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Abstract

The past decade has witnessed exciting work
in the field of Statistical Machine Translation
(SMT). However, accurate evaluation of its po-
tential in a real-life contexts is still a question-
able issue.

In this study, we investigate the behavior of
a SMT engine faced with a corpus far differ-
ent from the one it has been trained on. We
show that terminological databases are obvious
resources that should be used to boost the per-
formance of a statistical engine. We propose
and evaluate a way of integrating terminology
into a SMT engine which yields a significant re-
duction in word error rate.

1 Introduction

SMT mainly became known to the linguistic
community as a result of the seminal work of
Brown et al. (1993b). Since then, many re-
searchers have invested effort into designing bet-
ter models than the ones proposed in the afore-
mentioned article and several new exciting ways
have been proposed to attack the problem.

For instance, Vogel et al. (1996) proposed
to overcome the independence assumption made
by IBM models by introducing order-1 Hidden
Markov alignment models. Och et al. (1999)
proposed an elegant way to integrate automat-
ically acquired probabilistic templates into the
translation process. Nießen and Ney (2001) sug-
gested a way to integrate morphological infor-
mation into the process.

Radically different statistical models have
also been proposed. (Foster, 2000) investigated
maximum entropy models as an alternative to
the so-called noisy-channel approach. Very re-
cently, Yamada and Knight (2001) proposed a
model in which the noisy-channel takes as input
a parsed sentence rather than simple words.

Even if these studies include intensive evalu-
ation sections, it is not easy to determine ex-
actly how well statistical translation can do on
a given task. We know that on a specific task of
spoken language translation, Wang (1998) pro-
vided evidence that SMT compared favorably
to a symbolic translation system; but as men-
tioned by the author, the comparison was not
totally fair.

We are not aware of any studies that describe
extensive experiments evaluating the adequacy
of SMT in a real translation environment. We
prefer not to commit ourselves to defining what
a real translation task is; instead, we adopt the
conservative point of view that a viable transla-
tion engine (statistical or not) is one that copes
with texts that may be very different in nature
from those used at training time.

This fairly general definition suggests that
adaptativity is a cornerstone of a successful
SMT engine. Curiously enough, we are not
aware of much work on adaptative SMT, de-
spite the tremendous amount of work done on
adaptative statistical language modeling.

In this paper, we propose to evaluate how
a statistical engine behaves when translating a
very domain specific text, that is far different
from the corpus used to trained both our trans-
lation and language models. We first describe
in section 2 our translation engine. In section 3,
we quantify and analyse the performance drop
of an SMT engine trained on a broad-based cor-
pus (the Hansard) when translating a domain
specific text (in this study, a manual for military
snipers). We then propose in section 4 a sim-
ple but natural way of improving a broad SMT
engine; that is, opening the engine to available
terminological resources. In section 5, we report
on the improvement we observed by implement-
ing our proposed approach. Finally, in section



6 we discuss other approaches we feel can lead
to more robust translation.

2 Our statistical engine

2.1 The statistical models
In this study, we built an SMT engine designed
to translate from French to English, following
the noisy-channel paradigm first described by
(Brown et al., 1993b), which relies on equation
1, where eÎ

1 stands for the sequence of Î target
words (here English words) to be found, given
the source sentence (here a French one) of J
words fJ
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To train our statistical models, we assembled
a bitext composed of 1.6 million pairs of sen-
tences that have been automatically aligned at
the sentence level. In this experiment, every
token has been converted into lowercase before
training.

The language model we used is an interpo-
lated trigram we trained on the English sen-
tences of our bitext. The perplexity of the re-
sulting model is fairly low – 65 –, which actually
reflects the fact that this corpus contains many
fixed expressions (e.g pursuant to standing
order).

The inverted translation model we used is
an IBM2-like model: 10 iterations of IBM1-
training were run (reducing the perplexity of the
training corpus from 7776 to 90), followed by 10
iterations of IBM2-training (yielding a final per-
plexity of 54). We further reduced the number
of transfer parameters (34 969 331 ones) by ap-
plying an algorithm described in Foster (2000),
which basically filters in the pairs of words with
the best gain; the gain being defined as the dif-
ference in perplexity — measured on a held-out
corpus — of a model trained with this pair of
words and a model trained without. In this ex-
periment, we worked with a model containing
exactly the first gain-ranked million parameters.
It is interesting to note that by doing this, we
not only save memory space, and therefore time,
but also gain in terms of perplexity and overall
performance1.

1On a translation task from French to English on

2.2 The search algorithm
The maximum operation in equation 1, also
called search or decoding, involves a length
model. We assumed that the length (counted
in words) of French sentences which are trans-
lations of an English sentence of a given length
are normally distributed.

We extended to a trigram language model
the decoder described by Nießen et al. (1998).
The basic idea of this search algorithm is to
expand hypotheses along the positions of the
target string while progressively covering the
source ones. We refer the reader to the origi-
nal paper for the recursion on which it relies,
and instead give in Figure 1 a sketch of how a
translation is built. An hypothesis h is fully de-
termined by four parameters: its source (j) and
target (i) positions of the last word (e), and its
coverage (c). Therefore, the search space can be
represented as a 4-dimension table, each item in
this table containing backtracking information
(f for the fertility of e, bj and bw for the source
position and the target word we should look at
to backtrack) and the hypothesis score (prob).

We know that better alignment models have
been proposed and extensively compared (Och
and Ney, 2000). We must however point
out that the performance we observed on the
hansard corpus (see Section 3 for the descrip-
tion of this corpus and performance figures)
with our engine is comparable to the rates pub-
lished elsewhere on the same kind of corpus. In
any case, our goal in this study is to compare
the behavior of a SMT engine in both friendly
and adverse situations. In our view, the present
SMT engine is suitable for such a comparative
study.

2.3 Tuning the decoder
Several tunings have been made on the decoder
in order to reduce its computations without
detrimentally affecting the quality of its output.
The first thing we do when the decoder receives
a sentence is to compute what we call an ac-
tive vocabulary ; that is, a collection of words
which will likely occur in the translation. This
is done by ranking for each source word the
target words according to their non normalized
posterior likelihood (that is argmaxe p(f |e)p(e),

Hansard sentences, we observed a reduction in word er-
ror rate of more than 3% with the reduced model.



Input: f1 . . . fj . . . fJ

Initialize the search space table Space
Select a maximum target length: Imax

Compute the active vocabulary

// Fill the search table recursively:
for all target position i = 1, 2, . . . , Imax do

prune(i− 1);
for all alive hyp. h = Space(i, j, c, e) do

uv ← History(h);
zones ← FreeSrcPositions(h);
bestWords ← NBestTgtWords(uv);
for all w in bestWords do

prob ← Score(h) + log p(w|uv);
setIfBetter(i, j, c, b, prob, 0, j, v);
for all free source position d do

s ← prob;
for all f ∈ [1, fmax] / d + f − 1 is
free do

s+ = log a(i|d, J) + log t(fd|ei);
setIfBetter(i, d, c+f, w, s, f, j, w);

// Find and return the best hypothesis if any
maxs ← −∞
for all i ∈ [1, Imax] do

for all alive hyp. h = Space(i, j, c, e) do
s ← Score(h) + log p(i|J);
if ((c == J) and (s > maxs)) then

maxs ← s
〈maxi, maxj , maxe〉 ← 〈i, j, e〉

if (maxs! = ∞) then
Return Space(maxi, maxj , J, maxe);

else
Failure

Output: e1 . . . ei . . . emaxi

Figure 1: Sketch of our decoder.
FreeSrcPositions returns the source posi-
tions not already associated to words of h;
NBestTgtWords returns the list of words
that are likely to follow the last bigram uv
preceeding e according to the language model;
and setIfBetter(i, j, c, e, p, f, bj , bw) is an
operator that memorizes an hypothesis if its
score (p) is greater than the hypothesis already
stored in Space(i, j, c, e). a and t stands for the
alignment and transfert distributions used by
IBM2 models.

where p(e) is given by a unigram target lan-
guage model, and p(f |e) is given by the transfer
probabilities of our inverted translation model)
and keeping for each source word at most a tar-
get words.

Increasing a raises the coverage of the active
vocabulary, but also slows down the translation
process and augments the risk of admitting a
word that has nothing to do with the transla-
tion. We have conducted experiments with var-
ious a-values, and found that an a-value of 10
offers a good compromise.

As mentioned in the block diagram, we also
prune the space to make the search tractable.
This is done with relative filtering as well as ab-
solute thresholding. The details of all the filter-
ing strategies we implemented are however not
relevant to the present study.

3 Performances of our SMT engine

3.1 Test corpora
In this section we provide a comparison of the
translation performances we measured on two
corpora. The first one (namely, the hansard)
is a collection of sentences extracted from a part
of the Hansard corpus we did not use for train-
ing. In particular, we did not use any specific
strategy to select these sentences so that they
would be closely related to the one we used for
training.

Our second corpus we gathered (here called
sniper) is an excerpt of an army manual on
sniper training and deployment that was used in
an other study (Macklovitch, 1995). This cor-
pus is highly specific to the military domain and
would certainly prove difficult to any translation
engine not specifically tuned to such material.

3.2 Overall performance
In this section, we evaluate the performance of
our engine in terms of sentence- and word- error
rates according to an oracle translation2. The
first rate is the percentage of sentences for which
the decoder found the exact translation (that is,
the one of our oracle), and the word error rate
is computed by a Levenstein distance (count-
ing the same penalty for both insertion, dele-
tion and substitution edition operations). We

2Both corpora have been published in both French
and English, and we took the English part as the gold
standard.



realize that these measures alone are not suffi-
cient for a serious evaluation, but we were re-
luctant in this experiment to resort to manual
judgments, following for instance the protocol
described in (Wang, 1998). Actually a quick
look at the degradation in performance we ob-
served on sniper is so clear that we feel these
two rates are informative enough !

Table 1 summurizes the performance rates
we measured. The WER is close to 60%
on the hansard corpus and close to 74% on
sniper; source sentences in the latter corpus be-
ing slightly longer on average (21 words). Not
any single sentence was found identical to the
gold standard translation on the sniper corpus
3.

corpus nbs |length| SER WER
hansard 1038 〈16.2, 7.8〉 95.6 59.6
sniper 203 〈20.8, 6.8〉 100 74.6

Table 1: Main characteristics of our test cor-
pora and global performance of our statistical
translator without any adjustments. |length|
reports the average length (counted in words)
of the source sentences and the standard de-
viation; nbs is the number of sentences in the
corpus.

3.3 Analyzing the performance drop
As can be expected, the poor performance ob-
served on the sniper text is mainly due to
two reasons: the presence of out of vocabulary
(OOV) words and the incorrect translations of
terminological units.

In the sniper corpus, 3.5% of the source to-
kens and 6.5% of the target ones are unknown
to the statistical models. 44% of the source sen-
tences and 77% of the target sentences contain
at least one unknown word. In the hansard
text, the OOV rates are much lower: around
0.5% of the source and target tokens are un-
known and close to 5% of the source and target
sentences contain at least one OOV words.

These OOV rates have a clear impact on
the coverage of our active vocabulary. On the
sniper text, 72% of the oracle tokens are in the

3The full output of our translation sessions
is available at www-iro.umontreal.ca/∼felipe/
ResearchOutput/Computerm2002

active vocabulary (only 0.5% of the target sen-
tences are fully covered); whilst on hansard,
86% of the oracle’s tokens are covered (24% of
the target sentences are fully covered).

An other source of disturbance is the presence
of terminological units (TU) within the text to
translate. Table 2 shows some examples of mis-
translated TU we extracted from the translation
session on the sniper text. We furthermore ob-
served that many words within terminological
units are not even known by the statistical mod-
els. Therefore accounting for terminology is one
of the ways that should be considered to reduce
the impact of OOV words.

< source term / oracle / translation>
<âme / bore / heart>
<huile polyvalente / general purpose oil / oil
polyvalente>
<chambre / chamber / house of common>
<tireur d’ élite / sniper / issuer of elite>
<la longueur de la crosse / butt length / the
length of the crosse>

Table 2: Examples of mistranslated terminolog-
ical entries of the sniper corpus.

4 Integrating non-probabilistic
terminological resources

Using terminological resources to improve the
quality of an automatic translation engine is not
at all a new idea. However, we are aware of only
few studies that investigated this avenue in the
field of statistical machine translation. In par-
ticular, (Brown et al., 1993a) have proposed a
way to exploit bilingual dictionnaries at train-
ing time. There may also be cases where do-
main specific corpus are available allowing to
train specialized models that can be combined
with the general ones.

An other approach that would not require
such material at training time consists in de-
signing an adaptative translation engine. For
instance, a cache-based language model could
be used instead of our static trigram model.
The design of an adaptative translation model is
however a more speculative enterprise. It would
at least require a fairly precise location of er-
rors in previously translated sentences; and we
know from the ARCADE campaign on bilingual
alignments, that accurate word alignments are



difficult to obtain (Véronis and Langlais, 2000).
This may become even harder in likely situa-
tions where errors will involve OOV words.

We investigated a third option, which involves
taking advantage – at run time – of existing ter-
minological resources; such as for instance Ter-
mium4. As mentioned by Langlais et al. (2001),
one of a translator’s first tasks is often termi-
nological research; and many translation com-
panies employ specialized terminologists. Ac-
tually, beyond the infrequent cases where, in a
given thematic context, a word is likely to have a
clearly preferred translation (e.g. bill/facture
vs bill/projet de loi), lexicons are often the
only means for a user to influence the transla-
tion engine.

Merging such lexicons at runing time is
a complementary solution to those aforemen-
tioned ones and it should be a fruitful strategy
in situations where terminological resources are
not available at training time (which should be
often the case). Unfortunately, integrating ter-
minological (or user) lexicons into a probabilis-
tic engine is not a straightforward operation,
since we cannot expect them to come with at-
tached probabilities. We may think at several
strategies to accomplish this goal. For instance,
we could credit a translation of a sentence that
contains a source lexicon entry in cases it con-
tains an authorized translation. This strategy
may however prouve difficult to tune since de-
coding usually involves many filtering strate-
gies.

The approach we took consists in viewing a
terminological lexicon as a set of constraints
that are employed to reduce the search space.
For instance, knowing that sniper is a sanc-
tioned translation of tireur d’élite, we may re-
quire that alive hypotheses in the search space
should associate the target word sniper with
the three source French words.

In our implementation, we had to slightly
modify the block diagram of Figure 1 in order
to: 1) forbid a given word ei from being asso-
ciated with a word belonging to a source ter-
minological unit, if it is not sanctioned by the
lexicon; and 2) add at any target position an
hypothesis linking a target lexicon entry to its
source counterpart. Whether these hypotheses
will survive intact will depend on constraints

4See http://www.termium.com/site/.

imposed by the maximum operation (of equa-
tion 1) over the full translation.

The score associated with a target entry ei′
i

when linked to its source counterpart f j′
j in the

latter case is given by:

∑
k∈[i,i′]

log p(ek|ek−2ek−1) + max
l∈[j,j′]

log(a(k|l, J))

The rationale behind this equation is that
both the language (p) and the alignment (a)
models have some information that can help
to decide the appropriateness of an extension:
the former knows how likely it is that a word
(known or not) will follow the current history5;
and the latter knows to some extent where the
target unit (regarless of its identity) should be.
We hope in absence of a better mechanism (a
cache-model should be worth a try) that it will
be sufficient to determine the final position of
the target unit in a given hypothesis.

5 Results

We considered three terminological lexicons
whose characteristics are summarized in Table
3; they essentially differ in terms of number
of entries and therefore coverage of the text to
translate.

lexicon nb coverage SER WER
sniper-1 33 20/247 99 67.4
sniper-2 59 47/299 98 66.2
sniper-3 146 132/456 98 64.3

Table 3: Translation performance with differ-
ent terminological lexicons. nb is the number of
entries in the lexicon and coverage reports the
number of different source entries from the lex-
icon belonging to the text to translate and the
total number of their occurrences.

The first lexicon (namely sniper-1) contains
the 33 entries used in the study of terminological
consistency checking described in (Macklovitch,
1995). The second and third lexicons (namely
sniper-2 and sniper-3) contain those entries
plus other ones added manually after an incre-
mental inspection of the sniper corpus.

5Our trigram model has been trained to provide pa-
rameters such as p(UNK|ab).



Source le tireur d’ élite voit simultanément les fils croisés et l’ image ( l’ objectif ) .
Target the sniper sees the crosshairs and the image - target - at the same time .
without the gunman being same son sit and picture of the hon. members : agreed .
with the sniper simultaneously see the crosshairs and the image (objective . )
Source contrôle de la détente .
Target exercising trigger control .
without the control of détente .
with control of the trigger .

Table 4: Two examples of translation with and without a terminological lexicon; TU appear in
bold.

As can be observed from Table 3, introduc-
ing terminological lexicons into the translation
engine does improve performance, measured in
terms of WER, and this even with lexicons that
cover only a small part of the text to trans-
late. With the narrow coverage lexicon, we ob-
serve an absolute reduction of 7%, and a reduc-
tion of 10% with the broader lexicon sniper-3.
This suggests that adding more entries into the
lexicon is likely to decrease WER. In an other
study (Carl and Langlais, 2002), we investigated
whether an automatic procedure designed to de-
tect term variants could improve these perfor-
mances upon.

Table 4 provides two examples of translation
outputs, with and without the help of termino-
logical units. The first one clearly shows that
only few TU (two in this case) may improve
by far the quality of the translation engine (the
translation produced without the lexicon went
in this very special case particularly wrong).

Even if terminological lexicons do improve the
overall WER figure, I must confess that a sys-
tematic inspection of the outputs produced with
TU reveals that the translations are usually less
faithful to the source text than the translations
produced for the hansard text: OOV words
are still a problem.

6 Discussion

In this study, we have shown that translating
texts in specific domains with a general purpose
statistical engine is difficult. This suggests im-
plementing an adaptative strategy. Among the
possible scenarios, we have shown that opening
the engine to terminological resources is a nat-
ural but efficient way of softening the decoder.

In the same vein, Marcu (2001) investigated
how to combine Example Based Machine Trans-

lation (EBMT) and SMT approaches. The au-
thor automatically derived from the Hansard
corpus what he calls a translation memory: ac-
tually a collection of pairs of source and target
word sequences that are in a translation rela-
tion according to the viterbi alignment run with
an IBM4 model that was also trained on the
Hansard corpus. This collection of phrases was
then merged with a greedy statistical decoder to
improve the overall performance of the system.

What this study suggests is that translation
memories collected from a given corpus can im-
prove the performance of a statistical engine
trained on the same corpus, which in itself is an
interesting result. A very similar study is der-
scribed in (Langlais et al., 2000), in the frame-
work of TransType, but with much more
weaker results. Besides the different metrics the
authors used, the difference of performance in
these two studies may be explained by the na-
ture of the test corpora used. The test corpus
in the latter study was more representative of
a real translation task, while the test corpus
taken in the former work was a set of around
500 French sentences of no more than 10 words.

Our present study is close in spirit to these
two last, except that we do not attack the prob-
lem of automatically acquiring bilingual lexi-
cons, but instead consider it a part of the trans-
lator’s task to provide such lexicons. Actually,
we feel this way be one of the only ways a user
has of retaining some control over the engine’s
output, a fact that professional translators seem
to appreciate (Langlais et al., 2001).

As a final remark, we want to stress that we
see the present study as a first step toward a
unification between EBMT and SMT, and in
this respect we agree with (Marcu, 2001). Of



course, EBMT can offer much more than just a
simple list of equivalences, like the ones we used
in this study. The basic approach we describe
here still holds, however, as long as we can ex-
tend the notion of constraint used in this study
to include non-consecutive sequences of words.
This is a problem we we plan to investigate in
future research.
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