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Abstract meaning that £ istoy asz isto t”, in a sense to

be specified. See (Lepage, 1998) or (Stroppa and
Yvon, 2005) for possible interpretations.

Analogical learning has recently regained some
interest in the NLP community. Lepage and De-
noual (2005) proposed a machine translation sys-
tem entirely based on the conceptfofmal anal-
ogy, that is, analogy on forms. Stroppa and
Yvon (2005) applied analogical learning to sev-
eral morphological tasks also involving analogies
on words. Langlais and Patry (2007) applied it to
the task of translating unknown words in several
European languages, an idea investigated as well
1 Introduction by Denoual (2007) for a Japanese to English trans-
lation task.

If the principle of analogical learning is quite

Recent years have witnessed a growing in-
terest in analogical learning for NLP ap-
plications. If the principle of analogical
learning is quite simple, it does involve
complex steps that seriously limit its ap-
plicability, the most computationally de-
manding one being the identification of
analogies in the input space. In this study,
we investigate different strategies for ef-
ficiently solving this problem and study
their scalability.

Analogical learning (Pirrelli and Yvon, 1999) be-

longs to the family of lazy learning teChn'queSsimple, it does involve complex steps that seriously
(Aha, 1997).

. . It aIIow_s to map forms belong-“mit its applicability. As a matter of fact, we are

ing to aninput space? into forms of a”"“tp%“ only aware of studies where analogical learning is

spaceOz thank; to a set of known observatlonsapp“ed to restricted tasks, either because they ar-

£ ={(,0) : i € Lo € O} I(u) andO(u) oy concentrate on words (Stroppa and Yvon,

respectively denote the projection of an ObserV?EOOS; Langlais and Patry, 2007; Denoual, 2007)
i

tion “_mto the input spgce and output space: r because they focus on limited data (Lepage and
u = (i,0), thenI(u) = i andO(u) = o. For an Denoual, 2005; Denoual, 2007).
incomplete observation = (i, ?), the inference of ’ ’ ’

O(u) involves the following steps: In this study, we investigate different strategies

for making step 1 of analogical learning tractable.

1. building £7(u) the set of analogical triplets We propose a data-structure and algorithms that
of I(u), that is€z(u) = {(s,v,w) € £3 : allow to control the balance between speed and
[I(s) : I(v) = I(w) : I(w)]} recall. For very high-dimensional input spaces

(hundreds of thousand of elements), we propose

2. building the set of solutions to the target equay heyristic which reduces computation time with a

tions formed by projecting source triplets:jimited impact on recall.

Eou) ={t € O : [O(s) : O(v) = O(w) :

(,9(s,v,w) € Ez(u)} 2 ldentifying input analogical relations

3. selecting candidates amo#g (u).

2.1 Existing approaches

where[x : y = z : t] denotes aanalogical pro- o _
portion, that is a relation between these four itemg? Prute-force approach for identifying the input
- triplets that define an analogy with the incomplete

(© 2008. This version of the article is subsequent to the b fi - o ists i Hi
COLING’08 version and corrects a few mistakes present poservatony = (t,?) consists in enumerating

Section 5. triplets in the input space and checking for an ana-



logical relation with the unknown form This strategy will only work if (i) the number
5 of quadruplets to check is much smaller than the
&r(u) ={ (x,y,2) : (x,y,2) € T", number of triplets we can form in the input space
x:y=z:1]} (which happens to be the case in practice), and if
This amounts to check(|Z|?) analogies, which is (i) we can efficiently |d_ent|fy the pairgy, z) that
satisfy a set of constraints on character counts. To
manageable for toy problems only. : . )
this end, we propose to organize the input space

Langlais and Patry (2007) deal with an input
g Y ( ) P thanks to a data structure calledrae-count(see

space in the order of tens of thousand forms (thg tion 3). which | t built and s ff
typical size of a vocabulary) using following strat- ectio ) ch 1S easy to bult and stpports
cient runtime retrieval.

egy for £z(u). It consists in solving analogical
equationsly : x = t : 7] for some pairs(x,y) 23 Sampled tree-count search
belonging to the neighborhobaf I(u), denoted
N(t). Those solutions that belong to the inpu
space are the-forms retained.

As shown in (Langlais and Yvon, 2008), using
tree-count to constraint the search allowsete
haustivelysolve step 1 for reasonably large input
Er(u) ={{(x,y,2) : (x,y) € N(t)% spaces. Computing analogies in very large input
y:x=t:z] } space (hundreds of thousand forms) however re-

, , mains computationally demanding, as the retrieval
This strategy (hereafter namee) directly fol-  1gorithm must be carried ow(Z) times. In this

lows from a symmetrical property of an analogycase, we propose to sample théorms:
(x:y=2z:t < [y:x=t:z|),and reduces

the search procedure to the resolution of a number ¢, () = { (x,y,z) : x € N (1),

of analogical equations which is quadratic with the {y,z) € C({x, 1)),
number of pairsx, y) sampled. [x:y=t:z] }
2.2 Exhaustive tree-count search There is unfortunately no obvious way of se-
The strategy we propose here exploits a propecting a good subsed/(t) of input forms, as
erty on character counts that an analogical relaticanalogies does not necessarily entail the similar-
must fulfill (Lepage, 1998): ity of “diagonal” forms, as illustrated by the anal-
ogy [une pomme verte : des pommes vertes =

une voiture rouge : des voitures rouges|, which

where A is the alphabet on which the forms areinvol_ves singular/plurall cor_nmqtations in French
built, and |x|. stands for the number of occur-nNPmMinal groups. In this situation, randomly se-
rences of characterin x. In the sequel, we de- lecting a subset of the input space seems to be a
noteC((x,t)) = {(y,z) € 2 : |x|e + |t]e = reasonable strategy (hereafttND).

lyle + |z]e Ve € A} the set of pairs that satisfy FOr some analogies however, the first and
the count property with respect ta, t) . last forms share some sequences of charac-

The strategy we propose consists in first selecters-  This is obvious irfdream : dreamer =
ing anx-form in the input space. This enforces glreams : dreamers], buf[ can b? more subtle, as
set of necessary constraints on the counts of chdf. our first example[This guy drinks too much :

acters that any two formg andz must satisfy for 1his boat sinks = These guys drank too much
[x :y = z : t] to be true. By considering all forms These boats sank] where the diagonal terms

x inturn2 we collect a set of candidate triplets forSharé some n-grams reminiscent of the number
t. A verification of those that define witha anal- (This/These) and tensedrink/drank) commuta-

ogy must then be carried out. Formally, we built; ions involved.
We thus propose a sampling strategy (hereafter

x:y=z:t]= |x|c+]|tle=|ylc+|z|lc Vee A

Er(u) ={(x,y,2z) : x€I, EV) which selectsc-forms that share with some
(y,z) € C({(x,t)), sequences of characters. To this end, input forms
x:y=2z:t] } are represented in a vector space whose dimen-

1The authors proposed to samplandy among the clos- sions are frequent characteigrams, re'_[alnlng the

est forms in terms of edit-distance k@). k-most frequent-grams, where, € [min; max].

2Anagram forms do not have to be considered separatelA form is thus encoded as a binary vector of



dimensionk, in which ith coefficient indicates
whether the form contains an occurrence ofitie
n-gram?® At runtime, we select th&l forms that

are the closest to a given form according to a
distancé. Figure 1 illustrates some forms selected

by this process. For comparison purposes, we also 1
tested a sampling strategy which consists in select-
ing thex-forms that are closest to the source form
t, according to the usual edit-distance (hereafte
ED). 1

establish a report — order to establish a — has
tabled this report — is about the report — basis
of the report — other problem is that — problem
that arises — problem is that those

Figure 1. The 8 nearest neighborstofestablish Figure 2: The tree-count encoding the set:
a reportin a vector space computed from an inpui{ soup(a), gods(b), odds(c), sos(d), solo(e),
space of over a million phrases. tokyo(f), moot(g), moto(h), kyoto(i), oslo(j),
dogs(Kk), opus(l), os(m), a(n)}. The character la-
beling a node is represented in a box; the counts of
each character labels each vertice. Roman letters
A tree-count is a tree which encodes a set of form#) nodes represent pointers to input forms; greek
Nodes are labeled by an alphabetical symbol argymbols label internal nodes.

contain a (possibly empty) set of pointers to forms.

A vertice from a node: labeledc to a nodem i ree. The lack of space prevents us to report the
weighted by the count of in the forms encoded ¢onstryction algorithm (see (Langlais and Yvon,
by m, that is, the set of forms that can be reachegnogy) put it is important to note that it only in-
from this node and its descendants. Thus, a pafRyes a simple traversal of the input forms and is
in a tree-count represents a set of constraints QRerefore time efficient. Also worth mentioning,
the counts of the characters encountered along thig; construction procedure only stores necessary
path. This structure allows for instance the identifgqes. This means that when enumerating char-
fication of anagrams in a set of forms: it suffices tQcters in order, we only store zero-count nodes as
search the tree-count for nodes that contain MOBquired. As a result, the depth of a tree-count is

than one pointer to forms in the vocabulary.  ypically much lower than the size of the alphabet.
An example of a tree-count is provided in Fig-

ure 2 for a small set of forms. The node doubl&.2 Retrieval time

circled in this figure is labeled by the character The retrieval ofC((x,t)) can be performed by
and encodes the 6 input forms that contain 1 0Graversing the tree-count while maintainingran-
currence of 6" and 1 occurrence ofs’. One form  tier, that is, the set of pairs of nodes in the tree-
is os, referenced by the pointen, the other five count that satisfy the constraints on counts encoun-
forms are found by descending the tree from thigered so far. Imagine, for instance, that we are
node; among whiclgods anddogs, two anagrams |goking for the pairs of forms that contain exactly
encoded by the leave which set of pointerd,i. 3 occurrences of characteos 2 of characters
and 1 charactet, and no other character. Start-
ing from the root node labelled hy, there is only
The construction of a tree-count from a set opne pair of nodes that satisfy the constraintcon
forms only needs an arbitrary order on the chakhe frontier is thereforg(v,6)}. The constraint
acters of the alphabet. This is the order in whicly, ¢ jeads to the frontief (m, ¢)} (since the count
we will encounter them while descending theyf ¢ must be null). Finally, descending this node

3Typical values arenin=max=3 andk=20000 . yields the frontier{(m, (e, j))}, which identifies
“We used the Manhattan distance in this study. the pairs(os, solo) and (os, oslo) to be the only

3 The tree-count data-structure

3.1 Construction time



ones satisfying the initial set of constraints. filtering strategies, we could at best identify 6 input

The complexity of retrieval is mainly dominatedanalogies for 38% of the test-phrases (at an aver-
by the size of the frontier built while traversing aage response time of 9 seconds), while véth an
tree-count. In practice, because of the sparsity @verage 34 analogies could be identified for 75.2%
the space we manipulate in NLP applications, resf the test-phrases (in 3 seconds on average).

trieval is also a fast operation. Finally, we checked that the approach we pro-
. posed scales to very large datasets (several mil-
4 Checking for an analogy lions of input phrases), which to the best of our

Stroppa (2005) provides a dynamic programminb”o""ledge is simply out of th_e reach_ of existing
algorithm for checking that a quadruplet is an anaf@PProaches. This opens up interesting prospects
ogy, whose complexity is(|x| x |y| x |z| x |¢]).5 for analogical Iearnling, su.ch as enr_lchlng.a'phrase-
Depending on the application, a large number (}?aged table of the kind being used in statistical ma-
calls to this algorithm must be performed during-hine translation.
step 1 of analqgical learning. The fol!owing prOp'Acknowledgment
erty helps cutting down the computations:
This study has been accomplished while the first
x:y=z:{]= author was visiting &€lecom ParisTech.

1}) v (t[1] € {y[1], 2[1]})

V(18] € {y[3], z[3]})
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