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Abstract. Formal analogies, that is, proportional analogies in-
volving relations at a formal level (e.g. cordially is to cordial as
appreciatively is to appreciative) have a long history in Linguistics
[18]. They can accommodate a wide variety of linguistic data with-
out resorting to ad hoc representations [26] and are inherently good
at capturing long dependencies between data. Unfortunately, apply-
ing analogical learning on top of formal analogy to nowadays large
Natural Language Processing (NLP) tasks is very challenging. In this
paper, we draw on previous works we conducted and identify some
issues that remain to be addressed for formal analogy to stand by
itself in the landscape of NLP. As a case study, we monitor our cur-
rent implementation of analogical learning on a task of transliterating
English proper names into Chinese.

1 INTRODUCTION
A proportional analogy is a relationship between four objects [x :
y :: z : t], which reads as “x is to y as z is to t”. While some works
have been proposed for handling semantic relationships [32, 8],
we focus in this study on formal proportional analogies (hereafter
formal analogies or simply analogies), that is, proportional analo-
gies involving relationships at the formal level, such as [miracle :
miraculeux :: fable : fabuleux].

Early work on formal analogies for NLP was devoted to propose
computational definitions of proportional analogies. Yvon [34] pro-
posed a definition where a prefixation or a suffixation operation was
allowed between forms. In [22], Lepage proposed a richer model al-
lowing at the same time, prefixation, suffixation, as well as infixation
operations. His model is characterized in terms of the edit-distance
that must verify 4 entities in (formal) analogical relation. Later on,
Yvon et al. [36] proposed a model of analogy which generalizes
the model of [22] thanks to finite-state machines. In particular, this
model can account for inversions (i.e. Paul gave an apple to Mary is
to Mary received an apple from Paul as Paul gave an letter to Mary
is to Mary received an letter from Paul ). Stroppa [31] further ex-
tended this model to various algebraic structures, among which trees
which are ubiquitous in NLP. Also, Miclet et al. [24] built on the def-
inition of [36] and defined the notion of analogical dissimilarity on
forms. Presumably, allowing near analogies might be of interest in
several AI applications. An extension of analogical dissimilarity to
tree structures has been recently proposed in [2] .

Another thread of studies is devoted to applications of analogi-
cal learning to NLP tasks. Lepage [22] early proposed an analogical
model of parsing which uses a treebank (a database of syntactically
analyzed sentences). He conducted proof-of-concept experiments.
Yvon [34] addressed the task of grapheme-to-phoneme conversion,

1 University of Montreal, Canada, email: felipe@iro.umontreal.ca

a problem which continues to be studied thoroughly (e.g. [3]). In
[17], the authors address the task of identifying morphologically re-
lated word forms in a lexicon, the main task of the MorphoChallenge
evaluation campaign [13]. Their approach, which capitalizes on for-
mal analogy to learn relations between words proved to be compet-
itive with state-of-the-art approaches (e.g. [5]) and ranked first on
the Finnish language according the EMMA metric (see [28]) which
is now the official metric since Morphochallenge 2010. Stroppa and
Yvon [31] applied analogical learning to computing morphosyntac-
tic features to be associated with a form (lemma, part-of-speech, and
additional features such as number, gender, case, tense, mood, etc.).
The performance of the analogical device on the Dutch language was
as good as or better than the one reported in [33].

Lepage and Denoual [19] pioneered the application of analogi-
cal learning to Machine Translation. Different variants of the sys-
tem they proposed have been tested in a number of evaluation cam-
paigns (see for instance [21]). Langlais and Patry [14] investigated
the more specific task of translating unknown words, a problem si-
multaneously investigated in [7]. In [16], the authors applied ana-
logical learning to translating terms of the medical domain in differ-
ent language directions, including some that do not share the same
scripts (e.g. Russian/English). The precision of the analogical engine
was higher than the one of a state-of-the-art phrase-based statistical
engine [12] trained at the character level, but the recall was lower. A
simple combination of both systems outperformed significantly both
engines. See [27] for a technical discussion of those works. Very re-
cently, Gosme et Lepage [11] investigate the use of formal analogy
for smoothing n-gram language models. They report improvements
over fair baselines in different languages, but for small training cor-
pora only.

Analogical learning has also been applied to various other pur-
poses, among which terminology management [4], query expansion
in Information Retrieval [25], classification of nominal and binary
data, as well as handwritten character recognition [24]. All these
studies witness that analogical learning based on formal analogies
can lead to state-of-the-art performance in a number of applications.
Still, it encompasses a number of issues that seriously hinder its
widespread use in NLP [27]. This motivates the present paper.

2 PRINCIPLE

In order to understand the methodology we first clarify the process
of analogical learning. Let L = {(i(xk), o(xk))k} be a training set
gathering pairs of input i(xk) and output o(xk) representations of
elements xk. We call input set, and note it I =

⋃
k
i(xk), the set of

input-space representations in the training set. Given an element t for
which only i(t) (or alternatively o(t)) is known, analogical learning



works by:

1. building Ei(t) = {(x, y, z) ∈ L3 | [i(x) : i(y) :: i(z) : i(t)]},
the set of triplets in the training set that define with t a proportional
analogy in the input space,

2. building Eo(t) = {u | [o(x) : o(y) :: o(z) : u] and (x, y, z) ∈
Ei(t)}, the set of solutions to the analogical equations obtained in
the output space,

3. aggregating the solutions in Eo(t) in order to select o(t).

In this description, [x : y :: z : t] is our notation for a (formal)
proportional analogy;2 and [x : y :: z :?] is called an analogical
equation and represents the set of it solutions. In the sequel, we call
x-form, y-form, z-form and t-form the first, second, third and fourth
forms respectively of [x : y :: z : t]. Also, we sometime refer the
2-first steps of the inference as the generator, while we call the third
one the aggregator.

Let’s illustrate this on a tiny example where the task is to asso-
ciate a sequence of part-of-speech (POS) tags to any given sentence
considered as a sequence of words. Let L = {(he loves her, PRP VBZ

PRP), (she loved him, PRP VBD PRP), (he smiles at her, PRP VBZ

IN PRP)} be our training set which maps sequences of words (input)
to sequences of POS tags (output). Tagging a (new) sentence such
as she smiled at him, involves: (i) identifying analogies in the input
space: [he loves her : she loved him :: he smiles at her : she smiled
at him] would be found, (ii) solving the corresponding equations in
the output space: [PRP VBZ PRP : PRP VBD PRP :: PRP VBZ IN PRP

: ?] would be solved, and (iii) selecting the solution. Here, PRP VBD

IN PRP would be the only solution produced.
There are three important aspects to consider when deploying the

above learning procedure. First, the search stage (step-1) has a time
complexity which is prohibitive in most applications of interest (cu-
bic in the size of I). Second, the aggregation (step-3) of the possi-
bly numerous spurious3 solutions produced during step-2 is difficult.
Last, it might happen that the overall approach does not produce any
solution at all, simply because no source analogy is identified dur-
ing step-1, or because the source analogies identified do not lead to
analogies in the output space (failure of the inductive bias).

3 ISSUES WITH ANALOGICAL LEARNING
3.1 Formal Analogy
We mentioned that several definitions of formal analogy have been
proposed. There are two of them that stand above the others in the
sense that they can account for a larger variety of relations than the
others: the one defined in [22] and the one defined in [36]; the latter
generalizing the former. The choice of the definition to work with
has some practical impact, since simpler relations (such as prefixa-
tion) are easier to recognize than more complex ones. Although we
normally work with the second definition (because it is the most gen-
eral one we know of), the discussion in this paper generally applies
for all sensible definitions we know.

3.2 Searching in the Input Space
Identifying analogies in the input space (step-1) is a process cubic in
the size of I. Clearly, a brute-force approach would be manageable
for toy problems only. This is why several authors have worked out
some strategies we discuss in this section.
2 We also use [x : y :: z : t] as a predicate.
3 A solver typically produces several analogical solutions, among which a

few are valid.

3.2.1 A quadratic search procedure

The search for input analogies can be transformed into a quadratic
number of equation solving [19] thanks to the symmetry property of
analogical relations ([x : y :: z : t]⇔ [y : x :: t : z]). Unfortunately,
this solution barely scales to sets of a few thousands of representa-
tives (a typical vocabulary in an NLP application has in the order of
105 words). Therefore, sampling has to be performed.

More precisely, for an element t to be treated, we solve analogi-
cal equations [y : x :: i(t) :?] for some pairs 〈x, y〉 belonging to
the neighborhood of i(t). Those solutions that belong to the input
space are the z-forms we are interested in. This strategy reduces the
search procedure to the resolution of a number of analogical equa-
tions which grows quadratically with the size of the neighborhood
setN :

EI(t) = { 〈x, y, z〉 | 〈x, y〉 ∈ N (i(t))×N (i(t)),
[y : x :: i(t) : z] }

For instance, in [14] the authors deal with an input space in the
order of tens of thousand forms by sampling x and y among the
closest forms, in terms of edit-distance, to the form i(t) .

3.2.2 Exhaustive tree-count search

In [15], the authors developed algorithms for scaling up the search
procedure. The main idea is to exploit a property of formal analogies
[22]:

[x : y :: z : t]⇒ |x|c + |t |c = |y|c + |z|c ∀c ∈ A (1)

whereA is the alphabet on which the forms are built, and |x|c stands
for the number of occurrences of character c in x . In the sequel, we
denote C(〈x, t〉) = {〈y, z〉 ∈ I2 | |x|c + |t |c = |y|c + |z|c ∀c ∈
A} the set of pairs satisfying the count property with respect to 〈x, t〉.

Their strategy, called tree-count, consists in first selecting an x-
form in the input space. This enforces a set of necessary constraints
on the counts of characters that any two forms y and z must satisfy
for [x : y :: z : t] to hold. By considering all forms x in turn4, we
collect a set of candidate triplets for t . A verification of those that
actually define with t an analogy must then be carried out. Formally,
they build:

EI(t) = { 〈x, y, z〉 | x ∈ I,
〈y, z〉 ∈ C(〈x, i(t)〉),
[x : y :: z : i(t)] }

This strategy will only work if (i) the number of quadruplets to check
is much smaller than the number of triplets we can form in the input
space (which happens to be the case in practice), and if (ii) we can
efficiently identify the pairs 〈y, z〉 that satisfy a set of constraints on
character counts. To this end, the authors proposed to organize the
input space thanks to a data structure they call a tree-count (hence the
name of the search procedure), which is easy to build and supports
efficient runtime retrieval.5

3.2.3 Sampled tree-count search

The tree-count search strategy allows to exhaustively solve step 1 for
reasonably large input spaces (tens of thousands of forms). However,

4 Anagram forms do not have to be considered separately.
5 Possibly involving filtering.



computing analogies in very large input space (hundreds of thousand
of forms) remains computationally demanding, as the retrieval algo-
rithm must be carried out o(I) times. In this case, in [15], the authors
proposed to sample the x-forms:

EI(t) = { 〈x, y, z〉 | x ∈ N (i(t)),
〈y, z〉 ∈ C(〈x, i(t)〉),
[x : y :: i(t) : z] }

The authors proposed a sampling strategy which selects x-forms
that share with t some sequences of symbols. To this end, input forms
are represented in a k-dimensional vector space, whose dimensions
are frequent symbol n-grams, where n ∈ [min;max]6. A form is
thus encoded as a binary vector of dimension k, in which the ith
coefficient indicates whether the form contains an occurrence of the
ith n-gram. At runtime, we select the N forms that are the closest to
a given form t , according to a distance (i.e. cosine).

3.2.4 Checking for analogies

For all the aforementioned search strategies, we need to verify that 4
forms are indeed in analogical relation. Stroppa [29] proposed a dy-
namic programming algorithm for checking [x : y :: z : t] when the
definition in [36] is being used. The complexity of this algorithm is in
o(|x| × |y| × |z| × |t |). Since a large number of calls to the analogy
checking algorithm must be performed during step 1 of analogical
learning. The following property may come at help [15]:

[x : y :: z : t]⇒
(x[1] ∈ {y[1], z[1]}) ∨ (t [1] ∈ {y[1], z[1]})
(x[$] ∈ {y[$], z[$]}) ∨ (t [$] ∈ {y[$], z[$]})

(2)

where s[$] indicates the last symbol of s. A simple trick consists in
calling for the verification of an analogy only for the quadruplets that
pass this test.

3.2.5 Open issues

One can already go a long way with the sampled tree-count approach
we described. Still, it is unclear which sampling strategy should be
considered for a given application. The vector space model proposed
in [15] seems to work well in practice, but more experiments should
confirm this.

More fundamentally, none of the search procedures proposed so
far take into account the fact that many analogies might be redundant.
For instance, to relate the masculine French noun directeur to its fem-
inine form directrice , it is enough to consider [recteur : rectrice ::
directeur : directrice]. Other analogies (i.e. [fondateur :
fondatrice :: directeur : directrice]) would simply confirm this
relation. In [29], Stroppa formalizes this redundancy by the concept
of analogical support set. Formally, A is an analogical support set of
E iff:

{[x : y :: z :?] : 〈x, y, z〉 ∈ A3} ⊇ E

This raises the question of whether it would be possible to iden-
tify a minimal subset of the training set, such that analogical learning
would perform equally well in this subset. Determining such a subset
would reduce computation time drastically. Also, it would be invalu-
able for modelling how forms in an input system are related to forms
in an output one. We are not aware of studies working on this.

6 Typical values are min=max=3 and k=20000.

3.3 Solving Equations

Algorithms for solving analogical equations have been proposed for
both definitions of interest we mentioned. For the definition of [36],
it can be shown [35] that the set of solutions to an analogical equation
is a rational language, therefore we can build a finite-state machine
for encoding those solutions. In practice however, the automaton is
non deterministic, and in the worst case, enumerating the solutions
can be exponential in the length of the sequences being involved in
the equation. The solution proposed in [16] consists in sampling this
automaton without building it. The more we sample this automaton
the more solutions we produce. In our implementation, we call sam-
pling rate (ρ) the number of samplings considered.7 It is important
to note that typically, a solver produces several solutions to an equa-
tion, many being simply spurious, which means that they obey the
definition of formal analogy, but are not valid forms.

To illustrate this, Figure 1 reports the solutions produced to the
equation [even : usual :: unevenly :?] by our implementation of
the solver defined in [16]. Clearly, many solutions are not valid forms
in English, although they define proper solutions according to the
definition of formal analogy proposed in [36]. Indeed, this definition
recognizes no less than 72 different legitimate solutions, which we
were able to produce with enough sampling (ρ ≥ 2000) in less than
a few tenth of milliseconds.

Figure 1. 3-most frequent solutions to [even : usual :: unevenly :?]
along with their frequency, as produced by our solver, as a function of the

sampling rate ρ. nb stands for the total number of solutions produced.

ρ nb solutions
20 12 usuaunlly (3) unusually (2) usunually (2)

100 34 unusually (6) usuaunlly (6) uunsually (4)

1000 67 unusually (57) uunsually (23) usuunally (19)

2000 72 unusually (130) uunsually (77) usunually (43)

The problem of multiple solutions to an equation is exacerbated
when we deal with longer forms. In such cases, the number of spu-
rious solutions can become quite large. As a simple illustration of
this, consider the equation e = [this guy drinks too much :
this boat sinks :: those guys drink too much :?] where forms
are considered as strings of characters (the space character does not
have a special meaning here). Figure 2 reports the number of solu-
tions produced as a function of sampling rate. For small values of ρ,
the solution might be missed by the solver (i.e. ρ ≤ 20). For larger
sampling rates, the expected solution typically appears (with frequent
exceptions) among the most frequently generated ones. Note that
the number of solutions generated also increases quite drastically.
Clearly, enumerating all the solutions is not a good idea (too much
solutions, too time consuming).

The fact that a solver can (and typically does) produce spurious so-
lutions means that we must devise a way to distinguish ”good” solu-
tions from spurious ones. We defer this issue to the next section. Yet,
we want to stress that currently, our sampling of the automaton that
recognizes the solutions to an equation is done entirely randomly.
It would be much more efficient to learn to sample the automaton,
such that more likely solutions are enumerated first. Several algo-
rithms might be applied for this task, among which the Expectation-
Maximization algorithm for transducers described in [9].

7 We leave this notion unspecified, read [16] for details.



Figure 2. 3-most frequent solutions produced by our solver at different
sampling rates for the equation e. r indicates the position of the expected

solution in the list if present (φ otherwise). nb indicates the number of
solutions produced, and t the time counted in seconds taken by the solver.

For readability, spaces are represented with the symbol .

ρ = 20 nb = 8 ρ = 100 nb = 28
t = 0.0003 r = φ t = 0.001 r = 13

thos boate sinks (2) thoboatse sinks (2)

tho boatse sinks (2) tho boatse sinks (2)

thoboatse sinks (2) those sboat sink (2)

ρ = 1000 nb = 28 ρ = 106 nb = 19 796
t = 0.009 r = 2 t = 3.82 r = 10

those boat ssink (5) thoes boat sinks (2550)

those boats sink (5) thoses boat sink (1037)

thoes tboa sinks (5) those boat ssink (999)

3.4 Aggregating Solutions

Step-3 of analogical learning consists in aggregating all the solu-
tions produced. We saw in the previous section that the number of
solutions to an analogical equation can be rather large. Also, there
might be quite a large number of analogical equations to solve dur-
ing step-2, which simply increases the number of solutions gathered
in Eo(t). In many works we know, this problem is not discussed,
why our experiments indicate this is a important issue. In [20], Lep-
age and Lardilleux filter out solutions which contain sequences of
symbols not seen in the output space of the training set. This typi-
cally leaves many solutions alive, including spurious ones. In [19],
Lepage and Denoual propose to keep the most frequently generated
solution. The rationale being that forms that are generated by various
analogical equations are more likely to be good ones. Also, Ando and
Lepage [1] show that the closeness of objects in analogical relations
is another interesting feature for ranking solutions generated.

In [16], the authors investigate the use of a classifier trained in
a supervised way to recognize good solutions from bad ones. This
approach improved the selection mechanism over several baselines
(such as selecting the most frequently generated solution), but proved
to be difficult to implement, in part because many examples have
to be classified, which is time consuming, but also because most of
the solutions in Eo are spurious ones, leaving us with a very unbal-
anced task, which is challenging. Last but not least, the best classi-
fiers trained were using features computed on the whole set Eo, such
as the frequency with which a solution is proposed. This means that
it cannot be used to early filter the unlikely solutions generated.

Improving the classifier paradigm deserves further investigations.
Notably, in [16], only a small number of features have been consid-
ered. Better feature engineering, as well as more systematic tests on
different tasks must be carried out for better understanding the limits
of the approach.

As discussed in [1], it is intuitively more suited to see the problem
of separating good from spurious solutions as a ranking problem.
Ranking is an active research topic in machine learning. We refer the
reader to the LETOR (LEarning TO Rank) website for an extensive
list of resources on this subject.8 Ranking the solutions proposed by
the two-first steps of analogical learning must be investigated as a
replacement of the classification solution proposed in [16].

8 http://research.microsoft.com/en-us/um/beijing/
projects/letor//

3.5 Dealing with Silence

In most experiments we conducted, we faced the problem that the
learning mechanism we described might produce no solution for a
given entity. This might happen because no source analogy has been
identified, or because the source analogies identified do not lead to
target equations that have a solution. Depending on the nature of the
input space and the training material available, this problem can be
rather important.

On a task of translating medical terms [16], the authors submitted
the silent cases to another approach (in their case a statistical transla-
tion engine). Combining analogical learning with statistical machine
translation has also been investigated in [6]. In [19], the authors pro-
posed to split the form to treat in two parts and apply analogical
learning to solve those two subforms. This raises a number of issues
which do not seem to have received attention. Knowing where to split
the input form in order to maximize the chance of being able to solve
the two new sub-problems is one of those.

3.6 Learning over Tree Structures

Few authors have discussed the possibility of manipulating tree struc-
tures instead of sequences of symbols in analogical learning. Stroppa
[29] proposed a definition of formal analogies on trees, based on the
notion of factorization of trees, very much in line with the definition
of formal analogies between sequences of symbols defined in [36].
Based on this definition, the authors of [30] described an exact algo-
rithm for solving an analogical equation on trees which complexity
is at least exponential in the number of nodes of the largest tree in the
equation. They also proposed two approximate solvers by constrain-
ing the type of analogies captured (notably, passive/active alterna-
tions are not anymore possible). Ben Hassena [2] proposed a solution
for reasoning with trees based on tree alignment. The constraints im-
posed over the possible alignments are much more restrictive than the
ones of [30], but the author reports a solver (a dynamic programing
algorithm) which has a polynomial complexity. Unfortunately, none
of the aforementioned approaches scale to even medium-sized cor-
pora of trees. For instance in [2] the author applied analogical learn-
ing on a training set of less than 300 tree structures, a very small
corpus by today’s standards. See also the work of Ando and Lepage
[1] for a very similar setting.

4 CASE STUDY

4.1 Settings

In order to illustrate some of the elements we discussed in the previ-
ous section, we applied analogical learning to the task of transliter-
ating English proper names into Chinese. The task we studied is part
of the NEWS evaluation campaign conducted in 2009 [23]. Translit-
eration is generally defined as phonetic translation of names across
languages and is often thought as a critical technology in many do-
mains, such as machine translation and cross-language information
retrieval or extraction [23]. Examples of transliteration from English
proper names into Chinese are reported in Table 4.

The organizers of the NEWS campaign kindly provided us with
the data that was distributed to the participants of the task. Its main
characteristics are reported in Table 1, after the English letters have
been lowercased. The distribution of Chinese characters is typically
Zipfian, and 116 out of the 370 different characters seen in the train-
ing set appear less than 10 times (30 characters appear only once).



In order to transliterate the English proper names of the test set,
we gathered a training set L1 = train + dev by concatenating the
training set and the development set that were released, that is, 34 857
pairs of English and Chinese proper names. Including the develop-
ment set in the training material is fine, since there is no training
involved when generating the set of solutions. In parallel to this, we
also generated solutions for the development set (dev), using the re-
leased training material only (L2 = train); the solutions produced
were used for training a classifier to recognize good from spurious
solutions. This classifier was then applied to the solutions produced
for the test set (test) thanks to L1.

Table 1. Main characteristics of the English-Chinese data provided in
NEWS 2009.

train dev test examples
examples 31 961 2 896 2 896 Emission 埃米申
EN symbols 26 26 26 Blagrove 布格夫
CH symbols 370 275 283 Aposhian 阿波希安

We ran two configurations of our generator: FULL-TC corresponds
to the exhaustive tree-count setting described in Section 3.2.2, while
SAMP-TC corresponds to the sampled version described in Sec-
tion 3.2.3.9 Since the number of source analogies identified can be
quite large for some test forms, we enforced a timeout of 1 minute
per English proper name for accomplishing step-1 of the inference in
the FULL-TC setting and a timeout of 20 seconds for the SAMP-TC

configuration. In both cases, the solver was run with a sampling rate
of ρ = 200.

Regarding the classifier, we followed [16] and trained a voted-
perceptron [10]. We computed a total of 19 features including the
frequency of a solution, its rank in the list, input and output degrees (a
notion defined for instance in [29]), language models likelihoods, etc.
A greedy search over the feature set revealed that a handful of fea-
tures only where useful. We trained the classifier over 5 000 epochs.
The same classifier was used for both the FULL-TC and the SAMP-TC

configurations we tested.

4.2 Monitoring Analogical Inference
We describe in the following the FULL-TC configuration, while Ta-
ble 2 reports the figures of interest for both configurations. For the ex-
haustive configuration, the average time spent on step-1 per English
form is 17 seconds. For 327 forms, the timeout applied, which means
that we likely missed useful source analogies involving those forms.
Most of the time spent during step-1 was devoted to check candidate
analogies, that is, the quadruplets that pass the test in Equation 1. The
trick we mentioned in Equation 2 avoided 63.8% of the verifications,
a very nice speed up.

An average of 4 517 input analogies were identified per test form
(with a maximum of 32 016); for 18 of them however, we could not
identify any source analogy, leading to no response in those cases.
Out of the 2878 test forms for which we could identify at least one
source analogy, 2838 of them lead to an average of 487 output equa-
tions, the other 50 were left without answer. Solving all those equa-
tions led to an average of 405 solutions per test form (minimum 2,
maximum 2221). Note that many equations solved did not lead to any
solution, which explains why on average, the number of solutions is
lower than the number of equations solved. The average time for

9 The 1000-closest input forms to each English test forms where considered,
based on a vector space representing the k = 1000 most frequent 3-grams
of characters observed in I, and the cosine distance.

Table 2. Main characteristics of the two configurations tested.

FULL-TC SAMP-TC
avg. time (step-1) 17s 2
avg. time (step-2) 0.22s 0.01s
number of timeouts 327 1
avg. input analogies 4517 158
avg. output equations 487 18
avg. number of solutions 405 37.5
silence (step-1) 18 76
silence (step-2) 50 249

solving the equations per form was 0.22 seconds (maximum 1.5s). In
the end, we decided to keep up to the 100 most frequently generated
solutions for a given test form (a solution is typically generated by
several equations).

It is interesting to note the discrepancy between the number of
source analogies identified and the number of target equations ef-
fectively solved, which is much lower. This indicates either that the
source analogies were in large part fortuitous, or that the inference
bias (one analogy in the input space corresponds to an analogy in the
output space) does not apply well for this task.

4.3 Evaluation

Table 3. Number of reference solutions among the 100-top frequent
solutions proposed by the FULL-TC configuration. Read the text for more.

rank nb r2374% rall% nb r1659% rall%
1 1093 46.0 37.7 1410 85.0 48.7
2 1418 59.7 48.9 1627 98.1 56.2
3 1582 66.6 54.6 1657 99.9 57.2
4 1699 71.6 58.7 1659 100.0 57.3
5 1796 75.7 62.0 . . .
...

...
...

...
...

...
...

100 2374 100.0 82.0 1659 100.0 57.3

The left part of Table 3 reports the number of reference translit-
erations identified in the first rank positions of the list of solutions
proposed by the generator. We note that we could treat at most 2374
test forms correctly if we consider the 100-most frequently gener-
ated solutions produced. This represents only 82% of the test forms.
Looking only at the most frequently generated solution10, we observe
that 37.7% of the test forms were transliterated correctly. This rep-
resents an accuracy of 46% (see r2374) if we only consider the 2374
test forms where the reference transliteration was identified correctly
among the first 100 solutions. These figures clearly show that being
able to distinguish good from spurious solutions has the potential to
improve the overall approach by more than 30 absolute points.

The right part of Table 3 indicates the performance of the FULL-
TC inference after the aggregation step. Out of the 2374 test forms
for which the correct solution was identified in the first 100 posi-
tions, only 1659 (70%) ones now receive a good solution. This shows
that the classifier is too aggressive. On the other hand, 48.7% of the
test forms now have the correct solution in the first position. This
represents an increase of 11 absolute points over keeping the most-
frequent solution. Actually, we can observe that for most of the test
forms, the reference solution is either in the 2-first positions, either
not present at all. Considering the fact that we did not spend much
time for engineering features for the task, this is rather encouraging.

10 Ties are broken randomly.



Table 4. Random excerpt of analogical transliterations produced by
FULL-TC. rc (resp. r) indicates the rank of the correct transliteration in the

candidate list after (resp. before) the aggregation step. nb indicates the
number of solutions generated. We replaced the Chinese characters we could

not print correctly with our LATEX processor by roman letters.

EN forms reference solutions rc r nb
auchter x克特 x克特 (218) 1 1 380
sundell 森德 y 森德 y (692) 1 5 664
fannin 范宁 范妮恩 (54) φ 5 104
frere 弗里 y 弗里 y (6113) 1 1 630
shurkin 舒金 舒 y金 (237) 2 3 386

舒金 (208)

Table 4 provides a random excerpt of the output produced by the
FULL-TC configuration. Table 5 reports the results of our system as
measured by the official metrics that were used to evaluate the dif-
ferent participating systems [23]. Clearly, our system is not among
the leading ones. In fact, we would have ended up at the 14th rank
according to accuracy (ACC); 18 systems participated to the 2009 ex-
ercise. Since our major goal was to monitor analogical learning, we
did not put efforts yet into improving those figures, although there
are straightforward things that could be done, such as always pro-
viding 10 candidate solutions, even if the classifier filtered in much
less (except for accuracy, the other metrics are assuming a list of
10 candidates). Also, we did not attempt anything for dealing with
silent test forms. In [6], the authors show that combining in a simple
way analogical learning with statistical machine translation can im-
prove upon the performance of individual systems. Last, it is shown
in [6] that representing examples as sequences of syllables instead
of characters (as we did here) leads to a significant improvement of
analogical learning on a English-to-Indi transliteration task.

Table 5. Metrics used at the NEWS 2009 evaluation campaign. For
comparisons, 1st and last indicates respectively the first and last

performing systems, as reported in [23].

metric FULL-TC SAMP-TC 1st last
ACC: 0.486 0.308 0.731 0.199
F-score 0.772 0.612 0.895 0.606
MRR 0.527 0.330 0.812 0.229
MAPref 0.486 0.308 0.652 0.199

5 CONCLUSION

We presented a number of works on formal analogy dedicated to var-
ious NLP tasks. We discussed a number of issues that we feel remain
to be investigated for the approach to meet higher acceptance among
the NLP community. We presented a case study, transliteration of
proper names, for which we reported encouraging results. More im-
portantly, we used this case study for illustrating some of the issues
behind the scene of analogical learning.
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