)

10 In the samp- tc configuration, 20 test forms receive several solutions with the same maximum
frequency, among which the sanctioned transliteration. We do credit the system with a rank 1
solution in those cases, even if the correct transliteration is not listed first.
11 We downloaded the script news_evaluation.py at http://translit.i2r.a-star.edu.sg/news
2009/evaluation/.
12 To the exception of the way we broke ties in the unfrequent cases where several solutions are
produced with the top frequency.

http://translit.i2r.a-star.edu.sg/news2009/evaluation/
http://translit.i2r.a-star.edu.sg/news2009/evaluation/

Issues in Analogical Inference Over Sequences 75

Table 6 Evaluation of different configurations with the metrics used at the NEWS 2009 evaluation
campaign

Configurations ACC F-score MRR No sol.

1 samp- tc η = 1k, κ = 5k 26.7 56.7 34.7 337 (11.6%)

2 samp- tc η = 1k, κ = 10k 30.6 60.2 39.1 268 (9.3%)

3 samp- tc η = 2k, κ = 10k 33.7 63.1 42.5 202 (7.0%)

4 samp- tc η = 5k, κ = 10k 36.7 66.3 46.1 148 (5.1%)

5 samp- tc η = 10k, κ = 10k 39.4 68.2 49.0 120 (4.1%)

6 samp- tc η = 15k, κ = 10k 41.0 69.2 50.5 110 (3.8%)

7 full- tc 43.4 70.5 52.4 106 (3.7%)

8 full- tc d ≤ 4 46.6 72.6 55.7 173 (6.0%)

9 full- tc d ≤ 3 49.7 74.0 57.6 265 (9.2%)

10 full- tc d ≤ 2 55.1 73.4 61.4 411 (14.2%)

11 Cascading(10,9,8,7) 56.4 79.2 62.9 106 (3.7%)

12 full- tc + vpall 53.3 77.0 54.5 106 (3.7%)

13 full- tc + vpsubset 54.5 77.6 55.9 106 (3.7%)

14 Cascading(10∗, 9∗, 8∗, 10, 9, 8, 7∗, 7) 57.0 79.5 61.7 106 (3.7%)

15 Last NEWS 2009 19.9 60.6 22.9 –
16 First NEWS 2009 73.1 89.5 81.2 –

For comparison, first and last indicate the first and last performing systems respectively, as reported
in [37]. In the cascading configurations (lines 11 and 14), components are listed in order in which
they are consulted; those marked with a ∗ sign are using the vpall classifier. See text for further
explanations

forms are represented is of importance, and setting κ to 10,000 (line 2) improves the
accuracy by almost 4 absolute points compared to setting it to 5,000 (line 1), as we
did in the previous section. Increasing κ further does not help, but ultimately, this
parameter should be adjusted for each task. Naturally, considering a larger number
(η) of neighbors leads to better performance, as shown by lines 2–6. Still, considering
all the input forms (line 7) yields the best performance.

Second, we tested the influence of the maximum degree accepted for an analogy
(input or output), which we call d-limit in the sequel. Considering only degree 2
analogies (line 10) yields a much higher score than considering all analogies, and
this, even though the number of unsolved test forms increases. The optimal d-limit
should be adjusted for each task. For instance, in their experiments on unsupervised
morphology acquisition, Lavallée and Langlais [14] found that a d-limit of 5 was
optimal for the German language, while a d-limit of 2 was enough for capturing the
English morphology. Since identifying low degree analogies can be implemented
more efficiently, and seems to produce correct solutions here, this suggests a cascad-
ing strategy where degree-2 analogies are searched first. Then, degree-3 analogies
are searched for the only test forms for which no solution has been provided yet, and
so on, until the d-limit (if any) is met. This is simulated in line 11 of Table 6. By
doing so, we increase the recall of analogical inference, which benefits the overall
performance of the device.

Third, we tested the influence of the classifier during the aggregation step. We
trained and tested different flavors of the voted-perceptron algorithm, varying the

76 P. Langlais and F. Yvon

feature representation, as well as the number of epochs. We report two of these
variants in lines 12 and 13 of Table 6. The first one has been trained on the totality of
the features we computed (vpall) and leads to a performance (ACC) of 53.3%, while
the second one obtains 54.5% by using a subset of the features only (vpsubset).13 Note
that for these two variants, when all the solutions of a test form are being pruned
by the classifier, we keep the one with the largest classification score. The classifier
trained on less features outperforms the other, showing that feature selection should
be considered for optimal performance. In both cases, it is important to note that the
gain in accuracy is huge compared to the full- tc configuration in line 7 (above 10
absolute points in accuracy), which shows the importance of the aggregation step.

Fourth, we tested a last configuration by cascading 8 variants: the ones described
in lines 7 to 10, that is, the full- tc configuration with varying d-limits, and their
variants using a classifier. While we could have train a classifier specific to each
variant, we used the same classifier here (the one with all the features, vpall) for all
the aggregation steps. The order of the cascading reflected the intuition that classified
variants should be consulted first (since their precision is expected to be higher), in
the order of their d-limit (2, then 3, etc.). The results are reported in line 14 and show
a slight improvement over the cascading configuration reported in line 11.

Last, we observe that our best system is not among the leading ones atNEWS2009
(see line 16); 18 systems participated to the 2009English-into-Chinese transliteration
exercise. In fact, we would have ended up at the 12th rank according to accuracy
(ACC), the official metric at NEWS.

Since our major goal was to monitor analogical learning, we did not put efforts
into improving those figures, although there are straightforward things that could be
done, such as always providing 10 candidate solutions, even if the classifier filtered in
much less (except for accuracy, the othermetrics are assuming a list of 10 candidates).
Also, we did not attempt anything for dealing with silent test forms. In [36], the
authors show that combining in a simple way analogical learning with statistical
machine translation can improve upon the performance of individual systems. Last,
it is shown in [36] that representing examples as sequences of syllables instead of
characters (as we did here) leads to a significant improvement of analogical learning
on a English-into-Indi transliteration task.

4.4 Transliteration Session

As an example, we illustrate in Figs. 3 and 4 how the name Zemansky was translit-
erated into .14 1247 candidate analogies were identified thanks to the
tree-count strategy, 405 of them were filtered thanks to the property defined by
Eq. 2. Verifying the 842 remaining candidates took 0.15 s, and 53 (input) analogies
were finally identified. After projection, this led to 7 (output) equations with at least

13 17 features were considered, based on a greedy search over the feature space, minimizing the
training error rate over 100 epochs.
14 We took this example just because the number of analogies involved is small enough.

Issues in Analogical Inference Over Sequences 77

Fig. 3 Details of the two productive pairs of analogies involved in solving Zemansky. Factors that
commute are aligned vertically for lisibility

one solution. Those equations, together with the input analogies that fired them are
reported in the figure. Only two equations yielded the sanctioned transliteration; both
involving analogies of degree 2. All together, this session took slightly less than 4s,
mostly spent for searching the (input) candidates.

The two pairs of analogies yielding the sanctioned transliteration are illustrated
in Fig. 3. We observe that the first pair of analogies passively captures the fact that
the two substrings Sch and Z correspond respectively to and . Similarly, the
second pair of analogies somehow captures that the substrings U and Ze correspond
respectively to and . However, there is no attempt to learn such a mapping.

5 Discussion

In this study, we presented in Sect. 1 a number of works on formal analogy dedicated
to various NLP tasks. We described in Sect. 2 the analogical inference procedure
and discussed in Sect. 3 a number of issues that we feel remain to be investigated for
the approach to meet higher acceptance among the NLP community. In particular,
we presented a number of approaches for tackling large input spaces, and discussed
their limitations. We pointed out the noise of the inference procedure that must be
taken care of. We also noted that the inference procedure suffers a recall problem
for which very few solutions have been proposed. In Sect. 4, we presented a case
study, transliteration of proper names, for which we reported encouraging results.
More importantly, we used this case study for illustrating some of the issues behind
the scene of analogical learning.

We believe that analogical inference over sequences has not delivered all its
potential yet. We already discussed a number of issues that remain to be investigated.
In particular, our experiments in Sect. 4 show that reducing the time complexity of the
search for analogies without impacting performance is still challenging. Identifying
low degree analogies first might be of help here, since they are easier to spot. We
also observed that there is a large room for improvements in the aggregation step.
The experiments we conducted with a classifier trained to recognize correct analo-
gies in this study have just scratched the surface. We also discussed the problem of
silence that the approach meet in typical NLP applications, including transliteration
we visited in this work. Here again, low degree analogies could be put at use in order
to guide the split of forms in parts that analogical inference can handle.

We are currently investigating three follow up issues. First, we are engineering a
much larger feature set than the one we considered in this work. In particular, we are

78 P. Langlais and F. Yvon

Fig. 4 Log of the full- tc transliteration session for the English proper name Zemansky. 31
solutions have been identified; the one underlined (actually the most frequently generated) is the
sanctioned one. (f=•) indicates the frequency of a solution, while (d=•) indicates the degree of an
analogy

Issues in Analogical Inference Over Sequences 79

considering features extracted from often co-occurring pairs of (English/Chinese)
sequences of symbols. This raises drastically the dimensionality of the representa-
tions given to the classifier, for hopefully better discriminative power. Second, we
are investigating different machine learning algorithms. Preliminary results indicate
that support vector machines [40] slightly outperform the voted perceptron algorithm
we used in this study. Also, we are testing a number of rescoring approaches that
seem to lead to higher overall performance. Further investigations are needed to be
conclusive. Last but not least, we mentioned that our equation solver produces many
(spurious) solutions. Filtering them out a posteriori, as we tried in this study, is fruit-
ful even though the classifier we trained is far not perfect. But, one may legitimately
argue that a better solution consists in fixing the solver in the first place. Currently,
our solver ranks the solutions it produces in decreasing order of frequency. Some pre-
liminary work we conducted on solving analogical equations among English proper
names show that ranking the solutions with a language model is a much better
solution (the correct solution is ranked higher in the list of solutions). This obser-
vation, which likely depends on the domain investigated as well as the language
considered, at the very least suggests that finding ways of guiding the solver to
produce less, but promising solutions is feasible.

Learning to solve equations is therefore a promising avenue that we plan to
address. Currently, our solver randomly reads out paths of the non deterministic
finite-state automaton which recognizes all possible solutions to an equation, accord-
ing to the definition of formal analogy given in Sect. 3.1. While learning to weight
its arcs can be tempting (see for instance the algorithm described in [41]), we must
not forget that each equation leads to a particular automaton, and that building the
union of all possible such automata is not realistic, which seriously questions the
applicability of a learning algorithm that assumes a given topology as input. One
way to tackle the problem consists in discriminatively learn a function the features
of which would depend on some characteristics of each automaton (for instance fea-
tures based on n-gram sequences), and using this function to guide the sampling of
paths in the automaton. Another way of addressing the issue of producing less but
better solutions is to introduce some knowledge directly into the solver. In a way,
this is what Lepage [42] did with his solver, which produces only a subset of the
solution that our solver would generate. Of course, introducing some knowledge into
the solver raises the issue of its generality (to domains and to languages). This clearly
deserves investigations.

While we concentrated in this study on analogical learning over sequences of
symbols, it should be stressed that this learning paradigm is not limited to this scenario
only. Stroppa [32] shows it can be generalized to structures of interest in NLP such as
trees and lattices. In particular, he proposed a definition of formal analogy on trees,
based on the notion of factorization of trees, very much in line with the definition
of formal analogies between sequences of symbols defined in [9]. Based on this
definition, the authors of [10] described an exact algorithm for solving an analogical
equation on trees which complexity is at least exponential in the number of nodes
of the largest tree in the equation. They also proposed two approximate solvers by
constraining the type of analogies captured (notably, passive/active alternations are

80 P. Langlais and F. Yvon

not anymore possible). Ben Hassena [12] proposed a solution for reasoning with
trees based on tree alignment. The constraints imposed over the possible alignments
are much more restrictive than the ones of [10], but the author reports a solver (a
dynamic programing algorithm) which has a polynomial complexity. Unfortunately,
none of the aforementioned approaches scale to even medium-sized corpora of trees.
For instance in [12] the author applied analogical learning on a training set of less
than 300 tree structures, a very small corpus by today’s standards. See also the work
of Ando and Lepage [35] for a very similar setting.

Acknowledgments This work has been partially founded by the Natural Sciences and Engineering
Research Council of Canada (NSERC). We are grateful to the anonymous reviewers of the short
paper submitted to the 2012 SAMAI workshop, as well as those that reviewed this article. We found
one review in particular especially inspiring.

References

1. Turney, P., Littman, M.: Corpus-based learning of analogies and semantic relations. Mach.
Learn. 60, 251–278 (2005)

2. Duc,N.T., Bollegala,D., Ishizuka,M.: Cross-language latent relational search:mapping knowl-
edge across languages. In: AAAI’11, pp. 1237–1242 (2011)

3. Marshall, J.B.: A self-watching model of analogy-making and perception. J. Exp. Theor. Artif.
Intell. 18(3), 267–307 (2002)

4. Hofstadter, D.R.: TheCopycat Project: AnExperiment inNondeterminism andCreativeAnalo-
gies, vol. 755. Massachusetts Institute of Technology, Cambridge (1984)

5. Mitchell, M.: Analogy-Making as Perception. MIT Press/Bradford Books, Cambridge (1993)
6. Yvon, F.: Paradigmatic cascades: a linguistically sound model of pronunciation by analogy. In:

Proceedings of 35th ACL, pp. 429–435 (1997)
7. Lepage, Y., Shin-ichi, A.: Saussurian analogy: a theoretical account and its application. In: 7th

COLING, pp. 717–722 (1996)
8. Yvon, F.: Finite-state machines solving analogies on words. Technical Report D008, École

Nationale Supérieure des Télécommunications (2003)
9. Yvon, F., Stroppa, N., Delhay, A., Miclet, L.: Solving analogies on words. Technical Report

D005, École Nationale Supérieure des Télécommuncations, Paris, France (2004)
10. Stroppa, N., Yvon, F.: Formal Models of Analogical Proportions. Available on HAL Portal

(2007)
11. Miclet, L., Bayroudh, S., Delhay, A.: Analogical dissimilarity: definitions, algorithms and two

experiments in machine learning. J. Artif. Intell. Res. 32, 793–824 (2008)
12. Ben Hassena, A.: Apprentissage analogique par analogie de structures d’arbres. Ph.D. thesis,

University de Rennes I, France (2011)
13. Bhargava, A., Kondrak, G.: How do you pronounce your name? improving g2p with translit-

erations. In: 49th ACL/HLT, Portland, USA, pp. 399–408 (2011)
14. Lavallée, J.F., Langlais, P.: Moranapho: un système multilingue d’analyse morphologique basé

sur l’analogie formelle. TAL 52, 17–44 (2011)
15. Kurimo, M., Virpioja, S., Turunen, V., Blackwood, G., Byrne, W.: Overview and results of

morpho challenge. In: 10thWorkshop of the Cross-Language Evaluation Forum (CLEF 2009).
Lecture Notes in Computer Science, pp. 578–597 (2009)

16. Creutz, M., Lagus, K.: Inducing the morphological lexicon of a natural language from unan-
notated text. In: International and Interdisciplinary Conference on Adaptive Knowledge Rep-
resentation and Reasoning (AKRR’05), Espoo, Finland, pp. 106–113 (2005)

Issues in Analogical Inference Over Sequences 81

17. Spiegler, S.: Emma: A novel evaluation metric for morphological analysis—experimental
results in detail. Technical Report CSTR-10-004, University of Bristol, Bristol (2010)

18. Stroppa, N., Yvon, F.: An analogical learner for morphological analysis. In: 9th Conference on
Computational Natural Language Learning (CoNLL), Ann Arbor, USA, pp. 120–127 (2005)

19. van den Bosch, A., Daelemans, W.: Data-oriented methods for grapheme-to-phoneme conver-
sion. In: EACL, Utrecht, Netherlands, pp. 45–53 (1993)

20. Lepage, Y., Denoual, E.: Purest ever example-based machine translation: detailed presentation
and assesment. Mach. Translat 19, 25–252 (2005)

21. Lepage, Y., Lardilleux, A., Gosme, J.: The greyc translation memory for the iwslt 2009 evalu-
ation campaign: one step beyond translation memory. In: 6th IWSLT, Tokyo, Japan, pp. 45–49
(2009)

22. Langlais, P., Patry, A.: Translating unknownwords by analogical learning. In: EMNLP, Prague,
Czech Republic, pp. 877–886 (2007)

23. Denoual, E.: Analogical translation of unknown words in a statistical machine translation
framework. In: MT Summit XI, Copenhagen, Denmark, pp. 135–141 (2007)

24. Langlais, P., Yvon, F., Zweigenbaum, P.: Improvements in analogical learning: application to
translating multi-terms of the medical domain. In: 12th EACL, Athens, pp. 487–495 (2009)

25. Koehn, P.: Pharaoh: a beam search decoder for phrase-based statistical machine translation
models. In: 6th AMTA, Washington DC (2004)

26. Somers, H., Sandapat, S., Naskar, S.K.: A review of ebmt using proportional analogies. In: 3rd
Workshop on Example-Based Machine Translation, Dublin, Ireland, pp. 53–60 (2009)

27. Gosme, J., Lepage, Y.: Structure des trigrammes inconnus et lissage par analogie. In: 18e
TALN, Montpellier, France (2011)

28. Claveau, V., L’Homme, M.C.: Structuring terminology by analogy-based machine learning.
In: 7th International Conference on Terminology and Knowledge Engineering, Copenhagen,
Denmark (2005)

29. Moreau, F., Claveau, V., Sébillot, P.: Automatic morphological query expansion using analogy-
based machine learning. In: 29th European conference on IR research (ECIR’07), Berlin,
Heidelberg, pp. 222–233 (2007)

30. Correa,W.F., Prade,H., Richard,G.:When intelligence is just amatter of copying. In: ECAI’12,
pp. 276–281 (2012)

31. Langlais, P., Yvon, F.: Scaling up analogical learning. Technical report, Paritech, INFRES,
IC2, Paris, France (2008)

32. Stroppa, N.: Définitions et caractérisations de modèles à base d’analogies pour l’apprentissage
automatique des langues naturelles. Ph.D. thesis, Telecom Paris, ENST, Paris, France (2005)

33. Eisner, J.: Parameter estimation for probabilistic finite-state transducers. In: 40th ACL,
Philadelphia, USA, pp. 1–8 (2002)

34. Lepage, Y., Lardilleux, A.: The greyc translation memory for the iwslt 2007 evaluation cam-
paign. In: 4th IWSLT, Trento, Italy, pp. 49–54 (2008)

35. Ando, S., Lepage, Y.: Linguistic structure analysis by analogy: Its efficiency. In: NLPRS,
Phuket, Thailand, pp. 401–406 (1997)

36. Dandapat, S., Morrissey, S., Naskar, S.K., Somers, H.: Mitigating problems in analogy-based
ebmt with smt and vice versa: a case study with named entity transliteration. In: PACLIC,
Sendai, Japan (2010)

37. Li, H., Kumaran, A., Pervouchine, V., Zhang, M.: Report of news 2009 machine transliter-
ation shared task. In: Proceedings of the 2009 Named Entities Workshop: Shared Task on
Transliteration. NEWS ’09, pp. 1–18 (2009)

38. Langlais, P.: Formal analogy for natural language processing: a review of issues to be adressed.
In: 1st InternationalWorkshopSimilarity andAnalogy-basedMethods inAI (ECAIWorkshop),
Montpellier, France, pp. 49–55 (2012)

39. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algorithm. Mach.
Learn. 37, 277–296 (1999)

40. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

82 P. Langlais and F. Yvon

41. Eisner, J.: Parameter estimation for probabilistic finite-state transducers. In: Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia,
pp. 1–8 (2002)

42. Lepage, Y.: Solving analogies on words: an algorithm. In: COLING-ACL, Montreal, Canada,
pp. 728–733 (1998)

	3 Issues in Analogical Inference Over Sequences of Symbols: A Case Study on Proper Name Transliteration
	1 Introduction
	2 Principles
	3 Issues with Analogical Learning
	3.1 Formal Analogy
	3.2 Searching in the Input Space
	3.3 Solving Equations
	3.4 Aggregating Solutions
	3.5 Dealing with Silence

	4 Case Study
	4.1 Settings
	4.2 Monitoring Analogical Inference
	4.3 Evaluation
	4.4 Transliteration Session

	5 Discussion
	References

