
Program Analysis Using Interactive and Visual Querying

Jamel Eddine Jridi, Houari Sahraoui, and Philippe Langlais
DIRO, Université de Montréal, Canada

{jridijam, sahraouh, felipe}@iro.umontreal.ca

Abstract—We propose an interactive querying approach for
program analysis and comprehension tasks. In our approach,
an analyst uses a set of basic filters (information retrieval,
structural, quantitative, and user selection) to define complex
queries. These queries are built following an interactive and
iterative process where basic filters are selected and executed,
and their results displayed, changed, and combined using
predefined operators.

Keywords-code querying; program analysis; visualization

I. INTRODUCTION

Nowadays, software systems are more and more
complex, which makes their maintenance very difficult.
Having adequate tools for program analysis and
comprehension would facilitate maintainers’ work and
decrease the maintenance cost. From this perspective,
different generic environments for program analysis and
comprehension have been proposed. They are generally
based on query formulation (e.g., [1], [3], [4], [8], [9], [10],
and [11]).

In these generic environments, formulating queries for
many maintenance tasks is difficult for mainly two reasons.
First, queries allow evaluating conditions on various entities
of a program, such as classes being too complex, methods
containing the keyword "auction", or methods that could be
reached from a particular method. In general, these queries
require that the maintainer specifies a threshold value, e.g.,
the level of admissible complexity of a class, TF-IDF [2]
threshold for "auction", or the maximum number of calls
from one method to reach another one [5]. The second
reason that makes query formulation difficult lies in the fact
that, in general, several basic filters have to be combined to
perform an efficient search. For example, in concern-location
using static analysis, structural filters are combined with
information retrieval (IR) filters [5]. As these composite
queries should apply to various programs, a fixed
combination method generally leads to many false positives
[12]. Threshold and combination problems could be
alleviated if the maintainer has the opportunity to
interactively and iteratively define complex queries.

In this paper, we propose an interactive environment for
querying the repositories of data extracted from the source
code. Our environment, named IQOP (for Interactive
Querying of Object-oriented Programs), offers the possibility
to use various basic filters (structural, information retrieval,
quantitative and user selection). It offers also operators to
combine these basic filters (e.g., set operators and iterators).
Query formulation is done iteratively and the result of each

step is displayed using a visualization metaphor. In our
environment, querying is performed as a set of successive
cycles as shown in Fig. 1. Each cycle, represented by the
control-flow arrows, consists in applying a filter, inspecting
the results of the filter, modifying these results, and
combining them with the ones of the previous cycles (current
results). For any cycle, a filter could be tried and if the
results are not satisfactory, one can simply cancel it. Filter
results as well as modified and current results are displayed
using our visualization tool to help maintainers inspecting
and modifying the results.

Specify
Filter

Apply
Filter

Modify
Results

Combine
Results

Filter
Spec

System
Entities

Filter
Results

Current
Results

User
selection Modified

Results

Control flow Data flow

Figure 1. Overview of the querying process

II. VISUALIZATION OF FILTER/QUERY RESULTS

It is now widely recognized that efficient visualization
helps improving software data exploration. To benefit from
this asset, we integrated a visualization module, adapted
from VERSO [6], in order to display the querying
(intermediate and final) results. As VERSO allows
representing in one view thousands of classes composing a
Java program, it makes it easy for analysts to inspect the
elements selected by a particular filter or a set of filters.
Classes are displayed as 3D boxes, placed on a plan (2D),
according to the package architecture, using a Treemap
layout [6]. To distinguish between classes, the values of
three class metrics are mapped to three graphical attributes of
the associated box: height, color, and twist. VERSO
computes two dozens of metrics, but the choice of the ones
to map is left to the maintainer depending on the analysis
under consideration.

In a previous work, Dhambri et al. [7] extended VERSO
to manually detect anti-patterns. In this context, when
symptoms of an anti-pattern are evaluated, candidate classes
are displayed by hiding the rest of elements. In this paper, we
follow a similar approach for query visualization. Indeed, at
any step of a query construction, the results of the already-

978-1-4673-1848-8/12/$31.00 c© 2012 IEEE SUITE 2012, Zurich, Switzerland13

defined portion of the query are highlighted. Elements
included in the results keep their original colors. By contrast,
those that are not selected are still displayed but on a gray
scale. Depending on the granularity level targeted by the
query, this way of displaying the results applies to both
classes (Fig. 2 (top)) and methods (Fig. 2 (bottom)). When
the selected elements are methods, the boxes representing
their classes become transparent revealing the selected
methods.

Figure 2. Visualization of filter for classes (top) and methods (bottom)

III. BASIC FILTERS

The building blocks of our querying environment are the
filters. After reviewing the literature, we identified three
families of filters currently in use: (1) natural-language
processing, (2) structural search, and (3) quantitative
filtering. As interactivity is an essential characteristic in our
setting, we add a fourth family consisting in user selection.

Natural-Language Processing Filters. We implemented the
three following types of filters. NAME-SEARCH filters
consist in searching for a string in the names of classes,
methods or both. KEYWORD filters are used to determine to
which extent, elements (classes or methods) are relevant with
respect to a set of keywords using IR techniques (LSI or TF-
IDF). SIMILARITY filters search for code elements (classes
or methods) similar to a given one. It applies IR techniques
to elements’ identifiers and combines the individual results
using the Cosine Similarity algorithm [2].

Structural Filters. In our environment, dependencies
between code elements (methods-methods, methods-classes
and classes-classes) are extracted by analyzing the code
statically. These dependencies include, among others,
method invocation, inheritance, type reference, and
inclusion. Structural filters are used to collect the elements

related to a given element by a particular dependency
relationship. Depending on the specified relationships, the
system is viewed as a graph where nodes are the elements
(classes, methods or both) and edges are the dependencies’
occurrences. Hence, the filter consists simply of determining
the successor of a node according to the specified
dependency.

Quantitative Filters. They allow selecting, for a specific
metric, a set of code elements for which the value is in a
particular range. The ranges of values could be specified by
particular thresholds that determine upper or lower bounds of
the ranges. Alternatively, they can be defined relatively to
the distribution of the values for the element set to filter. In
that situation, we use the box plot technique.

User Selection. Throughout the querying process, the user
can combine several types of filters. After using each filter,
she can inspect the results returned and decides to which
extent the filter specification is relevant. For example,
consider the program ArtOfIllusion, a 3D modeling and
rendering studio (http://www.artofillusion.org/). If a
maintainer is looking for classes participating in the image
encoding functionality (formats such as JPEG and GIF), she
can start by applying a name search filter with string
“encoder”. The result of this filter will be a set of classes
such as JPEGEncoder and BMPEncoder. Structural filters
are then used to add classes that are linked to these classes.
When inspecting the classes returned by the name search
filter, the maintainer could make three decisions: (1) the
majority of the returned classes are not relevant, which leads
to cancel the filter or refine the search criteria, (2) all the
returned classes are considered as relevant, which leads to
continue the search with structural filters, and (3) the
majority of classes are relevant, but some are missing (no
class for GIF encoding) or are not relevant (a class
WidgetEncoder was found). In this case, the maintainer
could select a class, she knows it encodes GIF images, and
adds it manually to the result. She can also remove
WidgetEncoder from the result. Once these alterations are
done, she proceeds with the structural filters.

IV. COMBINING FILTERS

When performing analysis and comprehension tasks,
complex queries are expressed by combining basic filters.
Basic filters allow exploring search criteria of different
natures: lexical, structural and quantitative. Their
combination helps increasing the precision of the analysis.
Maintainers could combine filters using classical set
operators and/or iterators (interleaving combination).

For set-operator combination, we distinguish between
unary and binary operators. The only unary operator we use
is COMPLEMENT. This operator is used to express negative
search criteria. It returns all elements that are not included in
the result of a filter. For example, if we want to exclude from
our analysis exception classes, we could apply the name-
search filter with string “exception”, and then apply the
COMPLEMENT operator to consider all the classes but
those implementing exceptions.

14

12

3

Figure 3. An example of combining two filters.

Four binary operators are provided to combine filter
results. These operators are UNION, INTERSECTION,
DIFFERENCE, and SYMMETRIC DIFFERENCE. For
instance, if we are searching for classes with a very high
complexity and that have the string “manager” in their
names, we could apply the quantitative filter using the metric
WMC and range higher-than-upper-tail (item 1 in Fig. 3) and
then, the filter name-search with the string “manager” (item
2). Finally, both results are combined using the INTERSECT
operator (item 3).

Interleaving combination allows applying a filter to each
element of the result set returned by another filter. To this
end, we use iterators. Our environment provides two
iterators, the basic and the conditional ones. The basic
iterator allows to apply the structural filter recursively.
Starting from an entry point, it selects the elements related to
this entry point by a specified relation. Then, it considers
each selected element as an entry point and applies to it the
same filter, and so on and so forth. All the elements selected
at all the levels are added to the final result. For example, to
collect all the descendents of a class, one could simply apply
an iterator on this class with, as a structural filter, the
relationship subclass.

A conditional Iterator is similar to the basic one with the
exception that at each level of the considered graph, the
structural filter is recursively applied only to elements that
are selected by another filter. This second filter could be, for
example, a keyword, a similarity, a name-search, or a
quantitative filter. Like the basic one, the conditional iterator
could be applied to all the levels without interuption. It can
be applied as well level by level, allowing the maintainer to
inspect and to alter the results at each level. To illustrate the
use of the conditional iterator, let us consider the situation
where a maintainer is searching for inheritance paths, in the
collection hierarchy, where all the classes have “add”
methods. Like for the example of the basic iterator, she can
iterate on the subclasses starting from the hierarchy root.
However, using the conditional filter with name-search on

“add”, at each level, only classes that have “add” methods
will see their children explored.

V. APPLICATION EXAMPLES

To illustrate how our environment could be used in
maintenance, we present two examples of maintenance tasks:
(1) detection of design defects and (2) location of concern
implementation in the code.

A. Design Defect Detection

In DECOR [12], Moha et al. describe the symptoms of
each defect type using an abstract rule language. For
example, the defect blob is described in DECOR as a large
controller class with low cohesion related to several data
classes. Four metrics are used: LCOM for lack of cohesion in
the blob candidate, NMD+NAD (numbers of declared
methods and attributes) for its size, and NACC (number of
accessors) as an indicator for data classes. Each of these
metrics is associated to a threshold value that determines if a
quantitative symptom is found. Lexical information is
extracted from the names of classes and methods to check
the presence of terms such as “manager”, “controller”, and
“process”. Finally, dependencies between classes are used to
verify if a blob candidate is associated with data classes.
Here again the number of data classes should exceed a
certain threshold. Conditions about symptoms are combined
using conjunction and disjunction operators.

We evaluated the symptoms described by Moha et al.
[12] to detect blobs using IQOP on the open-source Java
project Gantt v1.10.2. The evaluation of metric symptoms
was done through quantitative filters considering classes
having extreme values with respect to the boxplot
distribution (values higher than the upper tail). To assess if a
class plays the role of a controller, we use the name search
filters on both the class and its methods with the list of terms
used by DECOR. To combine the above-mentioned
symptoms, we use INTERSECT and UNION operators for

15

respectively the conjunctions and disjunctions. Finally, the
potential links between a blob candidate and data classes are
checked using the conditional iterator on the dependency
relationship. The condition of the iterator is defined by a
quantitative filter on the number of accessors (NACC) with
as a range, greater than the upper tail. The iterator is applied
to the first level of the dependency graph because only
immediate candidate-related classes are considered.

This straightforward query formulation with IQOP gives
the same results as the original implementation of DECOR.
However, when using the interactivity and result inspection,
the analyst could improve the detection results. For example,
when searching for classes playing the role of a controller
with a name search of the term “controller”, only two classes
are found, but neither are blobs. When changing the filter to
keyword search with LSI (with the same term), nine classes
are found and three of them are actual blobs. The other six
classes are eliminated when combining with the quantitative
filter on complexity.

B. Concern Location

In DORA [5], Hill et al. combine both program structure
and lexical information techniques to help programmers
tracing requirements to code. This is done in four steps: (1)
extract the list of direct neighbors in the call graph of a
starting method, (2) calculate the lexical relevance score of
neighbors with respect to a keyword search, (3) remove
methods with a score below a threshold, and (4) apply steps
1-to-4 recursively to the remaining methods. For example,
consider the correction of a portion of code that triggered a
bug when adding an auction in the program JBidWatcher
v1.0pre6. As adding an auction is an action, the entry point
for exploring the call graph is the method DoAction(). For
the keyword search, the terms to use are “add” and
“auction”. The two methods that should be found and
corrected are DoAdd() and DoPasteFromClipboard().

We implemented the concern-location technique
according to the choices made by DORA’s authors. We
combined structural exploration and keyword search using
the conditional iterator. This iterator explores the call graph
using the call_method relationship. The condition on the
exploration is defined by the keyword-search filter with TF-
IDF. With this implementation and for a particular threshold
value, we found the two expected methods DoAdd() and
DoPasteFromClipboard() of the above-mentioned example.
However, slight variations in the keywords and/or score
threshold values could lead to different results.

Interactive querying could help improving the results of
concern location. First, the call graph could be explored level
by level, and the analyst could stop the exploration at any
moment if she judges that relevant methods are already
found. Second, different keyword search variation could be
explored. For example, compared to TF-IDF, LSI could find
methods that do not have the exact searched terms, but terms
semantically close to those. Increasing or decreasing the
score threshold could also help finding more positive

methods or removing false-positive ones. The third possible
improvement could be achieved through the visual
inspection of the results at any step of the exploration.

VI. CONCLUSION

In this paper, we have presented a generic environment
for software analysis and comprehension using querying
mechanisms. In contrast with previous contributions, our
environment, in addition to be generic to a large spectrum of
comprehension tasks, involves the analyst in the exploration
process. This is done by an interactive visualization
environment.

The most important of our contributions, is to support
the analyst in writing and refining queries, as well as in
inspecting and altering the results of those queries. Indeed, in
many situations, the definition of fixed automated processes
is not realistic considering the variety of software systems
and the lack of knowledge in many comprehension tasks.
Introducing interactivity with efficient visualization
metaphors helps improving the precision of comprehension
tasks for large software systems, while minimizing the cost
of human interventions.

REFERENCES

[1] B. de Alwis and G. C. Murphy, “Answering conceptual queries with
Ferret”, Int. Conference on Software Engineering, pp. 21–30, 2008.

[2] C. D. Manning, P. Raghavan and H. Schütze, “Introduction to
Information Retrieval”, Cambridge Univ. Press. 2008.

[3] D. Janzen and K. de Volder, “Navigating and querying code without
getting lost”, 2nd Int. Conference on Aspect-Oriented Software
Development, pp. 178–187, 2003.

[4] E. Hajiyev, M. Verbaere, and O. de Moor, “CodeQuest: scalable
source code queries with Datalog”, Eur. Conference on Object-
Oriented Programming, pp. 2–27, 2006.

[5] E. Hill, and K. Vijay-Shanker, “Exploring the neighborhood with
DORA to expedite software maintenance”, Int. Conference on
Automated Software Engineering, pp. 14–23, 2007.

[6] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization–based
Analysis of Quality for Large–Scale Software”, Int. Conference on
Automated Software Engineering, pp. 214–223, 2005.

[7] K. Dhambri, H. Sahraoui, and P. Poulin. “Visual Detection of Design
Anomalies”. Eur. Conference on Software Maintenance and
Reengineering, pp. 279-283, 2008.

[8] M. Consens, A. Mendelzon, and A. Ryman, “Visualizing and
Querying Software Structures”. 14th Int. Conference on Software
Engineering, pp. 138–156, 1992.

[9] M. Marin, A. Van Deursen, and L. Moonen, “SoQueT: Query-based
documentation of crosscutting concerns”, 29th Int. Conference on
Software Engineering, pp. 758–761, 2007.

[10] M. Verbaere, E. Hajiyev, O De Moor, “Improve software quality with
SemmleCode: an eclipse plugin for semantic code search”,
Companion to OOPSLA, pp. 880–881, 2007.

[11] M. Würsch, G. Ghezzi, G. Reif, and H. Gall, “Supporting Developers
with Natural Language Queries”, Int. Conference on Software
Engineering, pp. 165–174, 2010.

[12] N. Moha, Y.-G. Guéhéneuc, L. Duchien, A.-F. Le Meur. “DECOR: A
Method for the Specification and Detection of Code and Design
Smells”, IEEE Trans. on Software Engineering, vol. 36, no. 1, pp. 20–
36, 2010.

16

